干气密封结构与原理..

合集下载

干气密封的特性及主要工作原理

干气密封的特性及主要工作原理

干气密封的特性及主要工作原理摘要介绍了干气密封的特点、结构及工作原理,分析了影响干气密封性能的主要参数。

关键词干气密封;结构及工作原理;主要参数中图分类号TH 文献标识码 A 文章编号1673-9671-(2012)051-0214-011 干气密封概述早在20世纪60年代末期,奠定在气体动压轴承应用的基础上,干气密封发展起来,并成为一种全新的非接触式密封。

该密封利用流体动力学原理,通过在密封端面上开设动压槽而实现密封端面的非接触性运行。

最初,采用干气密封形式,主要为了改善高速离心压缩机的轴封问题。

由于密封采取非接触性的运行方式,因此其密封的摩擦副材料基本不会受到PV值的任何影响,尤其在高压设备、高速设备中应用,具有良好前景。

随着我国密封技术的飞速发展,再加上干气密封的广泛应用,彻底解决了困扰高速离心压缩机运行中的轴封问题,密封使用寿命及性能都得到了很大提高,为机组稳定,长周期运行提供了保证,因此该技术的应用范围进一步扩大,凡使用机械密封的场合均可采用干气密封。

2 干气密封与机械密封性能比较机械密封是一种传统的密封型式,其特点是密封结构简单,技术成熟,加工精度要求不太高。

其缺点是泄漏率高,故障频发。

干气密封是目前最先进的一种非接触密封型式,与传统的机械密封形式相比较,采用干气密封技术,主要具备以下优势:1)采用干气密封技术,可有效提高密封的质量与使用时间,确保设备安全、可靠、稳定运行。

2)采用干气密封技术,能源消耗较小。

3)干气密封技术应用到的辅助系统较为可靠,操作简单,在使用过程中不需要任何维护手段。

4)采用干气密封技术,泄漏量较少,应用效果良好。

3 干气密封工作原理一般来讲,典型的干气密封技术,包含了静环、动环(旋转环)、副密封O 形圈、静密封、弹簧和弹簧座等。

静环位于弹簧座内,用副密封O形圈密封。

弹簧在密封无负荷状态下使静环与固定在轴上动环(旋转环)配合,如图1所示。

这类密封与机械密封的区别在于,它是一种气膜润滑的流体动、静压相结合的非接触式机械密封。

干气密封结构及基本知识

干气密封结构及基本知识
干气密封结构与基本知识
压缩机密封
• 由于压缩机转子与定子之间存在间隙, 因而不可避免的存在泄漏,为了阻止这 种泄漏发生,必须设计一种密封结构。
• 压缩机密封分为轴端密封、级间密封、 油密封等等。
密封型式
轴端密封几种型式
特点
应用场合
迷宫密封 或梳齿密 封或拉别 令
结构简单、泄漏大
浮环密封
机械接触 式密封
一个密封面,安全性较差, 多用于非有害介质
两个断面并列布置,两个静 环在外侧,安全性较单端面 有所提高,用于压力18以下
的提升风机 富气压缩机
双端面串联密封
两个断面串联布置,内侧密 封损坏,外侧密封还可继续 维持密封,不致发生大量外 泄漏,多用于危险场合
、、柴油加、循环氢压 缩机,新氢增压机
单端面干气密封
结构复杂,泄露量小,需要 一套复杂的密封油系统,有 时会污染润滑油系统,因而 运行费用高,维修复杂
需要密封油系统,工作寿命 较短其不稳定。
干气密封 泄漏少、寿命长、能耗低、 操作简单可靠
用于级间密封或油密封。 用于轴端密封的内侧部分, 或空气介质类压缩机的轴端 密封,如催化主风机 用于易燃爆介质类压缩机
排凝阀必须保持打开。
干气密封使用三忌
• 密封面忌杂质颗粒,颗粒将直接造成磨损 失效。
• 密封面忌液,液体进入密封面将造成动、 静环接触磨损,而加速密封失效。
• 忌反转,发生反转时密封面无法打开,动 静环瞬间磨损失效。
静环
动环
双端面干气密封
隔离气N2 排放口
主密封气N2
缓冲气N2
轴承
工艺介 质
带中间迷宫串联干气密封
Clean Buffer Gas 主密封气

干气密封基本原理及应用

干气密封基本原理及应用

Pressure [barG]
单向槽与双向槽的比较
单向槽:螺旋槽、V型槽 优点:动压效应强,气膜刚度大,抗外界扰动能力 强。
双向槽:枞树、U型槽、T型槽 优点:可以长时间反转; 缺点:较单向槽动压效应弱,气膜刚度小。 推荐:优先采用单向槽,特殊情况双向槽。
工作原理
FC 闭合力
S
P
弹簧力+流体压力
极低的工艺气泄漏
能承受速度和压力的快速变化
由于非接触的特点,理论上密封 寿命可以认为没有限制
干气密封主要特征
减少新机器的成本 集装式设计易安装,保护关键密封组
件 超过1亿5仟万小时运转经验 已安装1万2千套集装式干气密封
干气密封主要特性
取消了密封油系统 减少了维修费用 节能 防止了油系统的污染
10 6.625 in 密封直径
8 6 4 2
单向螺旋槽 改进型双向螺旋槽
最初的双向螺旋槽 雷列台阶
0
0 2000 4000 6000 8000 10000 12000 14000 16000
Speed (rpm)
单向螺旋槽 与 改进型双向螺旋槽( 5.687” ) -泄漏量与压力关系曲线
Leakage [std.l/min]
CSTEDY / CTRANS -功能
输入
压力,温度,转速,气 体组份,材料,槽形, 密封几何形状
输出
密封面间隙,泄漏量, 摩擦,功率,温升,气 膜稳定性
动态密封性能分析
密封直径 162mm 转速 16,110 rpm
压力 0 bar 温度 150 ℃
泄漏量 = 1.5 l/min
5 Microns/ div
New BD vs. UD : Seal Size 5.687"

干气密封基础

干气密封基础

一、基本概念干气密封即“干运转气体密封”(Dry Running gas seals)是将开槽密封技术用于气体密封的一种新型轴端密封,属于非接触密封。

其作用原理:当端面外侧开设有流体动压的动环旋转时,流体动压槽把外径侧(称之为上游侧)的高压隔离气体泵入密封端面之间,由外径至槽径处气膜压力逐渐增加,而自槽径至内径处气膜压力逐渐下降,因端面膜压增加使所形成的开启力大于作用在密封环上的闭合力,在摩擦副之间形成很薄的一层气膜从而使密封工作在非接触状态下。

所形成的气膜完全阻塞了相对低压的密封介质泄漏通道,实现了密封介质的零泄漏或零逸出。

二、干气密封工作原理分析干气密封的一般设计形式是集装式,干气密封和普通平衡型机械密封相似,也由静环和动环组成,其中:静环由弹簧加载,并靠O型圈辅助密封。

端面材料可采用碳化硅、氮化硅、硬质合金或石墨。

干气密封与液体普通平衡型机械密封的区别在于:干气密封动环端面开有气体槽,气体槽深度仅有几微米,端面间必须有洁净的气体,以保证在两个端面之间形成一个稳定的气膜使密封端面完全分离。

气膜厚度一般为几微米,这个稳定的气膜可以使密封端面间保持一定的密封间隙,间隙太大,密封效果变差;而间隙太小会使密封面发生接触,因干气密封的摩擦热不能散失,端面间无润滑接触将很快引起密封端面的变形,从而使密封失效。

气体介质通过密封间隙时靠节流和阻塞的作用而被减压,从而实现气体介质的密封,几微米的密封间隙会使气体的泄漏率保持最小。

动环密封面分为两个功能区(外区域和内区域)。

气体进入密封间隙的外区域有空气动压槽,这些槽压缩进来的气体。

为了获得必要的泵效应,动压槽必须被开在高压侧。

密封间隙内的压力增加将保证即使在轴向载荷较大的情况下也将形成一个不被破坏的稳定气膜。

干气密封无接触无磨损的运行操作是靠稳定的气膜来保证的,稳定的气膜是由密封墙的节流效应和所开动压槽的泵效应得到的。

密封面的内区域(密封墙)是平面,靠它的节流效应限制了泄漏量。

干气密封工作原理

干气密封工作原理

干气密封工作原理一、引言干气密封是一种广泛应用于各种机械设备中的密封方式,它通过利用气体的特性来实现密封效果,具有结构简单、维护方便等优点。

本文将详细介绍干气密封的工作原理及其应用。

二、工作原理干气密封的工作原理基于气体的压力平衡原理和密封面的相对运动。

一般情况下,干气密封由静密封和动密封两部分组成。

1. 静密封部分静密封部分主要由密封面和密封环组成。

密封面通常采用硬质合金、陶瓷等材料制成,具有良好的耐磨性和耐腐蚀性。

密封环则负责与密封面接触,并通过压缩使其与密封面形成密封。

2. 动密封部分动密封部分主要由活塞、活塞环和密封环组成。

活塞和活塞环的运动可产生压力差,从而形成气体的流动。

密封环则负责承受气体的压力,并通过其自身的弹性使气体无法泄漏。

三、工作过程干气密封的工作过程可以分为压缩、密封和润滑三个阶段。

1. 压缩阶段当活塞运动时,活塞环与密封环之间形成一定的压力差,使气体被压缩。

同时,密封环的弹性使其与密封面紧密接触,形成初步的密封效果。

2. 密封阶段在密封阶段,由于活塞环的运动,压缩气体逐渐流向密封面,与密封面接触。

此时,密封面与密封环之间的压力差逐渐增大,从而形成更好的密封效果。

3. 润滑阶段在润滑阶段,密封面和密封环之间的润滑剂起到重要的作用。

润滑剂可减少密封面和密封环之间的摩擦,提高密封的效果。

四、应用领域干气密封广泛应用于各种机械设备中,特别是涉及高速旋转的轴承和密封件。

其主要应用领域包括但不限于以下几个方面:1. 压缩机在压缩机中,干气密封可有效防止压缩气体泄漏,提高压缩机的工作效率。

同时,干气密封还可减少摩擦磨损,延长设备的使用寿命。

2. 泵站在泵站中,干气密封可防止液体泄漏,保证泵站的正常运行。

与传统的液体密封相比,干气密封不会受到液体蒸发和结晶的影响,具有更好的稳定性和可靠性。

3. 机床在机床中,干气密封可防止切削液进入主轴轴承,保护轴承免受污染。

同时,干气密封还可减少主轴轴承的磨损,提高机床的加工精度和效率。

干气密封的原理

干气密封的原理

干气密封的原理干气密封是一种常用于旋转机械设备中的密封方式,其原理是利用气体的压力来实现密封作用。

在旋转机械设备中,由于转子的高速旋转和运动部件的摩擦,会产生大量的热量和摩擦力,如果不加以有效的密封,就会导致气体泄漏和能量损失,甚至会影响设备的正常运行。

因此,干气密封的应用就显得尤为重要。

干气密封的原理可以简单地概括为以下几点:1. 气体压力作用,干气密封的核心原理是利用气体的压力来实现密封作用。

在密封装置中,通过控制气体的流动和压力,使气体形成一定的压力差,从而阻止外界空气或液体的渗入,实现密封效果。

2. 动静环结构,干气密封通常由动环和静环两部分组成。

动环是安装在旋转轴上的密封件,静环则是安装在机壳内的密封件。

当旋转轴旋转时,动环和静环之间形成一定的间隙,通过控制气体的流动和压力来实现密封作用。

3. 摩擦降低,干气密封的原理还包括通过减少摩擦力来实现密封。

在密封装置中,通过控制气体的流动和压力,形成一层气膜,从而减少旋转部件和固定部件之间的摩擦力,减少能量损失。

4. 温度控制,干气密封的原理还包括通过控制气体的温度来实现密封。

在高速旋转的机械设备中,由于摩擦产生的热量会导致气体温度升高,影响密封效果。

因此,通过控制气体的温度,可以有效地实现密封作用。

总的来说,干气密封的原理是通过控制气体的流动、压力、温度等参数,利用气体的压力和摩擦降低来实现密封作用。

在实际应用中,干气密封不仅可以有效地阻止气体泄漏和能量损失,还可以减少设备的维护成本,提高设备的运行效率,具有广泛的应用前景。

以上就是干气密封的原理,希望能对大家有所帮助。

干气密封结构与原理

干气密封结构与原理
优化方向
优化密封面设计、选择合适的弹性 元件和摩擦材料,以提高开启力。
泄漏率
01
02
03
泄漏率
干气密封在工作过程中, 气体通过密封面的流量, 通常以气体流量或泄漏量 的形式表示。
影响因素
泄漏率受密封面粗糙度、 间隙大小、气体压力和温 度等因素影响。
优化方向
减小密封面粗糙度、减小 间隙大小、提高气体压力 和温度等措施,以降低泄 漏率。

低能耗
干气密封的运行能耗较低,能 够降低企业的生产成本。
长寿命
干气密封的使用寿命较长,减 少了维修和更换的频率,降低 了维护成本。
高可靠性
干气密封的可靠性较高,能够 保证设备的长期稳定运行,减
少意外停机事故的发生。
缺点
高成本
安装要求高
干气密封的结构复杂,制造成本较高,导 致其整体价格较高。
干气密封的安装精度要求较高,需要专业 人员进行安装和调试,以确保其正常工作 。
03
干气密封的工作原理
工作原理概述
干气密封是一种非接触式机械密封,通过在密封端面之间形成一层稳定的气膜来实 现密封。
与传统的接触式机械密封相比,干气密封具有较低的摩擦阻力、磨损小、寿命长等 优点。
干气密封适用于高速、高温、高压等苛刻的工况条件,广泛应用于石油、化工、制 药等领域。
静环与动环的相互作用
旋转环
旋转环是干气密封中的另一个关键组件,它与静止环形成一 对相互作用的密封面。旋转环通常由经过特殊处理的硬质材 料制成,如碳化钨或碳化硅。
旋转环的表面经过精密研磨和抛光,使其能够在高速旋转时 保持与静止环的紧密接触,从而实现非接触式密封。
弹簧
弹簧是干气密封中的一个重要组成部 分,它为静止环提供必要的预紧力, 确保静止环与旋转环之间的紧密接触 。

离心压缩机干气密封结构原理

离心压缩机干气密封结构原理

离心压缩机干气密封结构原理
离心压缩机是一种重要的工业设备,广泛应用于石油、化工、冶金等行业。

为了保证离心压缩机的高效运行,干气密封结构起着至关重要的作用。

干气密封结构可以防止气体泄漏,提高设备的安全性和可靠性。

干气密封结构的原理主要基于以下几个方面:
1. 压力差效应:干气密封结构利用压力差效应来防止气体泄漏。

在离心压缩机运行过程中,气体从高压区域流向低压区域,干气密封结构通过合理设计,使气体在流动过程中产生压力差,从而防止气体渗漏到外部环境。

2. 环境控制:干气密封结构通过控制环境条件来防止气体泄漏。

离心压缩机通常运行在高温、高压的环境中,干气密封结构采用特殊的材料和密封装置,能够承受高温高压环境的侵蚀和磨损,并保持稳定的密封性能。

3. 摩擦密封:干气密封结构利用摩擦力来防止气体泄漏。

离心压缩机的转子和定子之间存在一定的摩擦力,干气密封结构通过合理设计密封面的形状和材料,使摩擦力产生足够的密封效果,防止气体泄漏。

4. 润滑和冷却:干气密封结构通过润滑和冷却来防止气体泄漏。


心压缩机的转子和定子之间存在一定的间隙,干气密封结构通过注入润滑剂和冷却剂,形成一层润滑膜和冷却膜,以减少摩擦和热量的产生,提高密封性能。

干气密封结构的设计需要考虑多个因素,如压力、温度、转速等。

不同工况下,需要采用不同的密封结构和材料。

目前,常用的干气密封结构包括磁力密封、机械密封和迷宫密封等。

离心压缩机干气密封结构的原理是通过压力差效应、环境控制、摩擦密封和润滑冷却等方式来防止气体泄漏。

合理设计和选择适当的干气密封结构,可以提高离心压缩机的安全性和可靠性,确保设备正常运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PCL804干气密封
PCL804干气密封
PCL804干气密封
PCL804干气密封
PCL804干气密封
பைடு நூலகம்
干气密封基本结构
典型的干气密封结构
静环 动环组件(旋转环) 副密封O形圈 静密封
弹簧
弹簧座(腔体)
干气密封基本结构
干气密封基本结构
干气密封原理
该密封坝的内侧还 随着转子转动,气体 有一系列的反向螺旋槽, 反向螺旋槽的 被向内泵送到螺旋槽的根 这些反向螺旋槽起着反 内侧还有一段密封 部,根部以外的一段无槽 向泵送、改善配合表面 坝,对气体流动产 区称为密封坝。密封坝对 压力分布的作用,从而 生阻力作用,增加 气体流动产生阻力作用, 加大开启静环与动环组 气体膜压力。 增加气体膜压力。 件间气隙的能力。
干气密封原理
受力分析
配合表面间的压力使静环表面与 动环组件脱离,保持一个很小的间隙, 一般为3微米左右。当由气体压力和弹 簧力产生的闭合压力与气体膜的开启 压力相等时,便建立了稳定的平衡间 隙。
干气密封原理
闭合力Fc,是气体压力和弹簧力的总和。开启 力Fo是由端面间的压力分布对端面面积积分而形成 的。在平衡条件下Fc=Fo,运行间隙大约为3微米。
干气密封结构形式
单端面干气密封:
适用于少量工艺气泄漏到大气中无危害的工况
干气密封结构形式
串联式干气密封:
适用于允许少量工艺气泄漏到大气的工况
干气密封结构形式
带中间进气的串联式干气密封:
适用于既不允许工艺气泄漏到大气中,又不允许阻封气进入机内的工况。
干气密封结构形式
双端面干气密封:
适用于不允许工艺气泄漏到大气中,但允许阻封气进入机内的工况。
干气密封原理与结构
干气密封原理与结构
干气密封定义 干气密封简史
干气密封基本结构
干气密封原理
几种干气密封形式
PCL804干气密封
干气密封定义
干气密封
即“干运转气体密封”--Dry Running gas
seals
是将开槽密封技术用于 气体密封的一种新型轴端密 封,属于非接触密封。
干气密封简史
干气密封是20世纪60年代末期在气体动压轴承的基 础上通过对机械密封进行根本性改进发展起来的一种新 非接触式密封。 实际上主要就是通过在机械密封动环上增开了动压 槽以及随之相应设置了辅助系统而实现密封端面的非接 触运行。 英国的约翰克兰公司于70年代末期率先将干气密封 应用到海洋平台的气体输送设备上并获得成功。 干气密封最初是为解决高速离心式压缩机轴端密封 问题而出现的,由于密封非接触式运行,因此密封摩擦 副材料基本不受PV值的限制,特别适合做为高速高压设 备的轴端密封。
干气密封原理
如果由于某种干扰使密封间隙减小,则端面间 的压力就会升高,这时,开启力Fo大于闭合力Fc, 端面间隙自动加大,直至平衡为止。
干气密封原理
如果扰动使密封间隙增大,端面间的压力就会 降低,闭合力Fc大于开启力Fo,端面间隙自动减小, 密封会很快达到新的平衡状态。
干气密封原理
这种机制将在静环和动环组件 之间产生一层稳定性相当高的气体 薄膜,使得在一般的动力运行条件 下端面能保持分离、不接触、不易 磨损,延长了使用寿命。
相关文档
最新文档