2.降水、蒸发、径流基本知识分析
第二章水文基础知识

W Q•T
y Q •T •103 Q •T (mm)
F •106
1000F
径流模数(M):流域出口断面上的流量与流域面积的比值。
M=1000Q/F
径流系数(α):某时段降雨量x所形成径流深y的比例数
α =y/x
因为降雨总是会有损失,所以一般α只能小于1。
3/3
(三)流域平均降雨量的计算
流域内各站降雨量是不同的,分析流域 降雨与径流关系时,需要由降雨量计算流域 平均面雨量,根据流域内雨量资料,常用以 下方法:
1. 算术平均法
式中
——某一指定时段的流域平均雨量,mm; ——流域内的雨量站数; ——流域内第站指定时段的雨量,mm。
2. 泰森多边形法
f4 f3
2. 降水的分类 按空气抬升形成动力冷却的原因可以把降水分
为4种类型:
强度大,范围小,历时短
降水
对流雨 地形雨 气旋雨
迎风面雨多,背风面雨少
温带气旋雨
气旋前方:暖锋云系及连续性降雨 气旋后方:狭窄的冷锋云系和降雨 气旋中部:暖气团,层云或毛毛雨
热带气旋雨 水汽充足,运动强烈,易带来狂风暴雨
锋面雨
冷锋雨 暖锋雨
水面蒸发常用蒸发器进行观测。换算关 系为:
式中
——天然水面蒸发量,mm; ——蒸发器实测蒸发量,mm; ——蒸发器折算系数。
(二) 土壤蒸发 土壤蒸发比水面蒸发要复杂得多。湿润
的土壤,其蒸发过程一般可以分为三个阶段。
(三)植物散发 土壤中的水分经植物根系吸收后,输送
至叶面,再从叶面散发到大气中,称为植物 散发。
(四) 流域总蒸发
流域总蒸发是流域内所有的水面、土壤以及植 被蒸发与散发的总和。目前采用的方法是从全流 域综合角度出发,用水量平衡原理来推算流域总 蒸发量。
2.降水、蒸发、径流基本知识

降水大气中的液态或固态水,在重力作用下,克服空气阻力,从空中降落到地面的现象称为降水。
降水的主要形式是降雨和降雪,前者为液态降水,后者为固态降水,其他的降水形式还有露、霜、雹等。
凡日降水量达到和超过50mm的降水称为暴雨。
暴雨又分为暴雨、大暴雨和特大暴雨三个等级。
小雨:12小时内降水量为0.1-4.9mm或24小时内降水量为0.1-9.9mm降雨。
中雨:12小时内降水量5.0~14.9mm或24小时内降水量10.0~24.9mm的降雨过程。
大雨:12小时内降水量15.0~29.9mm或24小时内降水量25.0~49.9mm的降雨过程。
暴雨:12小时内降水量30.0~69.9mm或24小时内降水量50.0~99.9mm的降雨过程。
大暴雨:12小时内降水量70.0~139.9mm或24小时内降水量100.0~249.9mm的降雨过程。
特大暴雨:12小时内降水量大于等于140.0mm或24小时内降水量大于等于250.0mm的降雨过程。
小雪:12小时内降雪量小于1.0mm(折合为融化后的雨水量,下同)或24小时内降雪量小于2.5mm的降雪过程。
中雪:12小时内降雪量1.0~3.0mm或24小时内降雪量2.5~5.0mm或积雪深度达3CM的降雪过程。
大雪:12小时内降雪量3.0~6.0mm或24小时内降雪量5.0~10.0mm或积雪深度达5CM的降雪过程。
暴雪:12小时内降雪量大于6.0mm或24小时内降雪量大于10.0mm或积雪深度达8CM的降雪过程。
一、降水要素降水是水文循环的重要环节。
在水文学中一般只讨论降水时空分布的表示方法和降水资料的整理及应用。
描述降水的基本物理量(即降水的基本要素)介绍如下:(1)降水量(深)。
降水量的概念是时段内(从某一时刻到其后的另一时刻)降落到地面上一定面积上的降水总量。
按此定义,降水量应由体积度量,基本单位为m3。
但传统上总是用单位面积的降水量即平均降水深(或降水深)度量降水量,单位多以mm计,量纲是长度。
水文学知识点

水文学知识点1. 水文学的定义水文学是研究水文现象、水文过程以及水文特征的学科,它涉及水资源的形成、分布、循环和利用等方面。
通过对水文学的研究,可以对水文过程进行分析和预测,为水资源的合理管理和利用提供科学依据。
2. 水文循环水文循环是指水在地球上不断循环的过程。
它包括了蒸发、降水、径流和地下水等环节。
蒸发是指水由液态转化为水蒸气,降水是指水蒸气在大气中冷却凝结成液态水或固态水,并以降水形式返回地表。
其中,一部分降水会形成地表径流,沿地表流入河流、湖泊和海洋等水体;另一部分降水则渗入地下,形成地下水。
3. 水文循环对水资源的意义水文循环是维持地球上水资源平衡的重要过程。
通过水文循环,水从海洋、湖泊和河流等水体蒸发升华进入大气,再通过降水形式返回地表和地下,使水资源得以循环利用。
水文循环不仅提供了人类生活所需的淡水资源,还维持了地球上各种生态系统的稳定。
4. 水文循环的影响因素水文循环受多种因素的影响,包括气候、地形地貌、土壤类型和植被覆盖等。
气候条件决定了水蒸气的蒸发量和降水量,气温越高蒸发量越大,降水量也会相应增加。
地形地貌对水的径流和地下水流动具有重要影响,高山地区容易形成降水集中的河流,而平原地区则更容易形成地下水。
土壤类型和植被覆盖也能影响水分的渗透和蒸发过程。
5. 水文学参数和指标水文学研究中使用了一些参数和指标来描述水文过程。
例如,降水强度指标可以描述降水的总量和强度,径流系数可以衡量降水中多少比例转化为地表径流,含水层厚度可以用来评估地下水资源的丰富程度等。
这些参数和指标对于水文学的研究和水资源管理具有重要意义。
6. 水文模型水文模型是通过数学和计算机技术对水文过程进行模拟和预测的工具。
水文模型能够通过输入地表和地下水系统的数据,模拟出水文过程的变化和发展规律,如洪水预测、干旱预警等。
水文模型在水文学研究和实际应用中起到了重要作用。
7. 水资源管理水文学的研究成果对于水资源管理具有重要指导意义。
水循环简要知识点总结

水循环简要知识点总结一、水循环的定义水循环是地球上水资源得以循环利用的过程。
在水循环中,太阳的热能使地表水蒸发成水蒸气,形成云层并凝结成雨、雪、露、霜或冰,在地表和地下流动,最终回到大海、湖泊、河流等水体中,形成水资源的再生和再利用。
二、水循环的过程1. 蒸发:太阳能使地表水蒸发成水蒸气,形成云层。
2. 凝结:水蒸气逐渐凝结成小水滴,形成云,积聚成为云块。
3. 降水:云块中的水滴因为重力作用而落下,形成降水,包括雨、雪、露、霜或冰。
4. 表面径流:降水流向地表,形成地表径流,流入河流、湖泊等。
5. 地下径流:降水渗入地下,形成地下水,最终回到大海、湖泊、河流等水体中。
三、水循环的意义1. 维持地球生态平衡:水循环是地球生态平衡的基础,通过水循环,地球上的水资源得以再生和再利用。
2. 促进陆地生态系统:水循环对陆地生态系统起着重要的调节作用,保证了陆地上植被的生长和动物的生存。
3. 人类生活和生产:水循环提供了人类生活和生产所需的淡水资源,是人类社会生活和生产的重要基础。
四、水循环的影响因素1. 太阳能:太阳能是水循环的动力源,是水蒸气的主要来源。
2. 表面特征:不同地形地貌、植被覆盖等都会影响地表水蒸发和降水的分布。
3. 气候条件:气温、湿度、风力等气候条件都会影响水循环的进行。
4. 人类活动:人类的生产和生活活动对水循环产生了一定的影响,如水资源的开发利用、水污染等都会影响水循环的进行。
综上所述,水循环是地球上水资源得以循环利用的重要方式,对地球生态平衡、人类生活和生产等具有重要意义。
通过加强对水循环的研究和保护,可以更好地维护地球生态环境,保障水资源的可持续利用。
高一地理水循环知识点总结

高一地理水循环知识点总结【导语】高一新生要作好充分思想准备,以自信、宽容的心态,尽快融入集体,适应新同学、适应新校园环境、适应与初中迥异的纪律制度。
记住:是你主动地适应环境,而不是环境适应你。
由于你走向社会参加工作也得适应社会。
以下内容是作者为你整理的《高一地理水循环知识点总结》,期望你不负时光,努力向前,加油!1.高一地理水循环知识点总结一、自然界的水循环1.水体的主要类型(1)海洋水:最主要的水体。
(2)大气水:数量最少、散布最广的水体。
(3)陆地水:供应人类所需淡水的水体。
2.水体的相互关系从水的运动和更新角度看,陆地上的各种水体之间具有水源相互补给的关系。
3.水循环的进程和意义(1)水循环的主要环节和类型:①水汽输送;②蒸腾;③蒸发;④地表径流;⑤陆地内循环;⑥海陆间循环。
(2)水循环意义:坚持全球水的动态安稳;缓解不同纬度热量收支不安稳的矛盾;联系海陆间的主要纽带;不断塑造着地表形状。
二、水资源的公道利用1.现状目前人类容易利用的淡水资源主要有河流水、淡水、湖泊水和浅层地下水。
2..我国水资源的时空散布特点空间上东南多西北少;时间上夏秋多,冬春少。
且年际变化大。
3..公道利用水资源(1)水资源与人类社会的关系:①数量——影响经济活动规模的大小。
②质量——影响一个地区经济活动的效益。
(2)水资源连续利用的措施:公道开发和提取地下水修建水库,调解水资源的时间散布①开源措施跨流域调水,调解水资源的空间散布海水淡化、人工增雨加强宣传教育,提高公民节水意识②节流措施改进农业灌溉技术提高工业用水的重复利用率2.高一地理水循环知识点总结1、水循环:①按其产生领域分为海陆间大循环、内陆循环和海上内循环。
②水循环的主要环节有:蒸发,水汽输送,降水,径流。
③它的重要意义在于:使淡水资源不断补充、更新,使水资源得以再生,坚持全球水的动态安稳。
2、陆地水体的相互关系:①以雨水补给为主的的河流其径流的变化与降雨量变化一致:a地中海气候为主的河流,其流量冬季;b季风气候为主河流,流量夏季;c 温带海洋性与热带雨林气候河流流量全年变化小;②以冰雪补给为主的河流其径流变化与气温关系密切:冰川融水补给为主的河流,其流量夏季.③河流水地下水之间可相互补给,湖泊对河流径流起调蓄作用。
水循环知识点

水循环知识点水循环,也被称为水的循环或水循环,是地球上水分的循环过程。
在水循环中,水以不同形式在大气、地表和地下之间循环。
这个过程是由太阳能的驱动和地球的引力所控制的。
水循环是地球上的重要自然循环之一,对维持地球上的生命和环境起着重要作用。
水循环的过程可以分为四个主要阶段:蒸发、凝结、降水和径流。
首先,太阳的热量使得地表的水蒸发成水蒸气,进入大气中。
这个过程也包括植物通过叶片的蒸腾作用释放水分到大气中。
蒸发过程最常见的地方是海洋和湖泊,但也可以发生在土壤、植物和其他水体表面。
蒸发后,水蒸气在大气中上升,冷却后会凝结成云。
这个过程称为凝结。
云是由水蒸气凝结成的微小水滴或冰晶体组成的。
云的形成也与大气中的微小颗粒有关,如灰尘、盐粒或气溶胶。
当云中的水滴或冰晶体增长到足够大时,它们会落下地面,这个过程被称为降水。
降水可以以雨、雪、雨夹雪或冰雹的形式出现。
降水是水循环中的重要环节,它为陆地上的生物提供水源,滋润植物和土壤。
降水后的水分有两个去向:一部分水直接蒸发回大气中,形成新的水蒸气;另一部分则渗入地下或流入地表水体,形成径流。
地表径流是指降水在地表上流动形成的水流,可以进入河流、湖泊或海洋。
地下径流是指水渗入地下形成的地下水,可以通过井泉或地下水位上升到地表。
水循环还有一些其他重要的过程,如冰雪融化、植物蒸腾、地下水补给和河流蒸发等。
这些过程都与水循环密切相关,共同维持着地球上水的平衡。
水循环对地球生态系统和人类社会有着重要的影响。
它调节着地球的气候和气温,影响着降水分布和季节变化。
水循环还为植物提供水分,维持着陆地生态系统的稳定。
同时,水循环也影响着水资源的分布和可利用性,对人类的生活、农业和工业产生着深远的影响。
水循环是地球上水分循环的过程,包括蒸发、凝结、降水和径流等阶段。
它是地球上的重要自然循环之一,对维持地球的生态平衡和水资源的分布起着重要作用。
了解水循环的过程和机制,有助于我们更好地保护和管理地球上的水资源,维护生态环境的稳定和可持续发展。
高一必修一地理水循环知识点

高一必修一地理水循环知识点水循环是地球上水分不断转化和流动的过程,也是地球上水资源的重要组成部分。
地理学中,水循环被视为水文学的基础知识之一。
随着社会发展和环境问题的日益突出,了解和掌握水循环的知识变得尤为重要。
本文将介绍高一必修一地理课程中关于水循环的主要知识点,以帮助同学们更好地理解和掌握这一领域的知识。
1. 水循环的概念和基本过程水循环是指地球上水分不断地由液态、气态和固态之间进行转化和流动的过程。
它包括蒸发、凝结、降水、地表径流和地下水流等基本过程。
首先,太阳的热量使水体蒸发成水蒸气,然后在大气中冷却凝结成云和雨滴,最后通过降水形式返回地面,形成地表径流和地下水流,再次进入水循环的循环过程。
2. 水蒸发与水汽含量水蒸发是指液态水变为气态水蒸气的过程。
水蒸发主要受气温、湿度、风速和水面积等因素影响。
水汽含量指单位体积的大气中所含有的水汽的质量。
水蒸发与水汽含量是水循环过程中相互关联的两个重要因素,水汽含量越高,蒸发速率也越高。
3. 云的形成与降水云是由凝结的水蒸气聚集而成的气象现象。
当大气中的水蒸气饱和时,水蒸气会凝结成云。
云的形态和高度与气候和地形有关。
降水是指云中的水滴或固体颗粒落到地面的过程。
降水形式有雨、雪、雾和霜等,降水对地球上的生态系统和农业生产都有着重要的影响。
4. 地表径流与地下水地表径流是指雨水在地表流动并返回到海洋或湖泊的过程。
地表径流受降雨量、地表形态和土地利用等因素影响。
地下水是指地下的水体,位于岩石或土壤孔隙中。
地下水补给主要来源于降雨和地表径流的渗漏。
地下水资源的开采和利用在一定程度上可以缓解地表径流过程中的水资源不足问题。
5. 水循环的重要性和影响因素水循环是维持地球生态系统和人类社会正常运转的重要过程之一。
水循环的不平衡会导致旱涝灾害和水资源短缺等问题。
水循环的影响因素包括气候变化、地形地貌、植被覆盖、土地利用和人类活动等。
我们应当关注水循环的平衡,加强对水资源的保护和合理利用,以应对全球水资源问题。
水循环知识点总结

水循环知识点总结水循环是指地球上水分在大气、地表和地下之间的不断循环过程,是维持地球生态平衡的重要过程之一。
下面将对水循环的相关知识点进行总结,以帮助您更好地了解水循环的过程和意义。
1. 水循环的定义与概念水循环,又称水圈,指的是地球上水分在不同媒介(大气、地表、地下)之间不断转移和变化的过程。
它通过蒸发、降水、冰雪融化和地下水补给等环节,使地球上的水分得以重新分布,维持着地球生态系统的稳定。
2. 水循环的环节与过程(1)蒸发:水分在海洋、湖泊、江河等水体表面受热汽化成水蒸气,升入大气层。
(2)凝结:水蒸气在大气中冷却、遇冷凝结成小水滴或冰晶,形成云、雾等固态水。
(3)降水:由于云内小水滴或冰晶增大,并与其他水滴或冰晶接触时粘附结合,变得足够重以克服空气阻力而下落到地面,形成雨、雪、露等形式的降水。
(4)地表径流:雨水或融雪流入河流、湖泊、海洋等地表水体。
(5)地下水补给:部分降水渗透入地下,成为地下水,供给植物生物和水源补给。
(6)融化消融:冰川、冰雪等融化后流入江河湖海,补给地表水体。
3. 水循环的意义(1)水循环维持了地球上水资源的分布平衡。
通过水循环,水分得以重新分布,使干旱地区得到水源补给,湿润地区的水源得以减少,从而实现了全球水资源的合理利用。
(2)水循环对气候的调节起到重要作用。
水的蒸发和凝结过程会释放或吸收大量热量,从而影响着大气环流、云的形成和降水的分布,调节着地球的气候系统。
(3)水循环维持了生态系统的稳定。
水循环为陆地上的植物提供了生长所需的水分,维持着湿地、河流和湖泊等生态系统的稳定。
(4)水循环还与人类生活密切相关。
水循环使得水资源能够被人类利用,供应饮用水、农业灌溉、工业生产等各方面的需求。
4. 水循环中的重要环节(1)蒸发:蒸发是水循环过程中最重要的环节之一,它将地表水转化为水蒸气,进入大气层。
(2)降水:降水使得水蒸气从大气中沉降到地表,维持大地生态的水分供给。
(3)地下水补给:地下水补给是水循环的重要组成部分,它为地下水资源的形成和维持提供了重要的途径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
降水大气中的液态或固态水,在重力作用下,克服空气阻力,从空中降落到地面的现象称为降水。
降水的主要形式是降雨和降雪,前者为液态降水,后者为固态降水,其他的降水形式还有露、霜、雹等。
凡日降水量达到和超过50mm的降水称为暴雨。
暴雨又分为暴雨、大暴雨和特大暴雨三个等级。
小雨:12小时内降水量为0.1-4.9mm或24小时内降水量为0.1-9.9mm降雨。
中雨:12小时内降水量5.0~14.9mm或24小时内降水量10.0~24.9mm的降雨过程。
大雨:12小时内降水量15.0~29.9mm或24小时内降水量25.0~49.9mm的降雨过程。
暴雨:12小时内降水量30.0~69.9mm或24小时内降水量50.0~99.9mm的降雨过程。
大暴雨:12小时内降水量70.0~139.9mm或24小时内降水量100.0~249.9mm的降雨过程。
特大暴雨:12小时内降水量大于等于140.0mm或24小时内降水量大于等于250.0mm的降雨过程。
小雪:12小时内降雪量小于1.0mm(折合为融化后的雨水量,下同)或24小时内降雪量小于2.5mm的降雪过程。
中雪:12小时内降雪量1.0~3.0mm或24小时内降雪量2.5~5.0mm或积雪深度达3CM的降雪过程。
大雪:12小时内降雪量3.0~6.0mm或24小时内降雪量5.0~10.0mm或积雪深度达5CM的降雪过程。
暴雪:12小时内降雪量大于6.0mm或24小时内降雪量大于10.0mm或积雪深度达8CM的降雪过程。
一、降水要素降水是水文循环的重要环节。
在水文学中一般只讨论降水时空分布的表示方法和降水资料的整理及应用。
描述降水的基本物理量(即降水的基本要素)介绍如下:(1)降水量(深)。
降水量的概念是时段内(从某一时刻到其后的另一时刻)降落到地面上一定面积上的降水总量。
按此定义,降水量应由体积度量,基本单位为m3。
但传统上总是用单位面积的降水量即平均降水深(或降水深)度量降水量,单位多以mm计,量纲是长度。
降水量一般用专门的雨量计测出降水的毫米数,如果仪器承接的是雪、雹等固态形式的降水,则一般将其溶化成水再进行测量,也用毫米数记录。
但在进行水资源评价等考虑总水量时多用体积度量降水量。
降水多发生在大的面积上,但仪器观测的点位相对面积很微小,常作为几何的点看待,因此又有“面降水量”和“点降水量”之说。
随着雷达测雨等现代技术的应用,直接测量面雨量也逐步成为现实。
(2)降水历时和降水时间:原始意义的降水历时的概念是一次降水过程中从某一时刻到其后另一时刻经历的降水时间,并不特指一次降水过程从开始到结束的全部历时。
若指一次降水过程从降水开始到降水结束所经历的时间,则称为次降水历时。
降水时间是指对应某一降雨量而言的时段长,在此时间内,降雨并不一定是持续的。
降水历时通常以min、h、或d计。
(3)降水强度。
降水强度是评定降水强弱急缓的概念,有单位时间降水量的含义,一般以mm/min或mm/h或mm/d计。
mm/min或mm/h多评定瞬时降水强度,mm/h或mm/d多评定时段降水强度。
(4)日降水量。
概念上是每日0:00~24:00的降水量。
我国水文测验规定以北京时间每日8:00时至次日8:00 时的降水量为该日的降水量。
(5)降水面积。
降水笼罩范围的水平投影面积称为降水面积,一般以km2计。
此外,降水的另一个主要得要素是暴雨中心,指暴雨强度较集中的局部地区。
二、降水的分类降水通常按空气抬升形成动力冷却的原因分为对流雨、地形雨、锋面雨和气旋雨。
1.对流雨因地表局部受热,气温向上递减率过大,大气稳定性降低,下层空气膨胀上升与上层空气形成对流运动。
上升的空气形成动力冷却而致雨称为对流雨。
因对流上升速度快,形成的云多为垂直发展的积状云,降雨强度大,历时短,雨区较小。
2.地形雨空气在运移过程中,遇山脉的阻挡,气流被迫沿迎风坡上升,由于动力冷却而成云致雨称为地形雨。
此外,山脉的形状对降雨也有影响,如喇叭口、马蹄形的地形,若它们的开口朝向气流来向,则易使气流辐合上升,产生较大的降雨。
地形雨的降雨特性,因空气本身温湿特性,运行速度以及地形特点而异,差别较大。
3.锋面雨锋面:两个温湿特性不同的气团相遇时,在其接触区由于性质不同来不及混合而形成一个不连续面,称为锋面。
锋区:所谓不连续面实际上是一个过渡带,所以又称为锋区。
锋面与地面的交线称为锋线,习惯上把锋线简称为锋。
锋面的长度从几百公里到几千公里不等,伸展高度,低的离地1~2km ,高的可达1Okm以上。
由于冷暖空气密度不同,暖空气总是位于冷空气上方。
在地转偏向力的作用下,锋面向冷空气一侧倾斜,冷气团总是摸人暖气团下部,暖空气沿锋面上升。
由于锋面两侧温度、湿度、气压等气象要素有明显的差别,因此,锋面附近常伴有云、雨、大风等天气现象。
锋面雨:锋面活动产生的降水统称锋面雨。
暖锋:暖气团起主导作用,推动锋面向冷气团一侧移动,这种锋称为暖锋。
暖锋锋面坡度较小,约为1/50,暖空气沿锋面缓慢上升,在上升过程中绝热冷却,水汽凝结致雨。
暖锋的雨区出现在锋线前,宽度常在300~400km,沿锋线分布较广。
特点:降雨强度不大,但历时较长。
在夏季,当暖气团不稳定时,也可出现积雨云和雷阵雨天气。
静止锋:冷暖气团势均力敌,在某一地区停滞少动或来回摆动的锋称为准静止锋,简称静止锋。
静止锋坡度小,约为1/200,有时甚至小到1/300,沿锋面上滑的暖空气可以一直伸展到距地面锋线很远的地方。
特点:云、雨区范围很广。
降雨强度小,但持续时间长,可达10天或半月,甚至一个月。
锢囚锋:当三种气团(热力性质不同的)相遇,如冷锋追上暖锋,或两条冷锋相遇,暖空气被抬离地面,锢囚在高空,称为锢囚锋,如图2-12(d)。
由于锢囚锋是两条移动的锋相遇合并而成,所以它不仅保留了原来锋面的降水特性,而且锢囚后暖空气被抬升到锢囚点以上,上升运动进一步发展,特点:使云层变厚,降水量增加,雨区扩大。
4.气旋雨气旋是中心气压低于四周的大气旋涡。
在北半球,气旋内的空气作逆时针旋转,并向中心辐合,引起大规模的上升运动,水汽因动力冷却而致雨,称为气旋雨。
按热力学性质分类,气旋可分为温带气旋和热带气旋两类,相应产生的降水称为温带气旋雨和热带气旋雨。
三、与降水有关的气象因素1、气温气温由地面气象观测规定高度(国际为1.25~2.00m ,我国为1.50m )上的空气温度反映。
气温的单位用摄氏度(℃)表示,有的以华氏度(0F )表示,我国气温记录一般采用摄氏度(℃)为单位。
摄氏度与华氏度的换算关系是:)32(95-=f c 。
空气温度记录可以表征一个地方的热状况特征,因此气温是地面气象观测中的所要测定的常规要素之一。
接近地表的大气温度较高,距地面越高,气温越低,平均每升高100m,气温约下降0.65℃,称为气温直减率。
2、气压单位面积上所受大气的重力称为气压,以hpa计。
某高度上的气压就是单位面积上所承受的该高度以上空气柱的重量,由于空气岁高度的增高而变得稀薄,所以气压随高度增加而减小。
3、温度湿度是表示大气干燥程度的物理量。
在一定的温度下,一定体积的空气里含有的水汽越少,则空气越干燥;水汽越多,则空气越潮湿。
在此意义下,常用绝对湿度、相对湿度等物理量来表示湿度。
(1)绝对湿度。
是一定体积空气中含有的水蒸气质量,其一般单位是g/m3。
绝对湿度的最大限度是饱和状态下的最高湿度。
绝对湿度只有与温度一起才有意义,因为空气中能够含有的湿度的量随温度而变化。
在不同的压强(自然高度中)绝对湿度也不同,因为随着压强(自然高度中)的变化空气的体积也变化。
但绝对湿度越靠近最高湿度,它随压强(自然高度中)的变化就越小。
(2)相对湿度。
是绝对湿度与最高湿度之间的比,它的值显示水蒸气的饱和度有多高。
相对湿度为100%的空气是饱和的空气。
相对湿度是50%的空气含有达到同温度的空气饱和点的一半的水蒸气。
相对湿度超过100%的空气中的水蒸气一般会凝结出来。
随着温度的增高空气中可以含的水蒸气就越多(最高湿度增大),也就是说,在同样多的水蒸气的情况下温度升高相对湿度就会降低,因此在提供相对湿度的同时也必须提供温度的数据。
4、风空气的运动称为风,多数情况仅指空气的水平运动。
风向是指风的来向,用8或16个地理方位表示。
风速是指空气水平运动的速度,以m/s计,取小数一位。
风速的大小常用几级风来表示。
风的级别是根据风对地面物体的影响程度而确定的。
在气象上,一般按风力大小划分为(0~12)13个等级。
在自然界,风力有时是会超过12级的,象强台风中心的风力,或龙卷风的风力,都可能比12级大得多,只是12级以上的大风比较少见,一般不具体规定级数。
阵风是指风速忽大忽小的风,此时的风力是指忽大时的风力。
风在图中可由风矢标示,风矢由风向秆和风羽组成。
在北半球,风向秆箭头指出风的方向,风羽表示风力,风羽由垂直在风向杆末端右侧3、4个短划和三角构成。
四、流域降雨量的计算目前,降雨量观测结果均为点雨量,流域平均降水量的计算方法主要有:算术平均法、加权平均法、泰森多边形法、等雨量线法等。
在面积较大的流域,最好用泰森多边形法,计算流域的平均降水量;小流域常用加权平均法;在平地上可用算术平均法和等雨量线法。
1、算术平均法对于地形起伏不大,降水分布均匀,测站布设合理或较多的情况下,算术平均法计算简单、而且也能获得满意的结果。
)(121n p p p nP +++=式中:n p p p 、、21 —— 为各测站点同期降水量(mm )P ——流域平均降水量(mm )n ——测站数2、加权平均法在对流域基本情况如面积、地类、坡度、坡向、海拔等进行勘察基础上,在每个地类上选择有代表性的地点作为降水观测点,把每个测点控制的地类面积作为各测点降水量的权重。
)(12211n n p A p A p A A P +++= 式中 P ——流域平均降水量(mm )A ——流域总面积(hm 2或km 2)n A A A 、、21——每个测点控制的面积(hm 2或km 2) 3、泰森多边形法如果流域内的观测点分布不均匀,且有的站偏于一角,此时采用泰森多边形法计算平均降水量较算术平均法更为合理。
在地图上将降水观测点两两相连,形成三角形网,对每个三角形各边作直平分线,用这些垂直平分线构成以每个测站为核心的多边形。
假定每个雨量站的控制面积即为此多边形面积(流域边界内)。
)(12211n n p A p A p A AP +++=蒸发蒸散发:是水文循环中自降水到达地面后由液态或固态转化为水汽返回大气的阶段。
蒸散发类型: 水面蒸发: 蒸发面为水面时称为水面蒸发;植物散发蒸发面是植物茎叶则称为植物散发;土壤蒸发:蒸发面为土壤表面时称为土壤蒸发;陆面蒸发: 因为植物是生长在土壤中,植物散发与植物所生长的土壤上的蒸发总是同时存在的,通常将二者合称为陆面蒸发。