《数学分析选论》习题全解 模拟试题及答案

合集下载

《数学分析论》习题解答

《数学分析论》习题解答

《数学分析选论》习题解答第 四 章 积 分 学1.设∈f R ],[b a ,f g 与仅在有限个点取值不同.试用可积定义证明∈g R ],[b a ,且=⎰bax x g d )(⎰bax x f d )(.证 显然,只要对g 与f 只有一点处取值不同的情形作出证明即可.为叙述方便起见,不妨设)()(b f b g ≠,而当),[b a x ∈时)()(x f x g =.因∈f R ],[b a ,故11||||,0,0δ<>δ∃>ε∀T 当时,对一切{}ni 1ξ,恒有,2)(1ε<-∆ξ∑=ni i i J x f 其中 x x f J b a⎰=d )(. 令⎭⎬⎫⎩⎨⎧-εδ=δ|)()(|2,m in 1b f b g ,则当δ<||||T 时,有,2)()()()()()(1111ε+∆ξ-ξ<-∆ξ+∆ξ-∆ξ≤-∆ξ∑∑∑∑====n n n ni i i n i ni i i i i ni i i x f g Jx f x f x g Jx g而上式最末第二项又为⎪⎩⎪⎨⎧=ξε<-≤≠ξ=∆ξ-ξ..b T b f b g b x f g n n n n n ,2||||)()(,,0)()(所以,无论b n =ξ或b n ≠ξ,只要δ<||||T ,便有ε=ε+ε<-∆ξ∑=22)(1ni i i J x g . 这就证得∈g R ],[b a ,且x x f J x x g bab a⎰⎰==d d )()(. □2.通过化为定积分求下列极限: (1)∑-=∞→+1222limn k n kn n ; (2)nn n n n n)12()1(1lim-+∞→Λ.解 (1)由于∑∑-=-=⎪⎭⎫ ⎝⎛+=+=1210221122n k n k n n n k k n n I ., 因此2arctan 212lim 01102π==+=⎰∞→xx x I n n d . (2)记nnn n n n n n n nJ ⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫⎝⎛+=-+=11111)12()1(1ΛΛ.,∑-=⎪⎭⎫⎝⎛+==111n k n n n k nJ I n l n l . 则有122)()lim 12211-=-==+=⎰⎰∞→n l n l d n l d 1n(l x x x x x x x I n n ,ee e4lim 12ln 2lim ===-∞→∞→nn I n n J . □ 3.证明:若∈f R ],[b a ,则],[],[b a ⊂βα∀,∈f R ],[βα. 证 由条件,],[,0b a T ∃>ε∀,使ε<∆ω∑)(T ii x .T 中添加βα,两点作为新的分点后,得到新的分割],[b a T ',并记T '落在],[βα上的部分为T ''],[βα.则对上述],[,0βα''∃>εT ,使得ε<∆ω≤∆ω≤∆ω∑∑∑''''''''')()()(T ii T i i T i i x x x ,所以证得∈f R ],[βα. □ *4.用可积第二充要条件重新证明第1题中的∈g R ],[b a .证 设g 与f 仅有一点处的值不同,记此点为],[b a ∈τ. 由条件,],[,0b a T ∃>ε∀,使得2)(ε<∆ω∑T i i fx . 若τ落在T 的第k 个小区间中,则有k k gk k gT i ki ifT i i g x x x x ∆ω+ε<∆ω+∆ω=∆ω∑∑≠2)()(. 由于∈f R ],[b a ,因此f 在],[b a 上有界,而g 与f 仅有)()(τ≠τf g ,故g 在],[b a 上亦有界,设∈≤x M x g ,|)(|],[b a .于是,只要MT 4||||ε<,便能使 2||||2ε<≤∆ωT M x k k g.这样就可证得 ε=ε+ε<∆ω∑22)(T i igx , 即∈g R ],[βα.( 注:如果原来的分割T 尚不能满足MT 4||||ε<的要求,那么只需将此分割足够加细,直到能满足如上要求 .) □5.设f 在],[b a 上有界,{}],[b a a n ⊂,且有c a n n =∞→lim .证明:若f 在],[b a 上只有),2,1(Λ=n a n 为其间断点,则∈f R ],[b a .证 设∈≤x M x f ,|)(|],[b a .为叙述方便起见,不妨设a c =.于是,0>ε∀,0>∃N ,当Ma a a N n n 4,ε+<≤>时. 由于f 在⎥⎦⎤⎢⎣⎡ε+b M a ,4上至多只有N 个间断点,因此可积.故对上述0>ε,存在1T ⎥⎦⎤⎢⎣⎡ε+b M a ,4,使得2)(1ε<∆ω∑T i i x . 而f 在⎥⎦⎤⎢⎣⎡ε+M a a 4,上的振幅M 20≤ω,所以把1T 与⎥⎦⎤⎢⎣⎡ε+M a a 4,合并成],[b a T 后,必使ε=ε+ε<∆ω+εω≤∆ω∑∑224)(0)(1T i i T i i x M x ..故证得∈f R ],[b a . □*6.设∈g f ,R ],[b a .证明:],[b a T ∀,若在T 所属的每个小区间i ∆上任取两点),,2,1(,n i i i Λ=ηξ,则有=∆ηξ∑=→ni i i i T x g f 10||||)()(limx x g x f ba⎰d )()(.证 由条件易知∈)(g f .R ],[b a ,记x x g x f I ba⎰=d )()(.故0,01>δ∃>ε∀, 当1||||δ<T 时,对一切{}ni 1ξ,有2)()(1ε<-∆ξξ∑=ni i i i I x g f . 因∈f R ],[b a ,故f 有界,设∈≤x M x f ,|)(|],[b a .又由∈g R ],[b a ,22||||,0δ<>δ∃T 当时,有Mx T i ig2)(ε<∆ω∑. 记{}21,m in δδ=δ,则当δ<||||T 时,有...22|)()(||)(|)()()()()()()()(ε=ε<∆ω≤∆ξ-ηξ≤∆ξξ-∆ηξ∑∑∑∑MM x M x g g f x g f x g f T i i gT ii i i T i i i T i i i所以证得δ<||||T 时满足.ε=ε+ε<-∆ξξ+∆ξξ-∆ηξ≤-∆ηξ∑∑∑∑==22)()()()()()()()(1)()(1ni i i i T ii i T i i i ni i i i I x g f x g f x g f I x g f此即==∆ηξ∑=→I x g f ni i i i T 10||||)()(limx x g x f ba⎰d )()( 成立. □7.证明:若∈f R ],[b a ,且0)(≥x f ,则必有∈f R ],[b a .证 根据复合可积性命题(教材p.99例5),外函数u 在),0[∞+上连续,内函数)(x f u =在],[b a 上可积,则复合函数)(x f 在],[b a 上可积. □8.设∈f R ],[b a .证明:若任给∈g R ],[b a ,总有0)()(=⎰x x g x f b ad ,则f在其连续点处的值恒为零.证 由g 的任意性,特别当取f g =时,同样有0)()()(2==⎰⎰x x f x x g x f babad d .把教材 p.103 例1(3)中的)(x f 换成)(2x f ,则得)(2x f 在其连续点处恒为零,亦即)(x f 在其连续点处恒为零. □*9.证明:若f 在],[b a 上连续,且0)()(==⎰⎰x x f x x x f babad d ,则至少存在两点),(,21b a x x ∈,使得0)()(21==x f x f .证 若在),(b a 内0)(≠x f ,则由f 连续,恒使0)(0)(<>x f x f 或.于是又使)0(0)(<>⎰或x x f bad ,这与)(=⎰x x f ba d 相矛盾.所以),(1b a x ∈∃,使得0)(1=x f .倘若f 在),(b a 内只有一个零点1x ,不妨设⎩⎨⎧∈<∈>.),(,0,),(,0)(11a x x x a x x f( 若除1x 外)(x f 恒正或恒负,则将导致与上面相同的矛盾.)现令],[,)()()(1b a x x f x x x g ∈-=.易知)(x g 在),(b a 内除1x 外处处为负,从而>00)()()(1=-=⎰⎰⎰x x f x x x f x x x g bababad d d ,又得矛盾.所以f 在),(b a 内除1x 外至少另有一个零点2x . □10.证明以下不等式:(1)π+π<⎰π22sin 0x x x d ; (2)144sin 20320π<-π<⎰πx x x d ; (3)6ln 3<<⎰e4ed e x xx .证 (1)设⎪⎩⎪⎨⎧π∈==,],0(,sin ,0,1)(x xxx x f它在],0[π上连续.由于],0(π∈x 时⎪⎭⎫⎝⎛=-='22)()sin cos (1)(x x g x x x x x f , x x x x g sin cos )(-=在],0[π上连续,且0sin )sin cos ()(<-='-='x x x x x x g ,因此)(0)(,0)0()(x f x f g x g ⇒<'=< 递减.于是.π+π≤ξ+π=ξ+<⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡ππ∈ξ∃+=⎰⎰⎰⎰⎰πππππππ2212sin 1,2sin sin sin 220220x x x x xx x x xx xxd d d d d(2)由(1)已知2sin 20π<⎰πx x x d ,于是 0sin 220>-π⎰πx x xd ; 再由⎥⎦⎤⎢⎣⎡π∈-≥2,0,!31sin 3x x x x ,又可推得 144261sin 320220π-π=⎪⎪⎭⎫ ⎝⎛->⎰⎰ππx x x xxd d . (3)设]4e ,e [,ln )(∈=x xxx f .由于)4e ,e e 2(02ln 2)(∈=⇒=-='x xx x x f ,且e1e)ee ]4e ,e 2]4e ,e ====∈∈()(min ,2)()(max [[f x f f x f x x ,因此有62ln 13=<<=⎰⎰⎰e4ee4ee4ed ed d ee x x xx x . □ 11.设f 在]1,0[上连续可微,1)0()1(=-f f .证明:1)(102≥'⎰x x f d .证 应用施瓦茨不等式,容易证得[]1)0()1()()(221012=-=⎥⎦⎤⎢⎣⎡'≥'⎰⎰f f x x f x x f d d . □ 12. 设f 在],[b a 上连续,且0)(>x f .证明:⎪⎪⎭⎫⎝⎛-≤-⎰⎰x x f ab x x f ab babad d )(1ln )(ln 1.证 应用复合平均不等式( 参见教材 p .105 例3及其注(ⅱ),(ⅳ)),注意到这里的外函数u ln 是个可微的凹函数(01)ln (2<-=''uu ),立即可得本题结论. □13.借助定积分证明: (1)n nn ln 11211)1ln(+<+++<+Λ; (2)11211ln 1lim=⎪⎭⎫⎝⎛+++∞→n n n Λ. 证 (1)利用x1的递减性,有 kk kkx xxk x k k kk kk k ln )1ln(||1111111-+=<<+=+⎰⎰⎰+++.d d d依此对),(1,,2,1n n k -=Λ所得)(1n n -个不等式进行相加,即得本题所要证明的不等式.(2)由以上不等式(1),当∞→n 时,有11ln 1ln ln 11211ln 1ln )1ln(1→+=+<⎪⎭⎫ ⎝⎛+++<+←nn n n n n n Λ,于是结论11211ln 1lim=⎪⎭⎫⎝⎛+++∞→n nn Λ 成立.□ 14.设f 在],[b a 上有0)(≥''x f .证明:2)()()(12b f a f x x f a b b a f ba+≤-≤⎪⎭⎫⎝⎛+⎰d . (F)证 因0)(≥''x f ,故f 为一凸函数.取切点为⎪⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛++2,2ba fb a 则必有 ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+'+⎪⎭⎫ ⎝⎛+≥222)(b a x b a f b a f x f .对上式两边各取],[b a 上的定积分,利用积分不等式性质即得.0)(222)(2)(+-⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+'+-⎪⎭⎫ ⎝⎛+≥⎰⎰a b b a f xb a x b a f a b b a f x x f b a bad d这时证得(F)的左部不等式成立.再由凸函数的一般充要条件,有.;;)(2)()()()()())(()(],[,)()()()()(],(,)()()()(a b b f a f xa x ab a f b f a b a f x x f b a x a x ab a f b f a f x f b a x ab a f b f a x a f x f ba ba-+=---+-≤⇒∈---+≤⇒∈--≤--⎰⎰d d这时证得(F)的右部不等式也成立.后者还可由凸函数的性质与分部积分而得:;;;x x f a b b f a b a f xa x x f ab a f x x f b a x a x x f a f x f b a x x a x f x f a f b ab aba⎰⎰⎰--+-=-'+-≤⇒∈-'+≤⇒∈-'+≥d d d )())(())(()()())(()(],[,))(()()(],[,))(()()(这就得到)]()()([)(2a b b f a f x x f b a-+≤⎰d . □15. 应用施瓦茨不等式证明: (1)若∈f R ],[b a ,则x x f a b x x f b a b a ⎰⎰-≤⎥⎦⎤⎢⎣⎡d d )()()(22;(2)若∈f R ],[b a ,0)(>≥m x f ,则2)()(1)(a b x x f x x f b aba-≥⎰⎰d d ; (3)若∈g f ,R ],[b a ,则[]x x g x x f x x g x f b a b a ba ⎰⎰⎰+≤+d d d )()()()(222; (4)若f 在],[b a 上非负、连续,且1)(=⎰x x f b ad ,则1sin )(cos )(22≤⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎰⎰x kx x f x kx x f b a b a d d . 证 (1)x x f a b x x f xx x f b abababa ⎰⎰⎰⎰-=≤⎥⎦⎤⎢⎣⎡d d d d )()()(1)(2222.(2)条件∈f R ],[b a ,0)(>≥m x f ,保证了∈f1R ],[b a ,于是有 ()..2222)()(1)()(1)()(1)(a b x x f x f x x f x x f x x f xx f b a bab ababa-=⎥⎥⎦⎤⎢⎢⎣⎡≥⎪⎪⎭⎫ ⎝⎛=⎰⎰⎰⎰⎰d d d d d(3)[]..2222222222)()()()(2)()()()(2)()()()(⎥⎦⎤⎢⎣⎡+=++≤++=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x x g x x f xx g x x f x x g x x f xx g x f x x g x x f x x g x f babababababab ab a b a ba d d d d d d d d d d (4)由于,cos )()(cos )()(cos )(222x kx x f x x f x kx x f x f x kx x f b ababab a ⎰⎰⎰⎰≤⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡d d d d .和1)(=⎰x x f bad ,便得x kx x f x kx x f bab a ⎰⎰≤⎥⎦⎤⎢⎣⎡d d 22cos )(cos )(,同理又有x kx x f x kx x f bab a ⎰⎰≤⎥⎦⎤⎢⎣⎡d d 22sin )(sin )(,因此两式相加后得到1)(sin )(cos )(22=≤⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎰⎰⎰x x f x kx x f x kx x f bab a b a d d d . □16.用积分中值定理证明:若f 为]1,0[上的递减函数,则)1,0(∈∀a ,恒有x x f x x f a a⎰⎰≤010)()(d d ; (F1)并说明其几何意义.证 把欲证的不等式(F1)改写为)2()(1)(11)()()()(011010F .x x f ax x f axx f x x f a x x f a x x f a aaaaa ⎰⎰⎰⎰⎰⎰≤-⇔≤+=d d d d d d由积分中值定理,))0()((11f a f ≤μ≤μ∃,使1101)(1μ=μ=⎰a ax x f aa.d ; 又))()1((22a f f ≤μ≤μ∃,使221)1(11)(11μ=-μ-=-⎰a ax x f aa.d .由于12)(μ≤≤μa f ,因此(F2)成立,(F1)亦随之成立.此结论的几何意义是:如图所示,当f 为]1,0[上的递减函数时,(F2)表示)(x f 在区间],0[a 上的平均值)(1μ必定大于或等于它 在]1,[a 上的平均值)(2μ;而(F1)又表示上述1μ亦必大于或等于)(x f 在整个区间]1,0[上的平均值 (x x f ⎰=μ10)(d ). □*17.设f 在]1,0[上为严格递减函数.证明(并说明其几何意义):(1))1,0(∈ξ∃,使)1()1()0()(1f f x x f ξ-+ξ=⎰d ;(2))1,0(,)0(∈η∃>∀f c ,使)1()1()(1f c x x f η-+η=⎰d .证(1)直接利用积分第二中值定理,当f 为单调函数时,)1,0(∈ξ∃,使)1()1()0()1()0()(11f f x f x f x x f ξ-+ξ=+=⎰⎰⎰ξξd d d .(2)设⎩⎨⎧∈==.]1,0(,)(,0,)(x x f x c x gg 在]1,0[上亦为严格递减函数,类似于题(1),)1,0(∈η∃,使 .)1()1()1()1()0()1()0()()(111f cg g xg x g x x g x x f η-+η=η-+η=+==⎰⎰⎰⎰ηηd d d d本题结论的几何意义如以上二图所示:表现为每图中两个阴影部分的面积相等. □*18.设f 在],[ππ-上为递减函数.证明:(1)02sin )(≥⎰ππ-xnx x f d ;(2)0)12sin()(≤+⎰ππ-xx n x f d .x 1 Oy)0(f c η )2(O y )0(f x 1 ξ )1( )1(f)1(f证 令)()()(π-=f x f x g ,则g 在],[ππ-上为非负、递减函数.利用积分第二中值定理,∈ξ∃],[ππ-,使.0)2cos 1(2)(02sin )(2sin )(2sin )(2sin )(≥ξ-π-=+π-=π+=⎰⎰⎰⎰ξπ-ππ-ππ-ππ-n n g x nx g xnx f x nx x g x nx x f d d d d又∈η∃],[ππ-,使.0])12cos(1[12)(0)12sin()()12sin()()12sin()()12sin()(≤η+--+π-=++π-=+π++=+⎰⎰⎰⎰ηπ-ππ-ππ-ππ-n n g x nx g xx n f x x n x g x x n x f d d d d□19.设f 在],[ππ-上为可微的凸函数,且有界.证明:0)12cos()(≤+⎰ππ-xx n x f d .证 利用分部积分法得到x x n x f n x x n x f ⎰⎰ππ-ππ-+'+-=+d d )12sin()(121)12cos()(.由于f 为凸函数,因此f '为递增函数.用f '代替上题(2)中的f ,即证得结论成立. (注意上题中的f 为递减函数,当改为递增函数时,不等号反向.) □*20.设f 是]1,0[上的连续函数,且满足)1,,1,0(0)(,1)(1010-===⎰⎰n k x x f xx x f x knΛd d .证明:)1(2|)(|max 10+≥≤≤n x f nx .证 由于)1(212121211212101+=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-⎰⎰⎰n x x x x x x nn nnd d d , 因此由条件可得,)10()1(21)(21)()(21)(211101010≤ξ≤+ξ=-ξ=-≤⎪⎭⎫ ⎝⎛-=⎰⎰⎰n f x x f x x f x x x f x nnnn ...d d d)1(2|)(|+≥ξ⇒n f n ,)1(2|)(||)(|max 10+≥ξ≥⇒≤≤n f x f n x . □21.设f 在],[b a 上有连续的二阶导函数,0)()(==b f a f .证明:(1)若41)()(,1)(2222≥'=⎰⎰⎰x x f x x x f x x f bababad d d .则; (2)x x f b x a x x x f ba ba ⎰⎰''--=d d )()()(21)(;*(3))(max )(121)(],[3x f a b x x f b a x ba''-≤∈⎰.d . 证 (1)利用施瓦茨不等式和分部积分可得()..41)()(41)(21)()()()(222222222=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡'≥'⎰⎰⎰⎰⎰x x f x f x x f x x x f x f x x x f x x x f ba b ab a bab a bad d d d d(2)多次应用分部积分及已知条件可得[][],)()()()()()()()()()()()()()()()()()()()()()()(x x f x x f b x a x xx f b x x x f b x a x x x f a x x f b x b x x f a x xx f a x x f a x a x x f x x f bab abababababab aba ba⎰⎰⎰⎰⎰⎰⎰⎰⎰-''--='-+''--=''-+'-=-'--='---=-=d d d d d d d d d移项后便有x x f b x a x x x f ba ba⎰⎰''--=d d )()()(21)(.(3)设M x f b a x =''∈)(max],[.利用(2)可得.3)(12)()(2)()()(21)())((21)(a b Mx x b a x M xx f x b a x x x f b x a x x x f ba ba baba-=--≤''--≤''--=⎰⎰⎰⎰d d d d□*22.设f 在),(B A 上连续,⊂],[b a ),(B A .证明:)()()()(lima fb f x hx f h x f bah -=-+⎰→d .证 设t t f x F xa⎰=d )()(.由于)()()(,0)(a F b F x x f a F ba-==⎰d ,,)()()()()()(h a F h b F tt f t t f t t f x h x f h a ahb ah b ha ba+-+=-==+⎰⎰⎰⎰++++d d d d因此有[])()()()(1lim )()(lim00a Fb F h a F h b F h x hx f h x f h bah +-+-+=-+→→⎰d .再由f 连续,从而F 可导,便可证得.)()()()()()(lim)()(lim )()(lim000a fb f a F b F ha F h a F hb F h b F x h x f h x f h h bah -='-'=-+--+=-+→→→⎰d□ 23.设f 在],[b a 上连续、递增.证明:x x f b a x x f x baba⎰⎰+≥d d )(2)(.证 作辅助函数x x f t a x x f x t F tata⎰⎰+-=d d )(2)()(.由于0)(=a F ,因此若能证明)(t F 递增,则0)()(=≥a F b F 即为需证之不等式.为此证明0)(≥'t F 如下:.0)(2)(2)()(2)(21)()(2)(21)()(=+---=+--≥+--='⎰⎰t f ta t f a t t f t t f ta x t f t f t t f ta x x f t f t t F t a t a d d □24.设f 在),0[∞+上为递增函数.证明:t t f xx F x⎰=0)(1)(d 在),0(∞+上亦为递增函数.证 x x x x ''<'∞+∈'''∀,),0(,,考察,0)()()(11)(1)(11)(1)(1)()(1)(1)(1)()(000000=''''-''-''''-''='⎪⎪⎭⎫ ⎝⎛''-'-'''≥⎪⎪⎭⎫ ⎝⎛''-'-''='-⎪⎭⎫ ⎝⎛+''='-''='-''⎰⎰⎰⎰⎰⎰⎰⎰⎰''''''''''''''''x f xx x x f x x x t x f x x t x f x t t f x x t t f x tt f x t t f t t f x t t f x t t f x x F x F x x x x x x x x x x x x d d d d d d d d d故)(x F 在),0(∞+上为递增函数. □*25.设f 在],[b a 上为递增函数.证明:),(b a c ∈∀,t t f x g xc⎰=d )()(在],[b a 上为凸函数.分析 如果f 在],[b a 上更为连续函数,则由)()(x f x g ='为递增函数,立即推知g 为凸函数.但因本题条件只假设f 为递增函数,不能保证g 的可导性,所以只能用凸函数的定义或凸函数的基本充要条件来证明本题结论.证 321321,],[,,x x x b a x x x <<∈∀,由条件)()()(321x f x f x f ≤≤.考察)())((1)(1)()(21221212121221x f x x x f x x t t f x x x x x g x g x x =--≤-=--⎰d ,)())((1)(1)()(22322323232332x f x x x f x x t t f x x x x x g x g x x =--≥-=--⎰d ,232321212)()()()()(x x x g x g x f x x x g x g --≤≤--⇒.所以满足g 为凸函数的充要条件. □26.设f 在),(∞+∞-上为连续函数.证明:f 是周期函数(周期为π2)的充要条件为积分⎰π+20)(x y x f d 与y 无关..证 令u y x =+,得⎰⎰⎰⎰-==+=+π+ππyy y yu f u f u f x y x f y F 020220)()()()()(du du du d ,)()2()(y f y f y F -+π='⇒.)(y F 与y 无关,即C y F ≡)(,当F 可导时其充要条件为0)(≡'y F ,亦即)()2(y f y f =+π,故f 是以π2为周期的周期函数. □27.证明:若f 在),[∞+a 上可导,且x x f a⎰∞+d )(与x x f a⎰∞+'d )(都收敛,则必有0)(lim=∞+→x f x .证 因x x f a⎰∞+'d )(收敛,故极限)()(lim )(lima f u f x x f u uau -='∞+→∞+→⎰d存在.再由x x f a⎰∞+d )(收敛,根据 p.119 例1(5),知道0)(lim =∞+→x f x . □28.证明:设x x f a⎰∞+d )(为条件收敛.证明:(1)[][]x x f x f x x f x f a a ⎰⎰∞+∞+-+d d )()()()(与都发散;(2)[][]1)()()()(lim=-+⎰⎰∞+→uu f u f u u f u f xa xa x d d .证 (1)倘若[]x x f x f a ⎰∞+±d )()(收敛,则 []{}x x f x x f x f x f aa ⎰⎰∞+∞+=+d d )()()()(μ也收敛,这与x x f a⎰∞+d )(为条件收敛的假设相矛盾.(2)由于[][][]uu f u f uu f uu f u f u u f u f xa xax a xa ⎰⎰⎰⎰-+=-+d d d d )()()(21)()()()(, (F)而由(1)知[]∞+=-⎰∞+→u u f u f xax d )()(lim,又由条件知A u u f xax =⎰∞+→d )(lim,因此当∞+→x 时,式(F)右边第二项的极限等于0,故左边的极限等于1. □29.设h g f ,,在任何有限区间⊂],[b a ),[∞+a 上都可积,且满足)()()(x h x g x f ≤≤.证明:(1)若x x f a⎰∞+d )(与x x h a⎰∞+d )(都收敛,则x x g a⎰∞+d )(也收敛;(2)又若=⎰∞+x x f ad )(J x x h a=⎰∞+d )(,则J x x g a=⎰∞+d )(.证 (1)由条件知)()()()(0x f x h x f x g -≤-≤,并[]x x f x h a ⎰∞+-d )()(收敛,故由比较法则推知[]xx f x g a⎰∞+-d )()(收敛.再由x x f a⎰∞+d )(收敛,证得x x g a⎰∞+d )([]{}x x f x f x g a ⎰∞++-=d )()()(也收敛.(2)又因xx h x x g x x f ua uaua⎰⎰⎰≤≤d d d )()()(,J x x h x x f ua u uau ==⎰⎰∞+→∞+→d d )(lim)(lim, 所以由极限的迫敛性,证得J x x g x x g uau a==⎰⎰∞+→∞+d d )(lim)(. □30.证明:若f 在),0[∞+上为单调有界的连续可微函数,则x x x f ⎰∞+'0sin )(d 必定绝对收敛;证 因f 单调(不妨设为递增),故0)(≥'x f ;又f 有界,故A x f x =∞+→)(lim 存在.由比较法则,因),0[,)(sin )(∞+∈'≤'x x f x x f ,而f '连续,故)0()0()(lim )(0f A f x f x x f x -=-='∞+→∞+⎰d ( 收敛 ), 所以x x x f ⎰∞+'0sin )(d 绝对收敛. □31.讨论下列反常积分的敛、散性: (1)x xx x⎰∞++022cos 1d ; (2)x xxx ⎰∞++0100cos d ;(3)⎰1ln xx xd ; (4)x xx ⎰121cos d 1.解 (1)由于2221cos 1x xx x x +≥+,而∞+=+=+∞+→∞+→⎰)1(ln lim 211lim202u x x x u uu d , 故由比较法则推知x xx x⎰∞++022cos 1d 发散. (2)由于),0[,2cos 0∞+∈≤⎰u x x ud ,而当∞+→x 时xx+100单调趋于0,因此根据狄利克雷判别法推知x xxx ⎰∞++0100cos d 收敛.又因100,2cos 1412cos 100cos 2≥⎪⎪⎭⎫⎝⎛+=≥+x x xxx x x xxx , 而x x⎰∞+1001d 发散,x xx⎰∞+1002cos d 收敛,故x x x x ⎰∞+⎪⎪⎭⎫⎝⎛+1002cos 141d 发散,于是导致x xxx ⎰∞++0100cos d 也发散.所以,x xxx ⎰∞++0100cos d 为条件收敛.(3)因为∞==-→+→xx xx x x ln 1limln 1lim 10,所以有1,0=x 两个瑕点.为此需化为两个瑕积分:J I xx xx x xx x x+=+=⎰⎰⎰1012121ln ln ln d d d .对于I ,由于)0,121(0ln 1lim0=λ<==+→p xx x x ., 因此为收敛;对于J ,则因)1,1(1ln 1)1(lim 1=λ==--→p xx x x .,故为发散.所以瑕积分⎰1ln xx xd 为发散.(4)作变换21xu =,把瑕积分化为无穷积分:u u u x xx d ⎰⎰∞+=112cos 211cos d 1, 此前已知它是一个条件收敛的反常积分. □32.证明下列不等式:(1)212214π<-<π⎰x x d ; (2)ee e 211)11(2102+<<-⎰∞+-x x d . 证 (1)由于)1,0[∈x 时,有2421111121xxx-≤-≤-,而20arcsin arcsin lim 1112π=-=--→⎰x x x x d ,因此所证不等式 212214π<-<π⎰x xd 成立.(2)由于,1111011222222x x x x x x x x x x x x x x ⎰⎰⎰⎰⎰⎰∞+-∞+--∞+---+<+=<≤d d d d d d ee e e e e而eee e21,)11(211122=-=⎰⎰∞+--x x x x x x d d , 因此所证不等式ee e 211)11(2102+<<-⎰∞+-x x d 成立. □。

数学分析选论习题解答

数学分析选论习题解答

《数学分析选论》习题解答第 一 章 实 数 理 论1.把§1.3例4改为关于下确界的相应命题,并加以证明. 证 设数集S 有下确界,且S S ∉=ξinf ,试证: (1)存在数列ξ=⊂∞→n n n a S a lim ,}{使;(2)存在严格递减数列ξ=⊂∞→n n n a S a lim ,}{使.证明如下:(1) 据假设,ξ>∈∀a S a 有,;且ε+ξ<'<ξ∈'∃>ε∀a S a 使得,,0.现依 次取,,2,1,1==εn nn 相应地S a n ∈∃,使得 ,2,1,=ε+ξ<<ξn a n n .因)(0∞→→εn n ,由迫敛性易知ξ=∞→n n a lim .(2) 为使上面得到的}{n a 是严格递减的,只要从2=n 起,改取,3,2,,1min 1=⎭⎬⎫⎩⎨⎧+ξ=ε-n a n n n ,就能保证,3,2,)(11=>ε+ξ≥ξ-+ξ=--n a a a n n n n . □2.证明§1.3例6的(ⅱ).证 设B A ,为非空有界数集,B A S ⋃=,试证:{}B A S inf ,inf mininf =.现证明如下.由假设,B A S ⋃=显然也是非空有界数集,因而它的下确界存在.故对任何B x A x S x ∈∈∈或有,,由此推知B x A x inf inf ≥≥或,从而又有{}{}B A S B A x inf ,inf min inf inf ,inf min≥⇒≥.另一方面,对任何,A x ∈ 有S x ∈,于是有S A S x inf inf inf ≥⇒≥;同理又有S B inf inf ≥.由此推得{}B A S inf ,inf mininf ≤.综上,证得结论 {}B A S inf ,inf mininf =成立. □3.设B A ,为有界数集,且∅≠⋂B A .证明: (1){}B A B A sup ,sup min )sup(≤⋂; (2){}B A B A inf ,inf max)(inf ≥⋂.并举出等号不成立的例子.证 这里只证(2),类似地可证(1).设B A inf ,inf =β=α.则应满足:β≥α≥∈∈∀y x B y A x ,,,有.于是,B A z ⋂∈∀,必有{}βα≥⇒⎭⎬⎫β≥α≥,max z z z , 这说明{}βα,max 是B A ⋂的一个下界.由于B A ⋂亦为有界数集,故其下确界存在,且因下确界为其最大下界,从而证得结论{}{}B A B A inf ,inf max inf≥⋂成立.上式中等号不成立的例子确实是存在的.例如:设)4,3(,)5,3()1,0(,)4,2(=⋂⋃==B A B A 则,这时3)(inf ,0inf ,2inf =⋂==B A B A 而,故得{}{}B A B A i n f ,i n f m a x i n f >⋂. □ 4.设B A ,为非空有界数集.定义数集{}B b A a b a c B A ∈∈+==+,,证明:(1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )(inf +=+.证 这里只证(2),类似地可证(1).由假设,B A inf ,inf =β=α都存在,现欲证β+α=+)(inf B A .依据下确界定义,分两步证明如下:1)因为,,,,β≥α≥∈∈∀y x B y A x 有所以B A z +∈∀,必有β+α≥+=y x z .这说明B A +β+α是的一个下界.2)B y A x ∈∈∃>ε∀00,,0,使得2,200ε+β>ε+α>y x . 从而ε+β+α>+∈+=∃)(,0000z B A y x z 使得,故B A +β+α是的最大下界.于是结论 B A B A inf inf )(inf +=+ 得证. □5.设B A ,为非空有界数集,且它们所含元素皆非负.定义数集{}B b A a ab c AB ∈∈==,,证明:(1)B A AB sup sup )sup(⋅=; (2)B A AB inf inf )(inf ⋅=. 证 这里只证(1),类似地可证(2).⎪⎩⎪⎨⎧⋅≤≤≤=≥≥∈∈∃∈∀,sup sup ,sup ,sup ,,)0,0(,,)(B A c B b A a ab c b a B b A a AB c 且使由于因此B A sup sup ⋅是AB 的一个上界.另一方面,B b A a ∈∈∃>ε∀00,,0,满足ε->ε->B b A a sup ,sup 00,故)(000AB b a c ∈=∃,使得εε-+-⋅>])sup sup ([sup sup 0B A B A c .由条件,不妨设0sup sup >+B A ,故当ε足够小时,εε-+=ε'])sup sup ([B A 仍为一任意小正数.这就证得B A sup sup ⋅是AB 的最小上界,即 B A AB inf inf )(inf ⋅= 得证. □*6.证明:一个有序域如果具有完备性,则必定具有阿基米德性.证 用反证法.倘若有某个完备有序域F 不具有阿基米德性,则必存在两个正元素F ∈βα,,使序列}{αn 中没有一项大于β.于是,}{αn 有上界(β就是一个),从而由完备性假设,存在上确界λ=α}sup{n .由上确界定义,对一切正整数n ,有α≥λn ;同时存在某个正整数0n ,使α-λ>α0n .由此得出α+<λ≤α+)1()2(00n n ,这导致与0>α相矛盾.所以,具有完备性的有序域必定具有阿基米德性. □7.试用确界原理证明区间套定理. 证 设{}],[n n b a 为一区间套,即满足:0)(lim ,1221=-≤≤≤≤≤≤≤≤∞→n n n n n a b b b b a a a .由于{}n a 有上界k b ,{}n b 有下界k a (+∈N k ),因此根据确界原理,存在{}{}β≤α=β=α且,inf,sup n n b a .倘若β<α,则有,2,1,0=>λ=α-β≥-n a b n n ,而这与0)(lim =-∞→n n n a b 相矛盾,故ξ=β=α.又因 ,2,1,=≤β=α≤n b a n n ,所以ξ是一切],[n n b a 的公共点.对于其他任一公共点 ,2,1,],[=∈ηn b a n n ,由于∞→→-≤η-ξn a b n n ,0 ,因此只能是η=ξ,这就证得区间套{}],[n n b a 存在惟一公共点. □8.试用区间套定理证明确界原理.证 设S 为一非空有上界的数集,欲证S 存在上确界.为此构造区间套如下:令],[],[011M x b a =,其中M S S x ,)(0∅≠∈ 为S 的上界.记2111b a c +=,若1c 是S 的上界,则令],[],[1122c a b a =;否则,若1c 不是S 的上界,则令],[],[1122b c b a =.一般地,若记2nn n b a c +=,则令,2,1,,,],[,,],[],[11=⎩⎨⎧=++n S c b c S c c a b a n n n n n n n n 的上界不是的上界当是.如此得到的{}],[n n b a 显然为一区间套,接下来证明这个区间套的惟一公共点ξ即为S 的上确界.由于上述区间套的特征是:对任何+∈Νn ,n b 恒为S的上界,而n a 则不为S 的上界,故S x ∈∀,有n b x ≤,再由ξ=∞→n n b lim ,便得ξ≤x ,这说明ξ是S 的一个上界;又因ξ=∞→n n a lim ,故ε-ξ>∃>ε∀n a ,0,由于n a 不是S 的上界,因此ε-ξ更加不是S 的上界.根据上确界的定义,证得S sup =ξ.同理可证,若S 为非空有下界的数集,则S 必有下确界. □ 9.试用区间套定理证明单调有界定理.证 设{}n x 为递增且有上界M 的数列,欲证{}n x 收敛.为此构造区间套如下:令],[],[111M x b a =;类似于上题那样,采用逐次二等分法构造区间套{}],[n n b a ,使n a 不是{}n x 的上界,n b 恒为{}n x 的上界.由区间套定理,],[n n b a ∈ξ∃,且使ξ==∞→∞→n n n n b a lim lim .下面进一步证明 ξ=∞→n n x lim .一方面,由∞→≤k b x k n 取,的极限,得到,2,1,lim =ξ=≤∞→n b x k k n .另一方面,ε-ξ>∈∃>ε∀+K a K 使,,0Ν;由于K a 不是{}n x 的上界,故K N a x >∃;又因{}n x 递增,故当N n >时,满足N n x x ≥.于是有N n x x a n N K >ξ≤<<<ε-ξ,,这就证得ξ=∞→n n x lim .同理可证{}n x 为递减而有下界的情形. □ 10*.试用区间套定理证明聚点定理.证 设S 为实轴上的一个有界无限点集,欲证S 必定存在聚点.因S 有界,故0>∃M ,使得M x ≤,S x ∈∀.现设],[],[11M M b a -=,则],[11b a S ⊂.然后用逐次二等分法构造一区间套{}],[n n b a ,使得每次所选择的],[n n b a 都包含了S 中的无限多个点.由区间套定理,],[n n b a ∈ξ∃,n ∀.最后应用区间套定理的推论,,0>ε∀当n 充分大时,使得],[n n b a );εξ⊂(U ;由于],[n n b a 中包含了S 的无限多个点,因此);(εξU 中也包含了S 的无限多个点,根据聚点定义,上述ξ即为点集S 的一个聚点. □ 11*.试用有限覆盖定理证明区间套定理.证 设{}],[n n b a 为一区间套,欲证存在惟一的点 ,2,1,],[=∈ξn b a n n . 下面用反证法来构造],[11b a 的一个无限覆盖.倘若{}],[n n b a 不存在公共点ξ,则],[11b a 中任一点都不是区间套的公共点.于是,∈∀x ],[11b a ,使,],[n n b a ∃],[n n b a x ∉.即);(x x U δ∃与某个],[n n b a 不相交( 注:这里用到了],[n n b a 为一闭区间 ).当x 取遍],[11b a 时,这无限多个邻域构成],[11b a 的一个无限开覆盖:{}],[);(11b a x x U H x ∈δ=.依据有限覆盖定理,存在],[11b a 的一个有限覆盖:{}HNi x U U H ix i i ⊂=δ==,,2,1);(~,其中每个邻域N i b a U i i n n i ,,2,1,],[ =∅=⋂.若令{}Nn n n K ,,,max 21 =,则N i b a b a i i n n K K ,,2,1,],[],[ =⊂,从而N i U b a i K K ,,2,1,],[ =∅=⋂. (Ж)但是Ni iU 1=覆盖了],[11b a ,也就覆盖了],[K K b a ,这与关系式(Ж)相矛盾.所以必定存在 ,2,1,],[=∈ξn b a n n .(有关ξ惟一性的证明,与一般方法相同.) □12.设S 为非空有界数集.证明:S S y x Sy x inf sup ||sup ,-=-∈.证 设η<ξ=η=ξ且,sup ,inf S S ( 若η=ξ,则S 为单元素集,结论显然成立 ).记{}Sy x y x E ∈-=,||,欲证ξ-η=Esup .首先,S y x ∈∀,,有ξ-η≤-⇒η≤ξ≥||,y x y x ,这说明ξ-η是E 的一个上界.又因2,0ε-η>ε∀ ⎪⎭⎫⎝⎛ε+ξ2不再S 的上()下界,故S y x ∈∃00,,使ε-ξ-η≥-⇒⎪⎭⎪⎬⎫ε+ξ<ε-η>)(||220000y x y x , 所以ξ-η是E 的最小上界,于是所证结论成立. □13.证明:若数集S 存在聚点ξ,则必能找出一个各项互异的数列{}S x n ⊂,使ξ=∞→n n x l i m.证 依据聚点定义,对S U x ⋂εξ∈∃=ε);(,1111 .一般地,对于⎭⎬⎫⎩⎨⎧-ξ=ε-1,1min n n x n ,,3,2,);(=⋂εξ∈∃n S Ux n n .如此得到的数列{}S x n ⊂必定满足:,3,2,||||11=≠⇒ξ-<ξ---n x x x x n n n n ;ξ=⇒∞→→<ξ-∞→n n n x n nx lim )(01||. □41*.设S 为实轴上的一个无限点集.试证:若S 的任一无限子集必有属于S 的聚点,则(1)S 为有界集;(2)S 的所有聚点都属于S .证 (1)倘若S 无上界,则对1111,,1M x S x M >∈∃=使;一般地,对于{},3,2,,,,max 1=>∈∃=-n Mx S x x n Mnn n n n使.这就得到一个各项互异的点列{}∞=⊂∞→n n n x S x lim,使.S 的这个无限子集没有聚点,与题设条件相矛盾,所以S 必有上界.同理可证S 必有下界,故S 为有界集.(2)因S 为有界无限点集,故必有聚点.倘若S 的某一聚点S ∉ξ0,则由聚点的性质,必定存在各项互异的数列{}0lim,ξ=⊂∞→n n n x S x 使.据题设条件,{}nx 的惟一聚点0ξ应属于S ,故又导致矛盾.所以S 的所有聚点都属于S . □51*.证明:{}{}nn a a ∉ξ=sup,则必有ξ=∞→n n a lim .举例说明,当上述ξ属于{}n a 时,结论不一定成立.证 利用§1.3 例4,{}{}n na a k⊂∃,使ξ=∞→knn a lim ,这说明ξ是{}na 的一个聚点.又因ξ又是{}n a 的上界,故{}n a 不可能再有比ξ更大的聚点.所以ξ是{}n a 的上极限.当{}n a ∈ξ时,结论不一定成立.例如,1,111sup ⎭⎬⎫⎩⎨⎧∈=⎭⎬⎫⎩⎨⎧n n 显然不是⎭⎬⎫⎩⎨⎧n 1的上极限. □61*.指出下列数列的上、下极限:(1){}n)1(1-+; (2)⎭⎬⎫⎩⎨⎧+-12)1(n nn; (3)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧πnn 3cos; (4)⎭⎬⎫⎩⎨⎧π+4sin 12n n n ; (5)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧π+n n n sin12. 解(1)0lim ,2lim ,0,2122==≡≡∞→∞→-n n n n k k a a a a 故.(2))(211412,21142122∞→-→---=→+=-k k k a k k a k k ,故21lim ,21lim -==∞→∞→n n n n a a .(3))(13cos211∞→≤π≤←n n nn, 故1lim lim lim ===∞→∞→∞→n n n n n n a a a .(4)⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧--=+⋅--=+-=+=+++=+⋅=π+=.38,18,12222,8,12,4,0,28,12,38,18,12224sin 12k k n n nk n n nk n k n n n k k n n n n n n a n故2lim ,2lim -==∞→∞→n n n n a a .(5))(sin )1(sin 1222∞→π→ππ⋅+π=π+=n n nnn n n na n ,故π===∞→∞→∞→n n n n n n a a a lim lim lim . □71*.设{}n a 为有界数列,证明:(1)1lim )(lim =-=-∞→∞→n n n n a a ; (2)n n n n a a ∞→∞→-=-lim )(lim .证 由)(sup )(inf ,)(inf )(sup k nk k nk k nk k nk a a a a ≥≥≥≥-=--=-,令∞→n 取极限,即得结论(1)与(2). □81*.设0lim >∞→n n a ,证明:(1)nn n n a a ∞→∞→=lim 11lim; (2)nn nn a a ∞→∞→=lim 11lim;(3)若11limlim =⋅∞→∞→n n n n a a ,或11lim lim =⋅∞→∞→n n n n a a ,则{}n a 必定收敛.证 由)(sup 11inf ,)(inf 11sup k nk k n k k nk k n k a a a a ≥≥≥≥=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛,令∞→n 取极限,即得结论(1)与(2).若11limlim =⋅∞→∞→nn n n a a ,则由(1)立即得到 n n n n a a ∞→∞→=lim lim ,因此极限n n a ∞→lim 存在,即得结论(3). 类似地,若11limlim =⋅∞→∞→nn n n a a ,则由(2)同样可证。

数学分析专题研究试题及参考答案

数学分析专题研究试题及参考答案

数学分析专题研究试题及参考答案一、填空题(每小题3分,共18分)1.集合X 中的关系R 同时为反身的,对称的,传递的,则该关系R 为 . 2.设E 是非空数集,若存在实数β,满足1)E x ∈∀,有β≥x ;2) ,则称β是数集E 的下确界。

3.函数)(x f y =在点0x 的某个邻域内有定义,若 存在,则称函数)(x f 在点0x 可导。

4.若)(x f y =是对数函数,则)(x f 满足函数方程=)(xy f 。

5.若非零连续函数)(x f 满足方程)()()(y f x f y x f +=+,则函数)(x f 是 函数。

6.设函数)(x f 定义在区间),(b a 上,对于任意的),(,21b a x x ∈,)1,0(∈∀α,有 成立,则称)(x f 在),(b a 上为下凸函数。

二、单项选择题(每小题3分,共18分)1.设f :Y X →,X A ⊂∀,则A ( )))((1A f f-A. =B. ≠C. ⊃D. ⊂2.已知函数)(x f y =在区间),(b a 上可导,),(b a x ∈∀,有1)(0<<x f ,则( )。

A. )(x f '有界 B. )(x f '无界 C. )(x f 可积 D. )(x f 不可积3.已知函数)(x f 与)(x ϕ在[a,b]上可导,且)(x f < )(x ϕ,则( )。

A. )(x f '≠)(x ϕ' B. )(x f '<)(x ϕ' C )(x f '>)(x ϕ' D. 前三个结论都不对4.已知⎩⎨⎧∈∈=]2,1(2]1,0[1)(t t t f ,对于]2,0[∈x ,定义⎰=xtt f x F 0d )()(,则)(x F 在区间[0,2]上( )。

A. 连续B. 不连续C. 可导D. 前三个结论都不对 5.已知)(x f 是区间],[b a 上的严格下凸函数,则( )。

)数学分析专题研究模拟试题及参考答案

)数学分析专题研究模拟试题及参考答案

数学分析专题研究模拟试题及参考答案一、单项选择题1.A ,B ,C 是三个集合,C B A ⊂,则有( )成立。

A. 若A x ∈,则B x ∈B. 若A x ∈,则C x ∈C. 若A x ∈,则C B x ∈D. 若C B x ∈,则A x ∈答案:D2. 设12)(2-+-=x x x f 则R R f →:是( )A. 双射B. 既非单射也非满射C.单射而非满射D. 满射而非单射答案:B3.下列数集( )不是可列集.A .自然数集B .整数集C .有理数集D .实数集答案:D4.已知函数)(x f y =在)1,0(内可导,且)(x f '在)1,0(内连续,则)(x f 在)1,0(内( ).A .连续B .间断C .有界D .无界答案:A5.有界闭凸集S 上的下凸函数)(x f 的最大值必在S 的( )达到.A .内部B .外部C .边界S ∂D .可能是内部也可能在边界S ∂答案:C二、填空题1.已知},{},,{d c B b a A ==,则________________=⨯A B . 答案:)},(),,(),,(),,{(b d a d b c a c2.设R 为X 中的关系,若R 是反身的、对称的、传递的,则称关系R 是 . 答案:等价关系3.若集合A 能与其任意真子集1A 之间建立一个双射,则集合A 是 .答案:无限集4.=ix e .答案:x i x sin cos +5.设n n n x n x f ∑∞=--=11)1()(,则ln(_____))(=x f . 答案:x +1三、计算题1.已知函数)(x f 满足34)1(2+-=+x x x f ,求)(x f .解:34)1(2+-=+x x x f8)1(6)1(2++-+=x x故86)(2+-=x x x f2.求函数x x x f 1)(+=的极值. 解 令 011)(2=-='x x f 解得 1±=x 312)(xx f ⋅='',,02)1(>=''f 故1=x 是极小值点,2)1(=f 是极小值 ; ,02)1(<-=-''f 故1-=x 是极大值点,2)1(-=-f 是极大值。

福师1203考试批次《数学分析选讲》复习题及参考答案

福师1203考试批次《数学分析选讲》复习题及参考答案

福师1203考试批次《数学分析选讲》复习题及参考答案本课程复习题所提供的答案仅供学员在复习过程中参考之用,有问题请到课程论坛提问。

本复习题页码标注所用教材为:教材名称 单价 作者版本 出版社 数学分析41华东师范大学数学系第三版高等教育出版社如学员使用其他版本教材,请参考相关知识点福师1203考试批次《数学分析选讲》复习题及参考答案一一、(12分)选择题(将符合要求的结论题号,填在题末的括号内,每题至多选两个题号): 1. 与lim n n x a →∞=的定义等价的是:( )A 、0,ε∀> 总有n x a ε-<;B 、0,ε∀> 至多只有{}n x 的有限项落在(,)a a εε-+之外;C 、存在自然数N ,对0,ε∀>当n N >,有n x a ε-<;D 、0(01),εε∀><<存在自然数N ,对,n N ∀>有n x a ε-<; 答案:B,D2.下列命题中正确的是:( )A 、若函数()f x 在[,]a b 内无界,则()f x 在[,]a b 上不可积;B 、若函数()f x 在[,]a b 上不连续,则()f x 在[,]a b 上不可积;C 、若函数()f x 在[,]a b 上可积,则[()]()xaf t dt f x '=⎰;D 、若函数()f x 在[,]a b 上可积,则()f x 在[,]a b 上也可积,反之不然. 答案:AD3.函数()f x 在[a,b]上可积的必要条件是( )A 、有界B 、连续C 、单调D 、存在原函数 答案:A二、填空题:(共10分,每题2分)1.设21(1)nn x∞=-∑收敛,则lim n n x →∞= 。

考核知识点:级数的收敛性。

参见教材(下册)P1-5 提示:利用P3页的推论进行计算。

2.(,)limx y →= 。

考核知识点:二元函数的极限。

参见教材(下册)P93-96.提示:)(,)(,)(0,0)(,)(0,0)1limlimlim1x y x y x y xy→→→==3.设3()sin F x x '=,则()F x = 。

《数学分析选讲》作业参考答案

《数学分析选讲》作业参考答案

《数学分析选讲》作业参考答案一.填空1. 点0P 的任一邻域内都有点集E 的无穷多个点。

2.}1:),{(22≤+y x y x 3.),(),(0d c b a E ⨯=4. }1)2()1(:),{(22≥++-y x y x ;5. 点0P 为点集E 的界点是指:点0P 的任一邻域中既有E 的点又有E 的余集的点; 6. φ,2R .7. 存在0P 的一个邻域完全包含在点集E 之中 8. 曲顶柱体的体积 9. 22)()()(d b c a E d -+-=10.)()(lim 00P f P f P P =→11. (2,1); 12. 连通 二.判断题1. 对; 2. 对; 3. 对; 4. 对; 5. 错; 6. 错; 7. 对; 8. 对; 9. 对; 10. 错; 11. 对; 12.对;. 13. 对; 14. 对; 15. 对; 16. 错; 17. 对; 18. 对; 19. 对; 20. 对; 21.错 22. 对; 23. 对; 24. 对 三.计算题1. 解 视y 为x 的函数,对原方程两边关于x 求导得:022='--'+y ax ay y y x解出y '得:axy x ay y --='222. 令22),(αα+=x x f ,则函数f 在]1,1[]1,1[-⨯-上连续.从而,由定理19.1知:函数x x I d )(1122⎰-+=αα在]1,1[-上连续,特别在0=α处连续.于是1d ||)0()(lim d lim 1111220====+⎰⎰-→-→x x I I x x αααα.3. 由于}0,22:),{(2px px y px y x D ≤≤≤≤-=为x -型闭区域,所以由定理2知:002/0222/0===⎰⎰⎰⎰⎰-dx x ydy xdx xydxdy p px pxp D.4. 解 由公式计算知:().310d )12353210(d )1(4)1)1(2()1)1(2(d )(d 21231222=-+-=--+-++-=-+⎰⎰⎰x x x x x x x x x x yx y x xy L5. 解 由定理19.4知:()().d e y 22d e y -2d )(223535223522xy -2xy -2⎰⎰⎰--=-+=-+∂∂='-------x xx x x x x xx x x xxy y exee xey e x e y e xx F6. 由定义知.0 00lim )0,0()0,0(lim)0,0(00=-=-+=→→xx f x f f x x x同理可得0)0,0(=y f .7. 解 视y 为常数,关于x 求导数得:)cos(23y x xy z x ++=. 视x 为常数,关于求导数得: )cos(3322y x y x z y ++=.8. 先求f 在点)3,1(关于x 的偏导数,为此,令3=y ,得到以x 为自变量的一元函 数276)3,(23-+=x x x f ,求它在1=x 的导数,得15)123()3,(d d)3,1(121=+====x x x x x x f x f .再求f 在)3,1(关于y 的偏导数,先令1=x ,得到以y 为自变量的一元函数321),1(y y y f -+=,求它在3=y 的导数,得.25)32(),1(d d)3,(323-=-====y y y y y f y x f9. 令22),(by ax y x f +=,则ax y x f x 2),(=,by y x f y 2),(=在整个平面上连续,从而由定理17.2知:f 在),(000y x P =处可微.因此,由定理17.4知该曲面在),,(000z y x M =点有不平行于z 轴的切平面且其方程为)(2)(200000y y by x x ax z z -+-=-.再由(4.2)式知,法线方程为12200000--=-=-z z by y y ax x x .10.令x x x f ααcos ),(2=,则函数f 在]2,0[]1,1[⨯-上连续.从而,则定理19.1知:函数x x x I d cos )(202⎰=αα在]1,1[-上连续,特别在0=α处连续.于是38d )0()(lim d cos lim 22022====⎰⎰→→x x I I x x x αααα; 11.0,0;12. 由定理知:.2012)13(41)13(213)d y y 3()d xy y ()(24422231323133+=-+-=+=+∂∂='⎰⎰x x y x y x x x I13.解 由公式知πθθππ)]0()([)]([)()(2200221022022f R f d r f rdr r f d dxdy y x f R RD-=='=+'⎰⎰⎰⎰⎰14.解 由于直线段→--AB 的方程为)10(21,1≤≤+=+=t t y t x ,所以由公式(1)知: .625d )251(d ]2)21)(1[(d )(d 1021=++=+++=-+⎰⎰⎰t t t tt t t y x y x xy L四.证明题1.证明 因为),(,0+∞-∞∈≥∀y x 有22111cos xx xy +≤+ 且反常积分⎰∞++02d 11x x 收敛,所以由M-判别法知含参量积分⎰∞++02d 1cos x x xy 在区间),(+∞-∞上一致收敛.2. 由推广的链式法则知:.cos )sin (cos cos )sin (d d d d d d d d t t t e tt u ve tt t z t v v z t u u z t z t t +-=+-+=∂∂+∂∂+∂∂= 3. 证明 应用不等式:(1)000(,)||||n n n P P x x y y ρ≤-+-;(2) 0000||(,), ||(,) (1,2,)n n n n x x P P y y P P n ρρ-≤-≤=可知。

福师《数学分析选讲》模拟试题及答案(一)

福师《数学分析选讲》模拟试题及答案(一)

《数学分析选讲》试题一一、单项选择题1.设243)(-+=x x x f ,则当0→x 时,有( ).A .)(x f 与x 是等价无穷小B .)(x f 与x 同阶但非是等价无穷小C .)(x f 是比x 高阶的无穷小D .)(x f 是比x 低阶的无穷小 答案:B 2. 设函数111()1xx e f x e -=+,则0x =是()f x 的( )A .可去间断点B .第二类间断点C .跳跃间断点D .连续点 答案:C3. 22lim (1)n nn→∞+等于( ).A . 221ln xdx ⎰B .212ln xdx ⎰C .212ln(1)x dx +⎰ D .221ln (1)x dx +⎰答案:B4. (,)z f x y =在点(,)x y 处偏导数连续是(,)f x y 在该点连续的( )条件.A .充分非必要 B.必要非充分 C.充分必要 D.既不充分也不必要 答案:A5. 如果级数1n n u ∞=∑和1n n v ∞=∑均发散,则以下说法正确的是( ).A. 1()n n n u v ∞=±∑一定都收敛B. 1()n n n u v ∞=±∑一定都发散C. 1()n n n u v ∞=-∑可能收敛,但1()n n n u v ∞=+∑一定发散D. 1()n n n u v ∞=±∑都可能收敛答案:D6. 设232)(-+=x x x f ,则当0→x 时,有( )A .)(x f 与x 是等价无穷小 B. )(x f 与x 是同阶但非等价无穷小 C. )(x f 是比x 高阶的无穷小 D. )(x f 是比x 低阶的无穷小答案;B 7. 设arctan (),xf x x=则0x =是()f x 的( ) A. 连续点 B. 可去间断点 C.跳跃间断点 D. 第二类间断点 答案:B8. 下列极限计算中,正确的是( )A .01lim(1)x x e x +→+= B. 01lim(1)1x x x +→+= C. 1lim(1)x x e x →∞-=- D. 1lim(1)x x e x -→∞+=答案:B9. 设函数)(x f 在0x 处可导,且2)(0'=x f ,则=--→hx f h x f h )()(lim000( )A. 21B. 2C. 21- D. -2答案:D10. 下列反常积分中收敛的是 ( ) A. 211x dx x +∞+⎰B. 1+∞⎰12011sin dx x x ⎰ D. 10ln xdx ⎰ 答案:D11. 函数()y f x =,若0000()(2)3,|limx x h f x f x h dy h=→--==则( )A. 32dx B.32dx - C.3dx D.3dx -答案:A12. 已知函数(,)f x y 在点(0,0)的某个邻域内连续,且224(,)(0,0)(,)lim1()x y f x y xyx y →-=+,则下述四个选项中正确的是 ( ).A .点(0,0)不是(,)f x y 的极值点 B. 点(0,0)是(,)f x y 的极小值点 C. 点(0,0)是(,)f x y 的极大值点D. 根据所给条件无法判断点(0,0)是否是(,)f x y 的极值点 答案:A13. lim ln→∞n n等于( ) A. 1ln ⎰xdx B. 0ln +∞⎰xdx C. 1⎰xdx D. 0+∞⎰xdx .答案:A14.设)(x f 在],[b a 上连续,则[()]xd f t dt dx -⎰等于( ) A. ()f x - B. ()f x - C. ()f x -- D. ()f x 答案:A二、判断题:以下各题若正确请在( )内填“√”, 若错误填“×”. 1. 若{}n x 不是无穷大量,则{}n x 必存在收敛子列. ( ) 答案:√2.)(x f 在],[b a 上连续是⎰ba dx x f )(存在的充要条件 . ( )答案:×3. 若()f x 是初等函数,其定义域为(,)a b ,0(,)x a b ∈,则00lim ()()x x f x f x →= .( )答案:√4. 若(1,2)n n u v n ≤=,级数1n n v ∞=∑收敛,则1n n u ∞=∑不一定收敛.( )答案:√5. 已知函数(,)f x y 在点(0,0)的某个邻域内连续,且224(,)(0,0)(,)lim1()x y f x y xyx y →-=+,则点(0,0)是(,)f x y 的极小值点. ( ) 答案:×6.若{}n x 不是无穷大量,则{}n x 任一子列均不是无穷大量. ( ) 答案:×7. 若函数()f x 在[,]a b 上可积,则()f x 在[,]a b 上也可积. ( )答案:×8. 当0x x →时,()f x 不以A 为极限,则存在00{},(1,2),()n n n x x x n x x n ≠=→→∞,使{()}n f x 不以A 为极限.( ) 答案:√9. 若lim 0n n u →∞=,则级数1n n u ∞=∑收敛但和不一定是0 . ( )答案:×10. 对),(y x f z =, 偏导数连续,则全微分存在. ( ) 答案:√ 三、填空题1、若20(23)0kx x dx -=⎰,则k 的值为 .答案:0或12、设21(2021)n n x ∞=-∑收敛,则lim n n x →∞= .答案:20213、级数1nn ∞=的收敛区间是 .答案:(2,4)或[2,4)4.设21(10)n n x ∞=-∑收敛,则lim n n x →∞= .答案:105.(,)limx y →= .答案:46.级数2nn ∞=_____________.答案:(1,3)7.广义积分2110k dx x π+∞=+⎰,则1k= . 答案:58.1lim 1+xx x →∞⎛⎫= ⎪⎝⎭. 答案:e9.设21,0()0,0x x f x x x e ⎧--⎪≠=⎨⎪=⎩,则(0)f '= . 答案:1 四、计算题1. 2+3200lim (sin )x x x t dtt t t dt→-⎰⎰.解 原式=++320026lim lim 12(sin )1cos x x x x x x x x x→→⋅==--2.求sin cos cos 2x x y x e π+=+ 的导数.解:cos sin ()'=-x x xe e esin sin ln sin sin ()cos n ()l ()'='=+xx x x xex x x x xcos 02'π⎛⎫= ⎪⎝⎭sin sin cos ln '()sin 所以+=-x x x xe xy x x x e . 五、综合题.1.241lim cos 1n n n n →∞-+!. (请说明理由)答: 原式=0(有界量乘以无穷小量) 2. 叙述一元函数可导,可微,连续的关系.答:一元函数可导与可微是等价的,可导推出连续,连续不一定可导。

《数学分析选论》习题全解_模拟试题及答案

《数学分析选论》习题全解_模拟试题及答案

《 数学分析续论 》模拟试题及答案一、 单项选择题(56⨯')(1)设{}n a 为单调数列,若存在一收敛子列{}j n a ,这时有 ............[ ] A.j n j n n a a ∞→∞→=lim lim ; B.{}n a 不一定收敛; C.{}n a 不一定有界;D.当且仅当预先假设了{}n a 为有界数列时,才有A成立.(2)设)(x f 在R 上为一连续函数,则有 ..............................[ ]A.当I 为开区间时)(I f 必为开区间; B.当)(I f 为闭区间时I 必为闭区间; C.当)(I f 为开区间时I 必为开区间; D.以上A、B、C都不一定成立. (3)设)(x f 在某去心邻域)(0x U 内可导.这时有 .....................[ ]A.若A x f x x ='→)(lim 0存在,则A x f =')(0;B.若f 在0x 连续,则A 成立;C.若A x f =')(0存在,则A x f x x ='→)(lim 0;D.以上A、B、C都不一定成立.(4)设)(x f 在],[b a 上可积,则有 ..................................[ ]A.)(x f 在],[b a 上必定连续; B.)(x f 在],[b a 上至多只有有限个间断点; C.)(x f 的间断点不能处处稠密; D.)(x f 在],[b a 上的连续点必定处处稠密.(5)设∑∞=1n nu 为一正项级数.这时有 ..................................[ ]A.若0lim =∞→n n u ,则 ∑∞=1n n u 收敛; B.若∑∞=1n n u 收敛,则1lim1<+∞→nn n u u ;C .若∑∞=1n nu 收敛,则1lim<∞→nn n u ; D.以上A、B、C都不一定成立.二、计算题(401⨯')(1)试求下列极限:①⎪⎭⎫⎝⎛-+-+++∞→n n n n 3)12(31lim ; ② ⎰⎰⎪⎭⎫⎝⎛∞+→xt x t x tt 022022lim d ed e .(2)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=+x y u f u y x u y x arctan e )(,21,220. 试求)()(0u f u f ''与. (3)试求由曲线 12-=x y ,直线2=x ,以及二坐标轴所围曲边梯形的面积 S .(4)用条件极值方法(Lagrange 乘数法)导出从固定点),(00y x 到直线0=++C y B x A 的距离计算公式.三、证明题(301⨯')(1)设)()(x g x f 与在],[b a 上都连续.试证:若)()(,)()(b g b f a g a f ><,则必存在),(0b a x ∈,满足)()(00x g x f =.(2)证明x x x f ln )(=在其定义域上为一严格凸函数,并导出不等式:c b a cb ac b a c b a <⎪⎭⎫ ⎝⎛++++3, 其中 c b a ,,均为正数.( 提示:利用詹森不等式.)(3) 证明:∑∞=π=+-0412)1(n n n .解 答一、[答](1)A; (2)C; (3)B; (4)D; (5)D. 二、[解](1) ① 333lim 3)12(31lim -=+-=⎪⎭⎫⎝⎛-+-+++∞→∞→n n n n n n n ;②.022limd 2limd 2limd ed e lim2222222220200220====⎪⎭⎫⎝⎛∞+→∞+→∞+→∞+→⎰⎰⎰⎰xx x xx tx x xt xx xt xt x x t ttt e ee e ee e(2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-='⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-='++515242)(,e 2e 2)(55022222222e e u f y x xy x y y x u f y x y x .(3)所围曲边梯形如右图所示.其面积为.212)3(01)3()1()1(3312122=-+-=-+-=⎰⎰x x x x xx x x S d d(4)由题意,所求距离的平方(2d )为2020)()(y y x x -+-的最小值,其中),(y x 需满足0=++C By Ax ,故此为一条件极小值问题.依据 Lagrange 乘数法,设)()()(2020C By Ax y y x x L ++λ+-+-=,并令⎪⎩⎪⎨⎧.0,0)(2,0)(200=++==λ+-==λ+-=λC y B x A L B y y L A x x L y x (F)由方程组(F)可依次解出:.2200202022200222202022********)()(,)()(4)()(,2,)(2,2,2BA C yB x A y y x x d BA C yB x A B A y y x x BA C yB x A B A y B Ax y B x AC By y Ax x +++=-+-=⇒+++=+λ=-+-⇒+++=λ⇒+λ-+=+=-λ-=λ-=最后结果就是所求距离d 的计算公式.注 上面的求解过程是由(F)求出λ后直接得到2d ,而不再去算出y x 与的值,这是一种目标明确而又简捷的解法. 三、[证](1)只需引入辅助函数:)()()(x g x f x h -=.易知)(x h 在],[b a 上连续,满足0)(,0)(><b h a h ,故由介值性定理(或根的存在定理),必存在),(0b a x ∈,满足0)(0=x h ,即)()(00x g x f =.(2)x x x f ln )(=的定义域为),0(∞+,在其上满足:),0(,01)(,1ln )(∞+∈>=''+='x xx f x x f , 所以)(x f 为一严格凸函数.根据詹森不等式,对任何正数c b a ,,,恒有.)(ln )3(ln )ln ln ln (31)3(ln 3cb ac b a c b a c b a c c b b a a c b a c b a <++⇒++<++++++最后借助函数x ln 的严格递增性,便证得不等式c b a cb ac b a c b a <⎪⎭⎫ ⎝⎛++++3.(3)由于较难直接求出该级数的部分和,因此无法利用部分和的极限来计算级数的和.此时可以考虑把该级数的和看作幂级数=)(x S ∑∞=++-01212)1(n n n n x 在1=x 处的值,于是问题转为计算)(x S .不难知道上述幂级数的收敛域为]1,1[-,经逐项求导得到]1,1[,)1()(02-∈-='∑∞=x x x S n n n ;这已是一个几何级数,其和为]1,1[,11)()(22-∈+=-='∑∞=x xx x S n n .再通过两边求积分,还原得⎰⎰=+='=-xxx t tt t S S x S 02,arctan 11)()0()(d d由于这里的0)0(=S ,于是求得∑∞=π===+-041arctan )1(12)1(n n S n .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《 数学分析续论 》模拟试题及答案一、 单项选择题(56⨯')(1)设{}n a 为单调数列,若存在一收敛子列{}j n a ,这时有 ............[ ] A.jn j n n a a ∞→∞→=lim lim ; B.{}n a 不一定收敛; C.{}n a 不一定有界;D.当且仅当预先假设了{}n a 为有界数列时,才有A成立.(2)设)(x f 在R 上为一连续函数,则有 ..............................[ ]A.当I 为开区间时)(I f 必为开区间; B.当)(I f 为闭区间时I 必为闭区间; C.当)(I f 为开区间时I 必为开区间; D.以上A、B、C都不一定成立. (3)设)(x f 在某去心邻域)(0x U内可导.这时有 .....................[ ]A.若A x f x x ='→)(lim存在,则A x f =')(0;B.若f 在0x 连续,则A 成立;C.若A x f =')(0存在,则A x f x x ='→)(lim;D.以上A、B、C都不一定成立.(4)设)(x f 在],[b a 上可积,则有 ..................................[ ]A.)(x f 在],[b a 上必定连续; B.)(x f 在],[b a 上至多只有有限个间断点; C.)(x f 的间断点不能处处稠密; D.)(x f 在],[b a 上的连续点必定处处稠密.(5)设∑∞=1n n u 为一正项级数.这时有 ..................................[]A.若0lim =∞→n n u ,则 ∑∞=1n n u 收敛; B.若∑∞=1n n u 收敛,则1lim1<+∞→nn n u u ;C .若∑∞=1n n u 收敛,则1lim <∞→n n n u ; D.以上A、B、C都不一定成立.二、计算题(401⨯')(1)试求下列极限:①⎪⎭⎫⎝⎛-+-+++∞→n n n n 3)12(31lim ; ② ⎰⎰⎪⎭⎫ ⎝⎛∞+→xtxtx tt 022022limd ed e .(2)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=+x y u f uy x u y x arctan e )(,21,220. 试求)()(0u f u f ''与. (3)试求由曲线 12-=xy ,直线2=x ,以及二坐标轴所围曲边梯形的面积 S .(4)用条件极值方法(Lagrange 乘数法)导出从固定点),(00y x 到直线0=++C y B x A 的距离计算公式.三、证明题(301⨯')(1)设)()(x g x f 与在],[b a 上都连续.试证:若)()(,)()(b g b f a g a f ><,则必存在),(0b a x ∈,满足)()(00x g x f =.(2)证明x x x f ln )(=在其定义域上为一严格凸函数,并导出不等式:cbacb a cb ac b a <⎪⎭⎫ ⎝⎛++++3,其中 c b a ,,均为正数.( 提示:利用詹森不等式.)(3) 证明:∑∞=π=+-0412)1(n nn .解 答一、[答](1)A; (2)C; (3)B; (4)D; (5)D. 二、[解](1) ① 333lim 3)12(31lim -=+-=⎪⎭⎫⎝⎛-+-+++∞→∞→n n n n n n n ;②.022limd 2limd 2limd ed e lim222222222020220====⎪⎭⎫ ⎝⎛∞+→∞+→∞+→∞+→⎰⎰⎰⎰xxx xxtx xxtxx xtxt x x ttt t eeee ee e(2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-='⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-='++515242)(,e 2e 2)(55022222222e e u f yxx y x yy x u f yx y x .(3)所围曲边梯形如右图所示.其面积为.212)3(1)3()1()1(33102122=-+-=-+-=⎰⎰x x xx xxx x S d d(4)由题意,所求距离的平方(2d )为2020)()(y y x x -+-的最小值,其中),(y x 需满足0=++C By Ax ,故此为一条件极小值问题.依据 Lagrange 乘数法,设)()()(2020C By Ax y y x x L ++λ+-+-=,并令⎪⎩⎪⎨⎧.0,0)(2,0)(200=++==λ+-==λ+-=λC y B x A L B y y L A x x L y x (F) 由方程组(F)可依次解出:.220020202220022220202200220000)()(,)()(4)()(,2,)(2,2,2BACy B x A y y x x d B AC y B x A B Ay y x x BACy B x A B Ay B Ax y B x A C B y y A x x +++=-+-=⇒+++=+λ=-+-⇒+++=λ⇒+λ-+=+=-λ-=λ-=最后结果就是所求距离d 的计算公式.注 上面的求解过程是由(F)求出λ后直接得到2d ,而不再去算出y x 与的值,这是一种目标明确而又简捷的解法. 三、[证](1)只需引入辅助函数:)()()(x g x f x h -=.易知)(x h 在],[b a 上连续,满足0)(,0)(><b h a h ,故由介值性定理(或根的存在定理),必存在),(0b a x ∈,满足0)(0=x h ,即)()(00x g x f =.(2)x x x f ln )(=的定义域为),0(∞+,在其上满足:),0(,01)(,1ln )(∞+∈>=''+='x xx f x x f ,所以)(x f 为一严格凸函数.根据詹森不等式,对任何正数c b a ,,,恒有.)(ln )3(ln )ln ln ln (31)3(ln 3cbacb ac b a cb ac c b b a a cb a cb a <++⇒++<++++++最后借助函数x ln 的严格递增性,便证得不等式cbacb a cb ac b a <⎪⎭⎫ ⎝⎛++++3.(3)由于较难直接求出该级数的部分和,因此无法利用部分和的极限来计算级数的和.此时可以考虑把该级数的和看作幂级数=)(x S ∑∞=++-01212)1(n n n n x在1=x 处的值,于是问题转为计算)(x S .不难知道上述幂级数的收敛域为]1,1[-,经逐项求导得到]1,1[,)1()(02-∈-='∑∞=x xx S n nn;这已是一个几何级数,其和为]1,1[,11)()(22-∈+=-='∑∞=x xxx S n n.再通过两边求积分,还原得⎰⎰=+='=-xxx t tt t S S x S 02,arctan 11)()0()(d d由于这里的0)0(=S ,于是求得∑∞=π===+-041a r c t a n)1(12)1(n nS n .。

相关文档
最新文档