TD无线接通率分析
TD-LTE核心网数据配置错误导致无线接通率低问题研究

I E ( %) l 7
:
0 7 / 0 9 /
收费站一
6 3 6 0 . 9 9 8 3 3 8 4 7 5 7 1 . 1 5 8 0 . 7 1
0 0 S C DHL S 2 H ຫໍສະໝຸດ 费站 一 l 3 6
0
l
0
1 3 6
: 0 0 S CD HL S 2 H
费站一
1 3 7
0
0
0
1 3 7
M1 WJ — D1
温 江 公 平 收
低, 其余指标正常。
表 1
1 7
:
0 0 S C DHL S 2 H
M1 WJ —D2 温 江 公 平 收
费站 一
4 4 2
O
收费站一
】 0 6 8 l 51 】 7 0 . 6 8 2 0 . 7 0 4
2 0 1 6 l 7: O 0 S C DHL S 2 l 7 5 6 1 7 6 2 0 . 9 9 7
M1 WJ — D 6
HMl WJ —
D2
UP
—
R E Q, 收 到 S 1 A P _ I N I T A LC O N T E X T - S E T U P _ F a i 1 , c a u s e : ( 5 ) 网管中心核查 , 经 确认 本 小 区核 心 网 正 常 , 本 站 没 有
按要 求进 行挂 接 , 根据位置 , 本站应该挂在成都郊县 P O O L , 但 却挂在成都西 P 0 0 L , 因此 无 法使 用 。 ( 6 ) 参数核查 : 本站本 端第一个 I P地 址 : l O 0 . 7 3 . 1 0 8 . 2 6接
TD接通率提升优化

3.
CS域RAB失败原因值:
CS/PS接通率 ——RAB指标细分
电路域无排队的RAB指配建立失败的RAB数目<无效的RAB参数> 电路域无排队的RAB指配建立失败的RAB数目<无效的RAB参数> RAB指配建立失败的RAB数目 RAB参数 电路域无排队的RAB指配建立失败的RAB数目<最大速率不支持> 电路域无排队的RAB指配建立失败的RAB数目<最大速率不支持> RAB指配建立失败的RAB数目 电路域无排队的RAB指配建立失败的RAB数目<IU口传输连接建立失败> 电路域无排队的RAB指配建立失败的RAB数目<IU口传输连接建立失败> RAB指配建立失败的RAB数目<IU口传输连接建立失败 电路域无排队的RAB指配建立失败的RAB数目<无可用资源> 电路域无排队的RAB指配建立失败的RAB数目<无可用资源> RAB指配建立失败的RAB数目 电路域无排队的RAB指配建立失败的RAB数目<未知原因> 电路域无排队的RAB指配建立失败的RAB数目<未知原因> RAB指配建立失败的RAB数目
立成功率
CS/PS接通率 ——RRC指标细分
业务 编号
1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
业务类型
主叫类 主叫类会话业务 主叫类 主叫类流业务 主叫类交互业务 主叫类背景业务 主叫类背景业务 被叫类 被叫类会话业务 被叫类 被叫类流业务 被叫类交互式业务 被叫类交互式业务 被叫类背景业务 紧急呼叫 系统间小区重选 系统间小区改变命令 统间小区改变 小区改 注册 IMSI分离 分离 主叫发起高优 主叫发起高优先级信令连接 信令连 主叫发起低优 主叫发起低优先级信令连接 信令连 呼叫重建 被叫发起高优 被叫发起高优先级信令连接 信令连 被叫发起低优 被叫发起低优先级信令连接 信令连 未知原因
TD无线优化案例:干扰导致接通率低优化案例

故障案例干扰导致接通率低优化案例(中学)公司移动专业优化设备类型RNC设备厂家中兴设备型号8300/8800 软件版本V.200.V300编制时间2010-08-10 作者作者电话关键字干扰;接通率故障现象近日后台话务统计发现,XX中学基站_2小区CS域接通率持续较低(接通率90%左右),针对这种情况,前台优化人员对XX中学基站_2进行了现场测试。
XX中学基站站点过高,约102米(山高大约70米、楼高约12米、铁塔20米)。
针对上述问题,前台对XX中学基站_2进行50次CQT测试,测试时PCCPCH_RSCP=-70dBm,PCCPCH_C/I=20dB,50次全接通,未发现任何异常情况。
如下图:关系截图告警信息无原因分析后台优化人员跟踪XX中学_2小区级信令,从信令流程上来分析发现:RNC下发RRC connection setup后,由于UE未做出响应,使得RNC侧未收到RRC connection setup Connection Complete消息,最终导致未接通。
➢异常信令流程如下:➢正常信令流程如下:RNC下发RRC connection setup, UE收到该消息后上发rrcConnectionSetupComplete 至RNC。
➢RRC连接建立信令流程:后台信令跟踪,确认了终端发送的RRC CONNECTION REQUEST 已成功发送至RNC,且RNC也下发了RRC CONNECTION SET UP,但终端并未给RNC回发RRC CONNECTION SET UP COMPLETE消息,我们知道:RRC connection setup从RNC的控制面发出,经过内部处理,通过传输线路到Node B,在Node B内部处理,通过RRU经过空口到UE,在这个环节中每一个环节出现问题都会出现无响应并最终导致未接通现象。
常见原因1)干扰可能导致UE不能将RRC Connection Setup Complete信令发送给RNC;2)传输存在问题从RNC到Node B之间的传输存在问题,传输误码较大,丢包较多,造成不能正确地将RRC Connection Setup信令发送给Node B;3)Node B存在问题Node B的某个板子(在这里主要是指UPBI板,UPBI板为承载和传送信令板,承载及正确的传送信令是建立在UPBI板正常的基础上,UPBI板存在问题可能导致信令流程无法正常完成;4)RRU存在问题RRU不能正确地接收UE上发的RRC Connection Setup Complete信令,或是不能正确地将RRC Connection Setup信令作传送给UE;对XX中学基站附近区域进行了DT测试,RSCP图、C/I图如下:RSCP图CI图处理步骤怀疑在XX中学_2覆盖的居民区内, XX中学_2与城郊法庭_3存在同频干扰,将XX中学_2。
TD接通率掉话率优化

5.2.1TD无线接通率优化方案无线接通率需从综合角度考虑,需把RRC连接建立成功率和RAB指派成功率联合起来一起表征接通率(挑战值99.7%)1、无线接通率定义和无线接通率相关的几个重要参数定义如下:注意:1)在RRC阶段不知道业务来源于那个域,因此RRC连接建立成功率只能按业务、主被叫分开;而RAB建立成功率可以按业务、域分开;这两个比率不存在一一对应关系;2)对于单UE多次RRC Connection Request消息,在统计的时候只统计一次;3)如果UE的RRC请求发不上来,会影响路测指标,不会影响网管指标;4)PS域无线接通率计算的是RRC连接建立总成功率,而CS语音业务无线接通率计算的是CS域RRC连接建立成功率,故不同原因的RRC建立成功率对PS、CS业务的无线接通率影响不同。
5)对于RRC建立完成后至RAB建立前,消息交互中的失败流程不会记入接通率的统计中,其间涉及到RNC需要处理的消息有用户Iu信令连接的建立和完整性保护和加密;后续的非接入层交互消息也不会影响接通率,但对用户感受有影响。
2、无线接通率分析流程无线接通率分析可如下图所示:流程图说明:1)获取全网的RRC和RAB建立成功率指标以及趋势,至少需要分析3天~1周左右的数据;2)如果全网的接通率指标一直偏低,分析面向小区的RRC和RAB建立成功率指标,把面向小区的RRC建立成功率指标和RAB建立成功率从低到高的顺序进行排序,优先分析成功率低而且建立失败绝对次数也多的小区;进行小区接通率分析;3)首先根据RNC侧和NodeB侧告警信息,确认这些TOP小区是否存在设备故障,并且参考施工信息,确认是否这些TOP小区正在更换,排除这些因素后,后续决定这些小区是否需要参数调整。
4)根据RRC和RAB建立成功率分析结果,对T op小区实施优化措施;优化措施实施后对比该小区的接通率指标是否改善;5)分析优化措施是否可以推广的全网,如果可以的话安排全网的实施,分析实施后的指标是否满足要求,如果满足要求,那么结束接通率优化;否则,重新进行TopN小区优化;3、RRC连接建立优化RRC连接建立失败分析终端不发RACH,在基站侧看不到RACH增加;(该情况不影响KPI指标)终端发了RACH,在RNC侧看到RACH增加,同时看到RRC Connection Setup 下发,但终端收不到FACH;终端能够收到RRC Connection Setup,但不回RRC Connection Setup complete;终端能够收到RRC Connection Setup,终端回RRC Connection Setup complete,但RNC侧收不到;4、RAB连接建立优化RAB连接建立失败分析所有影响RAB建立失败的因素都会影响RAB指派的成功率指标,主要包括3部分: RNC向NodeB发起无线链路重配置流程过程可能失败,主要的现象一般是NodeB 回复无线链路重配置失败;RNC在空口上向UE发起RB SETUP流程,UE收不到或RNC收不到UE回复的重配置完成消息;Iu口Iuup建立或Gtpu建立过程失败。
河北TD接通率提升参数优化经验总结(精)

河北 TD 接通率提升参数优化经验总结TD 性能邹向毅1. 背景河北区域的 CS/PS接通率相对来讲,在华为区域处于中等偏上水平。
如保定区域, CS 接通率平均处于 99.1%左右, PS 平均处于 99.2左右。
邢台 CS 接通率平均99.2%左右, PS 接通率 99.4%左右。
但是由于直接面对友商竞争压力, 现场提出指标提升诉求。
在 2月 24日~3月12日期间, 在河北现场对通过参数优化提升指标进行了摸索, 并得到了一定的效果。
图 1是近期保定全网接通率指标趋势,图 2是近期邢台全网接通率指标趋势。
图 1图 22. 接通率提升参数优化经验2.1. 提升 RRC 建立成功率参数2.1.1. ULINTERFERERSV –上行干扰余量 MOD CELLNBMOLPC接通率提升设置:19根据分析与计算,由于联芯芯片在 RACH 信道发送 RRC Connection Request时增加了δ功率, 所以按照之前的设置会导致 UE 在 DCH 发送 RRC Connection Setup Complete时功率过低。
所以此次在保定、邢台增加 ULINTERFERERSV 为 19dB (这个数值经过计算比较合理 ,效果较明显。
另, 提高上行干扰余量, 最大的风险是可能会导致多终端集中接入时互干扰过大; 从保定、邢台的使用效果来看,没有发现对其它指标的影响。
2.1.2. RRCUERSPTMR - RRC 连接过程中 UE 响应 RNC 定时器 SET STATETIMER接通率提升设置:10000RNC 等待时间增长,虽会增加几秒钟无线资源占用,但是对提高 RRC 建立成功率效果还是比较显著的。
保定、邢台修改该定时器从 5000到 10000,效果较显著。
2.1.3. N300-空闲模式下允许 UE 发送 RRC CONNECTION REQUEST 消息的最大次数 SET IDLEMODETIMER接通率提升设置:D7之前的参数基线设置为 3次。
广东移动,TD,PS接通率,PS掉线率优化经验

TD ps域优化经验一、TD站点传输IP化改造:TD站点传输IP化改造是基础网络优化的典型工作1.研究TD基站传输带宽评估公式(TD基站所需E1传输套数=(H载波数*1.6+R4载波数*0.7)*1.1/2,向上取整),得出重点优化区域的109个站点需传输扩容,需对SDH 传输站点进行IP化改造。
2.传输中心对上述109个站点进行资源核查,并制定传输方案,其中2个站点因物业问题,8个站点因PTN6100设备无FEx4板,9个站点无共址PTN设备,不具备改造条件,无法改造。
其他90个站点具备改造条件,并于6月26日全部完成。
3.鉴于项目的紧迫性,采用1对1形式,传资室直接下发调单给传维代维放线施工,直接联系无线操控安排割接,直接跟进故障处理。
在传维室,无优无线室的大力配合下,仅5月22日至6月7日就顺利完成84个站点割接,共计13个工作日,日割接量达30站,创IP化改造日割接量纪录,较好满足了试点项目需求。
二、新技术引入本次重点优化区域TD RNC共引入TPE、慢速功控、白化滤波、拥塞抢占四项新技术。
TPE算法开启后TD下载速率平均提升130Kbps;慢速功控开启后TD下载速率平均提升幅度69.40Kbps,500K占比由原来的81.93%左右提升到84.44%左右;白化滤波功能开启后PS误块率下降了0.13%、PS高误块率小区占比下降了0.6%、高干扰小区占比下降了0.43%;拥塞抢占功能开启后PS无线接通率、掉线率得到改善,PS拥塞次数减少61.3%。
三、隐患挖掘(无线、传输)1. 无线:室分站点不支持F频点导致TD无线接通率低的隐患;原因分析:在重点区域优化过程中,针对PS域无线接通率低原因进行分析,发现某室分站点PS域RAB失败全是占用两个F频点上,并且使用这两个F频点的是新扩容载波。
而失败次数较多的终端都是支持A+F频段的,最终确定为室分站点耦合器或者干放设备不支持F 频点导致指标恶化,将F频点修改为A频点后恢复。
TD终端性能分析v3

全部终端PS系统间切换成功率平均值为 89.22%。 泰丰G6-W1是一款G3上网卡,PS域系统 间切换成功率为0%,失败原因是配置不支 持,怀疑该款终端为山寨机性能不支持 2/3G切换。 其余终端成功率差异不大,较稳定。
其余终端成功率差异不大,较稳定。
接通成功率分析
终端类型接通成功率对比(%)
100.00% 99.50% 99.00% 98.50% 98.00% 97.50% G3手机 G3无线座机 G3数据卡 G3上网本 G3家庭网关 G3阅读器
பைடு நூலகம்
掉话率 %
接入时延华硕终端略高,其它品牌终端差异不 大接近中值(3.42s)。
熊猫G3手机掉话率明显偏高,不排除终端性能 问题。其它品牌终端差异不大。
系统间切换成功率(%)
100% 80% 60% 40% 20% 0% 100.00% 98.00% 96.00% 94.00% 92.00% 90.00% 88.00%
•
为提高对比可信度,取7Χ24小时内试呼次数大于1000次的样本,所有终端接通率平均值 为99.30%
实创兴SRT-V800为G3数据卡接通率低于其它款终端 ,三星多款终端接通率低于均值。
•
•
各终端接通率差异不大,较稳定。
接通成功率分析
接通成功率-CS
99.60% 99.40% 99.20% 99.00% 98.80% 98.60% 98.40% 99.20% 99.00% 98.80% 98.60% 98.40% 98.20% 98.00% 97.80% 97.60% 97.40% 97.20% 97.00%
终端性能分析
目录
接入时延分析 掉话率分析
切换成功率分析
接通成功率分析 总结
TD-LTE SGW链路不通引起的无线接通率偏低案例分析-网络性能监控

SGW链路不通引起的无线接通率偏低案例分析【现象描述】6月7日对南宁移动LTE全网站点进行KPI统计时,发现部分站点在6月6日(10:00-11:00)时间段内无线接通率偏低,其中部分小区无线接通率仅有5.25%,部分站点无线接通率指标情况如下:无线接通率:无线掉线率:切换成功率:切换成功率主要通过话务统计获得,根据区公司推荐的公式为:无线接通率=[RRC连接建立次数]/[RRC连接请求次数(不包括重发)]*[E-RAB建立成功总次数]/[E-RAB建立尝试总次数]*{100}。
从以上KPI指标统计情况可以看出以上小区RRC连接建立成功率、切换成功率、无线掉线率指标均无明显异常,无线接通率偏低主要是因为E-RAB建立失败引起。
通过OMC920提取E-RAB建立失败小区原因如下:1)eNodeB发起的S1 RESET导致的E-RAB异常释放2)传输层问题导致的E-RAB异常释放3)切换流程失败导致E-RAB异常释放4)无线层问题导致的E-RAB异常释放5)核心网问题导致的激活的E-RAB异常释放6)网络拥塞导致的E-RAB异常释放7)安全模式配置失败导致E-RAB建立失败8)无线资源不足导致E-RAB建立失败9)等待UE响应超时导致E-RAB建立失败10)无可用资源导致E-RAB建立失败提取E-RAB建立失败指标情况如下:从以上KPI指标统计结果来看,以上小区RRC建立成功率良好,无线接通率偏低主要是因为无可用资源导致。
【原因分析】1)E-RAB建立流程是UE的专有承载建立过程,当UE完成初始UE上下文接入过程后,当需要进行新的业务服务时,会发起E-RAB建立过程。
同样地,E-RAB建立过程也会伴随有NAS 消息的交互,目的是在NAS层协商业务参数用于接入层的资源分配。
下图所示为典型的E-RAB建立过程:①在完成初始UE上下文建立过程后,当UE需要进行业务建立时,会通过 NAS层消息交互向MME申请建立专有承载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、接通率的定义:
CS域接通率=CS域RRC建立成功率CS域RAB建立成功率100% PS域接通率=PS 域RRC建立成功率PS域RAB建立成功率100%
影响接通率的两个因素就是CS域或者PS域的RRC建立成功率和RAB建立成功率,那么我们要提高就要提高RRC建立成功率和RAB建立成功率来提高接通率。
2、RRC建立成功率分析: RRC建立主要分为四个部分:
1、 UE在RACH上发送RRC Connection request;
2、 RNC收到RRC Connection后,配置L2资源并和NodeB建立IUB接口上的RL链路;也就是RB Setup request和RB SetUp response;
3、 RNC向UE发RRC Connection SetUp ;
4、 UE回复RRC Connection SetUp complete。
统计RRC接通率的起始点是RNC收到RRC Connection request,终止点是RNC 收到RRC connection setup complete。
因此影响RRC接通率的RRC建立失败主要是后面三步没有成功而导致。
3、RRC建立失败的原因:
RNC资源分配失败,或者建立L2实例失败,或者IUB接口的RL链路失败目前的用户量和话务量不是很多,出现资源不足的情况基本上不可能,因此如果出现前面的几种失败原因,一般都是RNC或者NodeB内部出现问题,需要检查RNC 和NodeB的状态或者小区状态。
4、 UE接收不到RRC connection SetUp
RRC connection SetUp消息是在FACH上发送给UE的,目前SCCPCH功率配置的值一般是-3dB(相对于PCCPCH的功率)。
从覆盖上来说,已经和PCCPCH的
覆盖基本上一样了,如果任然出现UE收不到RRC Connection SetUp小时,则需要调整SCCPCH的功率,来满足信号覆盖不好的地方功率要求。
5、 RNC收不到RRC connection SetUp complete
如果UE收不到RRC Connection SetUp消息后,会向网络恢复RRC Connection Setup complete消息。
如果UE在做专用信道同步时失败,或者向向网络侧发RRC Connection Setup complete小时时,网络侧无法正确接收,都会导致RRC建立失败。
此时,可以通过提高上行期糖几首功率RL初始发射功率和修改上行同步参数,来似的UE能够正常进行专用信道同步和上传RRC建立完成消息。
如果是第二点和第三点原因导致RRC建立失败,无法通过RNC侧的log进行区分,也无法通过统计指标来进行区分,只能在发现问题后,通过路测以及调整上下行功率值来确定是上行功率不足还是下行功率不足。
6、干扰因素
TD的同频干扰时比较严重的,如果小区的邻区中,存在同频并且同扰码,那么干扰会比较大,因此在出现RRC建立失败较多时,需要关注是否由干扰导致。
如果是干扰因素,现需要解决频点和扰码的规划问题。
在解决频点和扰码问题时,不仅要关注RNC内的频点扰码,还要关注邻RNC 间的频点扰码。
一个原则是,在做网络规划时,邻区的频点扰码不能出现同频同扰码或者同频同扰码组的情况。
7、环境因素
PS业务主要是在室内使用,如果没有配置室内分布系统,光靠室外基站覆盖室内,其pccpch_rscp的接收电平相对较低,在这样的覆盖条件下,对于PS业务的
RRC建立成功率有很大影响,在相同的PCCOCH发射功率下,PS业务的RRC 建立成功率比CS业务的RRC建立成功率要低一些也是正常的。
因此,如果PS业务的RRC接通率一直不高,可以查看覆盖区域的信号强度是否不够强,如果不够,可能需要调高PCCPCH功率,或者是收缩范围(调高小区最小接入电平,把信号不好的用户直接剔除出去)。
8、提高上行干扰余量
该值用来调整计算上行期望接收功率的大小。
主要的考虑是为了能够方便的对上行期望接收功率进行调整,从而能够满足各个小区不同环境的要求。
在其他条件相同的情况下,改制配置越小,计算出来的期望接收功率也越小。
提高上行干扰余量,间接地提高了SRBRB建立是的象形期望接收功率,提高了RRC接通率。
9、提高无线链路初始最小发射功率
该值为下行初始发射功率的下限,提高该值,可以限制下行初始发射功率不会设置的太小,避免由于下行初始发射功率偏小而导致同步失败。
10、提高Top小区的最低接入电平值
处于小区边缘的用户,如果发起业务建立,由于用户的环境信号质量不好,业务建立成功率也不会很高,通过限制Top小区的最低接入电平,使得边缘用户尽量接入信号覆盖更好的2G享受更好的服务。
11、 RRC建立成功率涉及到并且可以修改的主要参数:
1、 SCCPCH功率(该值是相对于PCCPCH)
2、 FACH功率(可能效果不大)
3、 SRB Initial target(SRB的初始SIB Target功率控制目标
值)
4、 ULINTERFERERSV(上行干扰余量)
5、 DLINTERFERERSV(下行干扰余
量) 6、 MAXDLINITPWR(最大下行开环功率) 7、 MINDLINITPWR(最小下行开环功率) 8、 MAXDLTXPWR(RRC链路最大发射功率) 9、 MINDLTXPWR(RRC链路最小发射功率) 10、 QRXLEVMIN(最小驻留电平)。