力学第二版习题答案第六章
量子力学答案(第二版)苏汝铿第六章课后答案6.16-6#8

(s x + s y + s y ) ??
sin qe- iwt ÷ ÷ ÷ - cos q ÷
,设 f (t )=ç ç
¶f = Hf ¶t
骣 a(t )÷ ÷,则有 ç ÷ b(t )÷ 桫
i d a(t ) = cos qa(t ) + sin qe- iwt b(t )......(1) - m0 B dt i d b(t ) = - cos qb(t ) + sin qeiwt a(t ).....(2) - m0 B dt
c1' = iw1e- iwt c2
化简得: 其中:
c2' = iw1eiwt c1
cos q, w1 = m0 B sin q, w2 = w + 2w0
w0 =
m0 B
a(t ) = c1eiwt b(t ) = c2e- iwt
解得: c2 '' = iw2c2 '- w12c2 (*) 由初始条件:
( S1z - S 2 z )c 1 = 0 ( S1z - S 2 z )c 2 = 0 c 4 ( S1z - S 2 z )c 3 = c 3 ( S1z - S2 z )c 4 = 2 2
骣1 2 ç A ç ç 4 ç ç ç ç ç ç 0 ç 所以得到: H ' = ç ç eB ç ç ç ç mc 2 ç ç ç ç ç 0 ç 桫
eB ( S1z - S2 z ) mc 解: eB =H 0 + A( sx 2 + s y 2 + sz 2 ) + ( S1z - S2 z ) mc H = H 0 + AS1 S2 +
量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#5

S1 , S2 , S3 互相对易,而且
2 2 2 S1 S2 S3
3 4
因此
2 2 2 S 12 S1 S2 2S1 S2 2 S 123
3 2S1 S2 2
9 2( S1 S2 S2 S3 S3 S1 ) 4
(1, 2) (1) (2)
2
1 [ (1) (2) (1) (2)] 2
2
总自旋 S 共有两个本征值:0 和 2. S 0 的本征 (1) (2) (1) (2)] 2
2
在体系的自旋态 中测得 S 0 的概率为
2 S12 S ( S 1), S 0,1
2
2
2
2
2
2
1 1 3 2 S123 S ( S 1), S , , 2 2 2
代入 H 的表达式,就得到能级值,记为 ESS 。由于体系能量与 ( S123 ) z ,即总自旋 z 分量的 本征值 [S , S 1,
r 1 1 ] e [ S , S x ] e ( S [ x , S ] x [ S , S ]) r r r
l
和 S 对易,但 l 和 S n 并不对易,利用基本对易式 [l , x ] i x , 容易证明
[l , Sn ] [l , S
,(S )] 无关,故能级 ESS 的简并度 (2S 1) 。量子数 S , S 的可能组合以
及能级和简并度如下:
S S
1 3/2 1/2
0 1/2
ESS
简并度 (2S 1)
A B 4 2
第二版《材料力学》第六章至第九章习题解答-(华中科大版-倪樵主编)

2 z
W
M
2 x
W2
[ ]
7-17 图示直角曲拐,C端受铅垂集中力F作用。已知a=160mm,AB杆直径D=40mm,
l=200mm ,E=200GPa, μ=0.3,实验测得D点沿45º方向的线应变 ε45º=0.265 × 10-3。试求:
(1)力F的大小;(2)若AB杆的[σ]=140MPa,试按最大切应力理论校核其强度。
T Wp
16 M 0
D3
16 125 .6
0.023
79.96MPa
单元体可画成平面单元体如图(从上往下观察)
A
6-5 试用求下列各单元体中ab面上的应力(单位MPa) 。
解:(a)
x 70
y 70
xy 0
30
x
y
2
x
y
2
cos(2 30 )
70 1 2
35
(MPa)
x y sin(2 30 ) 70
2
3 60.62 (MPa) 2
(b)
x 70
y 70
xy 0
30
x
y
2
x
y
2
cos(2 30 )
70
(MPa)
x
y
2
sin(2 30 )
0
6-6 各单元体的受力如图所示,试求:(1)主应力大小及方向并在原单元体图上绘出主 单元体;(2)最大切应力(单位MPa) 。
解: (3) My 、Mz、Mx 和F 同时作用,拉弯扭组合,任一截 面D1点是危险点
应力状态:
D1
FN M F
M
2 y
M
2 z
y
AW A
量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#15

1 的本征态,粒子 2
1 2 的本征态,取 =1 ,求体系总自旋 S 的可能值及相应的概率。 2
解: S x ;
1 Sz ; Sz ; 2
1 2
(1)
Sz ; Sx ;
(2)
系统处于 S1z ; S2 x ; 的态上,将其写到 S z 的表象中为
S1z ;
编辑者:霍团长 6— 7
对于两个自旋 1/2 的例子组成的体系,证明张量算符
S12
3 (σ1 r )(σ2 r ) σ1 σ2 r2
和 S 2 及 J 对易。 S 为总自旋, J 是总角动量 J = S + l ,l 是体系的轨迹角动量,在质心坐 标系中, l 的算符形式是:
l r p i r , r = r1 - r2
而 S s( s 1)
2
1 S2 z ; S2 z ; 2
其可能值为 0或2 总自旋为零的态可表示为:
0
1 S1z ; S2 z ; S1z ; S2 z ; 2
0
1 1 1 S2 z ; S1z ; S1z ; S2 z ; 2 2 2
证明: (1)
3 2 , σ1 3, ( 1n )2 1 4 1 S s1 s2 (σ1 σ2 ) 2 3 1 ∴ S 2 σ1 σ 2 2 2 1 1 Sn S n (σ1 n σ2 n) ( 1n 2 n ) 2 2 1 1 1 ∴ Sn 2 ( 1n 2 2 n 2 2 1n 2 n ) 1n 2 n 4 2 2
2 解:取系统的力学量完全集为 ( H , S12 , S 2 , Sz )
F__学习_陈世民理论力学简明教程(第二版)答案_第六章

(R − r) g [m1 tan ϕ − m1 tan θ − m2 tan ϕ − m2 tan θ ] cos ϕ cos θ
r (R − r) − r
2 2
代入 tan ϕ = 得: tan θ =
=
r R − 2 Rr
2
m1 − m2 tan ϕ m1 + m2
θ = arctan
(m1 − m2 )r (m1 + m2 ) R 2 − 2 Rr
t =0
=
2 6 r 3
皮周长: l = 3d + 2π r = 3 3 4r 2 − h2 + 2π r 依虚功原理: δW = mgδ h + FT δl = mgδ h − 则依: 代入: 得: FT =
δW 3 3h = mg − FT = 0 δh 4r 2 − h 2
h
t =0
3 3h 4r 2 − h 2
2 & 积分得: θ =
&
2m g 2m + m′r
4mgθ (2m + m′ )r
L r
& 当完全释放( θ = )时: ω = θ
L θ= r
=
2 mgl r 2m + m′
ks 2 , s 为绳子的伸长 2
8 .上题中,如果绳子具有弹性,弹性势能为
证明重物 m 的运动为维持恒定的加速运动上附加一角频率为 ω 的 振动。其中 ω 2 = k
微振动,取近似 sin θ : θ , 得:
积分: 则: T( = 周期 )
θ = A cos(
m + 2m′g t) + B m + 4m′ l
(A ,B 为积分常数)
工程力学(第二版)习题册答案

一、填空题
1. 相 对 滑 动 相 对 滑 动 趋 势 接触面的切线 相反 2. 10N 20N 30N 30N 30N 3. 100N 竖直向上 平衡 4. 平稳无冲击 自锁
阻碍物体相对滑动
相对滑动趋势
二、选择题
1. A
三、简答题
1. ①问题中含有可能发生相对滑动的摩擦面,因此,存在摩擦力; ②受力图中要画出摩擦力,摩擦力总是沿着接触面的切线方向并与物体相对滑
7.
8.
9.
第二章 平面力系
第一节 共线力系的合成与平衡
一、填空题
1. 在同一条直线上
2. FR Fi FR 0
二、计算题
设向右为正方向。 则 FR=120+40-80-200=-120N 方向:水平向左
第二节 平面汇交力系的合成
一、填空题
1. 作用于同一平面内且各力作用线相交于一点的力系 共线力系 力的作用点 2. -F 或 F 0 0 -F 或 F 3. 合力在任一坐标轴上的投影 各分力在同一轴上投影的代数和 4. F4 F3 5. 自行封闭 6. 所有各力在 x 轴上投影的代数和为零 所有各力在 y 轴上投影的代数和为零 Fx 0 Fy 0
3. 后轮:摩擦力向前 前轮:摩擦力向后
4. 不下滑,处于自锁状态
四、计算题
FT 60 18 3N
五、应用题
1. (提示)从摩擦力与 F 对 B 点的力矩大小的比较进行考虑
第三章 空间力系 第一节 力在空间坐标轴上的投影与合成
一、填空题
1. 力的作用线不都在同一平面内呈空间分布的力系 2. 一次投影法 二次投影法
二、选择题
1. A 2.B
它所限制物体
三、简答题
1.柔性体约束只能承受拉力,不能承受压力。 2.被约束物体可以沿约束的水平方向自由滑动,也可以向离开约束的方向运动, 但不能向垂直指向约束的方向运动。 3.剪刀的两半部分可以绕销钉轴线相对转动,但不能在垂直销钉轴线的平面内沿 任意方向做相对移动。 4.木条不能沿圆柱销半径方向移动,但可以绕销轴做相对转动。 5.固定端约束既限制物体在约束处沿任何方向的移动,也限制物体在约束处的转 动。
工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第6章 圆轴扭转

习题 6-6 图
τ 套 max =
Mx Wp 2
T2 ≤ 60 × 10 6 ×
∴
Tmax ≤ T2 = 2883 N·m = 2.88 ×10 3 N·m
4
6-7 由同一材料制成的实心和空心圆轴,二者长度和质量均相等。设实心轴半径为 R0,空心圆轴的内、外半径分别为 R1 和 R2,且 R1/R2 =n;二者所承受的外加扭转力偶矩分 别为 Mes 和 Meh。若二者横截面上的最大剪应力相等,试证明:
该轴的扭转强度是安全的。
上一章
返回总目录
下一章
8
3
习题 6-5 图
解:1. τ 1 max =
Mx T T 3 × 10 3 × 16 = = = = 70.7 MPa WP WP π π× 0.06 3 d3 16
A1
2. M r =
∫
ρ ⋅ τdA =
∫
r
0
ρ⋅
2πM x r 4 Mx ρ ⋅ 2πρ d ρ = ⋅ 4 Ip Ip
Mr r4 r4 1 2π 2π 16r 4 15 = = = = 16 × ( ) 4 = = 6.25% 4 4 Mx 16 4I p 60 d d π 4⋅ 32 Mx T = 3. τ 2 max = =75.4MPa Wp 1 4⎞ π d3 ⎛ ⎜1 − ( ) ⎟ 16 ⎝ 2 ⎠
eBook
工程力学
(静力学与材料力学)
习题详细解答
(教师用书) (第 6 章) 范钦珊 唐静静
2006-12-18
1
第 6 章 圆轴扭转
工程力学教程篇(第二版)习题第6章答案

第6章 刚体的基本运动习题6-1 在输送散粒的摆动式运输机中,m r AM B O A O 2.021====,AB O O =21,如曲柄绕1O 轴按)(15rad t πϕ=的规律转动,求当s t 5.0=时,AB 槽点M 的速度和加速度。
解:槽AB 作平动,其上点M 的速度和加速度大小和方向与点A 的相同。
杆O 1A 绕O 1作定轴转动,转动方程为:)(15rad t πϕ=对时间求导,杆O 1A 的角速度:s rad /15πϕω== 再对时间求导,杆O 1A 的角加速度:0=α 点A 的切向加速度、法向加速度、速度分别为: 01=⨯=ατA O a 2221/1.444)15(2.0s m A O a n =⨯=⨯=πωs m A O A /42.9152.01=⨯=⨯=πωυ所以点M 的速度和加速度:s m M /42.9=υ 2/1.444s m a M = 6-2 砂轮的直径mm d 200=,匀速转动min /900r n =,求砂轮轮缘上任一点的速度和加速度。
解:砂轮绕O 作定轴转动,转动角速度: s r a d n/303090030πππω=⨯==轮缘上任一点的速度:s m dR /42.91.0302=⨯=⨯==πωωυ 轮缘上任一点只有法向加速度:222/8881.0)30(2s m da n =⨯=⨯=πω6-3 从静止开始作匀变速转动的飞轮,直径m D 2.1=,角加速度s rad /3=α 求此飞轮边缘上一点M ,在第s 10末的速度,法向加速度和切向加速度。
解:从静止开始作匀变速转动的飞轮,在第s 10末的角速度: s r a d s r a d t /30/103=⨯==αω 在第s 10末边缘上一点M 的速度:s m s m DR /18/3022.122=⨯===ωωυ在第s 10末边缘上一点M 的法向加速度:222/540306.0s m R a n =⨯==ω 在第s 10末边缘上一点M 的切向加速度:2/8.136.0s m R a =⨯==ατ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章基本知识小结
⒈ 开普勒定律
⑴ 行星沿椭圆轨道绕太阳运行,太阳位于一个焦点上 ⑵ 行星位矢在相等时间内扫过相等面积 ⑶ 行星周期平方与半长轴立方成正比 T 2/a 3=C ⒉ 万有引力定律
2r
m
M G f = ⒊ 引力势能
r m M p G r E -=)(
⒋ 三个宇宙速度 环绕速度
s km Rg V /9.71==
脱离速度
122V V == 11.2 km/s
逃逸速度 V 3 = 16.7 km/s.
6.1.1设某行星绕中心天体以公转周期T 沿圆轨道运行,试用开普勒第三定律证明:一个物体由此轨道自静止而自由下落至中心天体所需的时间为
π
2T
t =
证明:物体自由下落的加速度就是在行星上绕中心天体公转的向心加速
度:
2222/41)2(T R R
T R R v a ππ=⋅==
由自由落体公式:π
22
21/2,T
a R t at R ==
=
(此题原来答案是:2
4T t
=
,这里的更正与解答仅供参考)
6.2.1 土星质量为5.7×1026kg ,太阳质量为2.0×1030kg ,两者的平均距离是1.4×1012m.⑴太阳对土星的引力有多大?⑵设土星沿圆轨道运行,求它的轨道速度。
解:⑴据万有引力定律,太阳与土星之间的引力 f =GMm/r 2=6.51×10-11×2.0×1030×5.7×1026/(1.4×1012)2 ≈3.8×1022N
⑵选择日心恒星参考系,对土星应用牛顿第二定律:f=mv 2/r
s m m fr v /107.9107.5/04.1108.3/3261222⨯≈⨯⨯⨯⨯==
6.2.3 ⑴一个球形物体以角速度ω转动,如果仅有引力阻碍球的离心分解,
此物体的最小密度是多少?由此估算巨蟹座中转数为每秒30转的脉冲星的最小密度。
这脉冲星是我国在1054年就观察到的超新星爆的结果。
⑵如果脉冲星的质量与太阳的质量相当(≈2×1030kg 或3×105M e ,M e 为地球质量),此脉冲星的最大可能半径是多少?⑶若脉冲星的密度与核物质相当,它的半径是多少?核密度约为1.2×1017kg/m 3.
解:⑴设此球体半径为R,质量为m.考虑球体赤道上的质元Δm,它所受到的离心惯性力最大 f *=Δm ω2R ,若不被分解,它所受到的引力至少等于离心惯性力,即 Gm Δm/R 2=Δm ω2R ∴ m=ω2R 3/G ,而 m=4πR 3ρ/3,代如上式,可求得,G
πωρ
432=
脉冲星的最小密度31410
51.64)230(3/103.111
2m kg ⨯≈=
-⨯⨯⨯⨯ππρ
⑵据密度公式,m =ρV=4πR 3ρ/3 ,∴R 3=3m/(4πρ)
km R 231430105.1)103.114.34/(1023⨯=⨯⨯⨯⨯⨯=
⑶km R
16)102.114.34/(102331730=⨯⨯⨯⨯⨯=
6.2.4 距银河系中心约25000光年的太阳约以170000000年的周期在一圆周上运动。
地球距太阳8光分。
设太阳受到的引力近似为银河系质量集中在其中心对太阳的引力。
试求以太阳质量为单位银河系的质量。
解:设银河系、太阳、地球的质量分别为M 、m 、m';太阳距银河系中心
的距离为r=2.5×104光年=2.5×104×365×24×60光分=1.31×106光分,绕银河系中心公转角速度为ω=10-8×2π/1.7年;地球距太阳的距离为r'=8光分,绕太阳公转角速度为ω'=2π/年
分别对地球和太阳应用万有引力定律和牛顿第二定律: Gmm'/ r' 2 = m'ω'2 r' (1) GMm / r 2 = m ω2 r (2) 由(1)可得
G=ω'2 r'3/m ,代入(2)中,可求得
m m m M r r 1138
1031.12107.11
3'2'1053.1)()()()(6
8⨯===⨯⨯ωω
6.2.5某彗星围绕太阳运动,远日点的速度为10km/s ,近日点的速度为80km/s 。
若地球在半径为1.5×108km 圆周轨道上绕日运动,速度为30km/s 。
求此彗星的远日点距离。
解:角动量守恒b mv a mv 21= ⑴
能量守恒
b
m
M a m M G mv G mv -=-2
2212
12
1
⑵ 牛二定律
R v R
m M m G 2
2
''
= ⑶
⑴,⑵,⑶联立,解得 a = 3×108 km
6.2.6 一匀质细杆长L ,质量为M.求距其一端为d 处单位质量质点受到的引力(亦称引力场强度)。
解:选图示坐标0-x,单位质 x
量质点在坐标原点处,在杆上取 质元dm=dxM/L,其坐标为x,它对 原点处质点的引力为:2
21x dx
L GM
x
dm G df
==⨯,由于各质元对质点的引力方向均
沿x 轴正向,∴杆对质点的引力方向沿x 轴正向,大小为
)
(1112)(|
L d d GM
L d d L GM d L
d x
L GM L
d d
L
GM dx x f ++++-=-=
=
=
⎰
6.2.7半径为R 的细半圆环线密度为λ,求位于圆心处单位质量质点受到的引力(引力场强度)
解:由对称性分析可知,引力场强度的x 分量等于零。
质元dm=λRd θ所受引力的y 分量为
θθλ
θd R
G R dm G
df y sin sin 12
-=⨯-= R
G R G d R G f y /2|cos sin 0
0λθλθθλπ
π
-==-=⎰
6.3.1 考虑一转动的球形行星,赤道上各点的速度为V ,赤道上的加速度是极点上的一半,求此行星极点处的粒子的逃逸速度。
解: 设行星半径为R ,质量为M ,粒子m 在极点处脱离行星所需的速度为v ,在无穷远处的速度、引力势能为零,由机械能守恒定律有
022
1
=-R m M G mv 即 R GM v /22= ⑴
以球形行星为参考系(匀速转动参考系),设粒子m 在赤道上和极点上的加速度分别为a 1和a 2。
粒子m 在赤道上除受引力作用外还受离心惯性力作用,由牛二定律有
212122R a RV GM ma R V m R
Mm G =-=-即 ⑵
粒子m 在极点上只受引力作用,由牛二定律有
2
222R a GM ma R
Mm G
==即 ⑶ 已知
122a a = ⑷
由⑵、⑶、⑷可求得
22/V R GM = 代入⑴中,得
x
V
v V v 2422=∴=
6.3.2 已知地球表面的重力加速度为9.8ms -2,围绕地球的大圆周长为4×107m ,月球与地球的直径及质量之比分别是
.0123.0/27.0/==e m e m M M D D 和试计算从月球表面逃离月球引力
场所必需的最小速度。
解: 设质点m 脱离月球的速度为v ,在距月球无穷远处的速度、引力势能为零,由机械能守恒定律,有
m m m
m R GM v R m M G mv /202122
=∴=- ⑴ 将 M m =0.0123M e ,R m =0.27R e 代入⑴中,有
e e R GM v /091.02= ⑵
由牛二定律
g R R GM mg R m GM e e e e e =∴=/,/2
代入⑵中,有
g R v e 091.02=
)(38.22/1048.9091.017-=⨯⨯⨯=∴ms v π。