立体几何点线面位置关系习题精选

合集下载

立体几何第二章空间点线面的位置关系单元测试题(含详细答案解析)

立体几何第二章空间点线面的位置关系单元测试题(含详细答案解析)

第二章综合素能检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线l1∥l2,在l1上取3个点,在l2上取2个点,由这5个点能确定平面的个数为错误!()A.5B.4C.9D.1[答案] D[解析]由经过两条平行直线有且只有一个平面可知分别在两平行直线上的5个点只能确定一个平面.2.教室内有一直尺,无论怎样放置,在地面总有这样的直线,使得它与直尺所在直线错误!()A.平行B.垂直C.相交D.异面[答案] B[解析]当直尺垂直于地面时,A不对;当直尺平行于地面时,C不对;当直尺位于地面上时,D不对.3.已知m、n是两条不同直线,α、β是两个不同平面,则下列命题正确的是错误!()A.若α、β垂直于同一平面,则α与β平行B.若m、n平行于同一平面,则m与n平行C.若α、β不平行...与β平行的直线...,则在α内不存在D.若m、n不平行...垂直于同一平面...,则m与n不可能[答案] D[解析]A项,α、β可能相交,故错误;B项,直线m、n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m、n垂直于同一平面,则必有m∥n,所以原命题正确,故D项正确.4.已知α、β是两个平面,直线l⊄α,l⊄β,若以①l⊥α;②l∥β;③α⊥β中两个为条件,另一个为结论构成三个命题,则其中正确的命题有导学号 92180600() A.①③⇒②;①②⇒③B.①③⇒②;②③⇒①C.①②⇒③;②③⇒①D.①③⇒②;①②⇒③;②③⇒①[答案] A[解析]因为α⊥β,所以在β内找到一条直线m,使m⊥α,又因为l⊥α,所以l∥m.又因为l⊄β,所以l∥β,即①③⇒②;因为l∥β,所以过l可作一平面γ∩β=n,所以l∥n,又因为l⊥α,所以n⊥α,又因为n⊂β,所以α⊥β,即①②⇒③。

专题08 立体几何第二十讲 空间点线面的位置关系(原卷版)

专题08 立体几何第二十讲 空间点线面的位置关系(原卷版)

专题08立体几何第二十讲空间点线面的位置关系2019年1.(2019全国III文8)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM、EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM、EN是异面直线D.BM≠EN,且直线BM,EN是异面直线2.(2019全国1文19)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平C1DE;(2)求点C到平面C1DE的距离.3.(2019全国II文7)设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面4.(2019北京文13)已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.5.(2019江苏16)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .6.(2019全国II 文17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.7.(2019全国III文19)图1是由矩形ADEB、Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.-中,PA⊥平面ABCD,底部ABCD为菱形,E为CD 8.(2019北京文18)如图,在四棱锥P ABCD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.9.(2019天津文17)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD 为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ;(Ⅱ)求证:PA ⊥平面PCD ;(Ⅲ)求直线AD 与平面PAC 所成角的正弦值.10.(2019江苏16)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .11.(2019浙江19)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A A C AC E F ∠=︒==分别是AC ,A 1B 1的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.12.(2019北京文18)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由.13.(2019全国1文16)已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC,那么P 到平面ABC 的距离为___________.14.(2019全国1文19)如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.15.(2019天津文17)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD 为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ;(Ⅱ)求证:PA ⊥平面PCD ;(Ⅲ)求直线AD 与平面PAC 所成角的正弦值.16.(2019浙江8)设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β17.(2019浙江19)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A A C AC E F ∠=︒==分别是AC ,A 1B 1的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.2015-2018年一、选择题1.(2018全国卷Ⅱ)在正方体1111-ABCD A B C D 中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .B .C .D 2.(2018浙江)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.(2017新课标Ⅰ)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是4.(2017新课标Ⅲ)在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC⊥5.(2016年全国I 卷)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,αI 平面ABCD =m ,αI 平面ABB 1A 1=n ,则m ,n 所成角的正弦值为A .32B .22C .33D .136.(2016年浙江)已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n三、解答题7.(2018全国卷Ⅱ)如图,在三棱锥-P ABC 中,==AB BC 4====PA PB PC AC ,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2=MC MB ,求点C 到平面POM 的距离.8.(2018全国卷Ⅲ)如图,矩形ABCD 所在平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.9(2018北京)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ;(2)求证:平面PAB ⊥平面PCD ;(3)求证:EF ∥平面PCD .10.(2018天津)如图,在四面体ABCD 中,ABC ∆是等边三角形,平面ABC ⊥平面ABD ,点M为棱AB 的中点,2AB =,23AD =,90BAD ∠= .(1)求证:AD ⊥BC ;(2)求异面直线BC 与MD 所成角的余弦值;(3)求直线CD 与平面ABD 所成角的正弦值.11.(2018江苏)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.求证:(1)AB ∥平面11A B C ;(2)平面11ABB A ⊥平面1A BC .12.(2018浙江)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=,14A A =,11C C =,12AB BC B B ===.(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 与平面1ABB 所成的角的正弦值.13.(2017新课标Ⅱ)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠= .(1)证明:直线BC ∥平面PAD ;(2)若PCD ∆的面积为27,求四棱锥P ABCD -的体积。

立体几何点线面位置关系习题精选

立体几何点线面位置关系习题精选

同步练习第I 卷(选择题)1.已知,m n 是两条不同直线,,,αβγ是三个不同平面,则下列命题正确的是( ).A 、若m ∥,n α∥α,则m ∥nB 、若,αγβγ⊥⊥,则α∥βC 、若n ∥,n α∥β,则α∥βD 、若,m n αα⊥⊥,则m ∥n 2.已知,m n 是两条不同的直线,,,αβγ是三个不同的平面, 则下列命题中正确的是 ( ) A .//,//m n αα,则//m n B .,m m αβ⊥⊥,则//αβ C .//,//m n m α,则//n α D .,αγβγ⊥⊥,则//αβ3.已知m 、n 为两条不同的直线,α、β为两个不同的平面,下列命题中正确的是( ) A .若α∥β,m ∥α,则m ∥β B .若α⊥β,m ⊥β,则m ⊥α C .若m ⊥α,m ⊥β,则α∥β D .若m ∥α,m ⊥n ,则n ⊥α4.已知l ,m 是两条不同的直线,α是一个平面, 则下列命题正确的是( )A .若l α⊥,m α⊂,则l m ⊥B .若l m ⊥,m α⊂,则l α⊥C .若l ∥α,m α⊂,则l ∥mD .若l ∥α,m ∥α,则l ∥m 5.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l α⊥,l m //,则m α⊥ B .若l m ⊥,m α⊂,则l α⊥ C .若l α//,m α⊂,则l m // D .若l α//,m α//,则l m // 6.设b a ,表示直线,γβα,,表示不同的平面,则下列命题中正确的是( ) A .若α⊥a 且b a ⊥,则α//bB .若αγ⊥且βγ⊥,则βα//C .若α//a 且β//a ,则βα//D .若αγ//且βγ//,则βα//7.关于空间两条直线a 、b 和平面α,下列命题正确的是( ) A .若//a b ,b α⊂,则//a α B .若//a α,b α⊂,则//a b C .若//a α,//b α,则//a b D .若a α⊥,b α⊥,则//a b8.给定空间中的直线l 及平面,条件“直线l 与平面 内无数条直线都垂直”是“直线l 与平面 垂直”的( )条件A .充要B .充分非必要C .必要非充分D .既非充分又非必要9.设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中为真命题的个数( )①若m α⊥,//m n ,//n β,则αβ⊥ ②若αβ⊥,m α⊄,m β⊥,则//m α ③若m β⊥,m α⊂,则αβ⊥ ④若αβ⊥,m α⊂,n β⊂,则m n ⊥ A .0个B .1个C .2个D .3个10.已知两个不同的平面αβ、和两个不重合的直线m 、n ,有下列四个命题: ①若//,m n m n αα⊥⊥,则; ②若,,//m m αβαβ⊥⊥则; ③若,//,,m m n n αβαβ⊥⊂⊥则; ④若//,//m n m n ααβ⋂=,则. 其中正确命题的个数是( )A.0B.1C.2D.311.已知,m n 为不同的直线,,αβ为不同的平面,则下列说法正确的是 A. ,////m n m n αα⊂⇒ B. ,m n m n αα⊂⊥⇒⊥ C. ,,////m n m n αβαβ⊂⊂⇒ D. ,n n βααβ⊂⊥⇒⊥12.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题中正确..的是 (A )若//,m n αβ⊥且αβ⊥,则m n ⊥ (B )若,m n αβ⊥⊥且m n ⊥,则αβ⊥(C )若/,/n m αβ⊥且n β⊥,则//m α (D )若,m n αβ⊂⊂且//m n ,则//αβ13.对于空间的一条直线m 和两个平面,αβ,下列命题中的真命题是 A.若,,mm αβ则αβ B. .若,,m m αβ则αβ⊥C.若,,m m αβ⊥⊥则αβ D. 若,,m m αβ⊥⊥则αβ⊥14.设,,l m n 表示三条不同的直线,,αβ表示两个不同的平面,则下列说法正确的是( ) A .若l ∥m ,m α⊂,则l ∥α; B .若,,,l m l n m n α⊥⊥⊂,则l α⊥; C .若l ∥α,l ∥β,m αβ=,则l ∥m ; D .若,,l m l m αβ⊂⊂⊥,则αβ⊥.15.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A.若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥B.若//,a b b α⊂,则//a α C.若//,,,a b αβαγβγ==则//a b D.若,,//,//a b a b ββαα⊂⊂,则//βα第II 卷(非选择题)二、解答题(本题共7道小题,第1题0分,第2题0分,第3题0分,第4题0分,第5题0分,第6题0分,第7题0分,共0分)在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,若E 、F 分别为PC 、BD 的中点.(Ⅰ) 求证:EF //平面PAD ; (Ⅱ) 求证:平面PDC ⊥平面PAD ;BA17.(本题10分)如图,ABCD 是正方形,O 是该正方形的中心,P 是平面ABCD 外一点,PO ⊥底面ABCD ,E 是PC 的中点. 求证:(1)PA ∥平面BDE ; (2)BD ⊥平面PAC .18.(本小题8分)如图在四棱锥P ABCD -中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且2PA PD AD ==,设E 、F 分别为PC 、BD 的中点. (1) 求证:EF //平面PAD ; (2) 求证:面PAB ⊥平面PDC ;(3) 求二面角B PD C --的正切值.PO ECDBACBAD1B1A1C19.如图,底面是正三角形的直三棱柱111ABC A B C -中,D 是BC 的中点,12AA AB ==. (Ⅰ)求证:1//AC 平面1AB D ; (Ⅱ)求点A 1 到平面1AB D 的距离.20.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ABC ∠= E 、F 分别是PB 、CD 的中点,且4PB PC PD ===. (1)求证:PA ABCD ⊥平面; (2)求证://EF 平面PAD ; (3)求二面角A PB C --的余弦值.21.如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点. (Ⅰ)求证://EF 平面PAD ; (Ⅱ)求证:EF CD ⊥;(Ⅲ)设PD=AD=a, 求三棱锥B-EFC 的体积.BA22.(本小题满分10分)P-中,底面ABCD是矩形,如图,在四棱锥ABCDAP=,E,F分别是PB,PC的中点.PA⊥平面ABCD,AB(Ⅰ)证明:EF∥平面PAD;AE⊥.(Ⅱ)求证:PC评卷人得分三、解答题(本题共3道小题,每小题10分,共30分)评卷人得分四、填空题(本题共4道小题,每小题0分,共0分)23.已知直线m,n与平面α,β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命题序号是______24.设,m n是两条不同的直线,,αβ是两个不同的平面,下列正确命题的序号是__________。

专题八 立体几何 第二十三讲 空间中点、直线、平面之间的位置关系

专题八  立体几何 第二十三讲 空间中点、直线、平面之间的位置关系

专题八 立体几何第二十三讲 空间中点、直线、平面之间的位置关系一、选择题1.(2018全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A B C D2.(2018全国卷Ⅱ)在长方体1111-ABCD A B C D 中,1==AB BC ,1=AA 线1AD 与1DB 所成角的余弦值为A .15B C D 3.(2018浙江)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.(2018浙江)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤5.(2017新课标Ⅱ)已知直三棱柱111ABC A B C -中,120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A B C D 6.(2017浙江)如图,已知正四面体D ABC -(所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA==,分别记二面角D PR Q --,D PQ R --,D QR P --的平面角为α,β,γ,则R QPABC DA .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α7.(2016年全国I )平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,αI 平面ABCD =m ,αI 平面11ABB A =n ,则m ,n 所成角的正弦值为A.2 B.2 C.3 D .138.(2015福建)若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“l ∥α”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.(2015浙江)如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆翻折成A CD '∆,所成二面角A CD B '--的平面角为α,则10.(2014广东)若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定 11.(2014浙江)设,m n 是两条不同的直线,,αβ是两个不同的平面A .若m n ⊥,//n α,则m α⊥B .若//m β,βα⊥则m α⊥C .若,,m n n ββα⊥⊥⊥则m α⊥D .若m n ⊥,n β⊥,βα⊥,则m α⊥ 12.(2014辽宁)已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥13.(2014浙江)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成角).若15AB m =,25AC m =,30BCM ∠=︒则tan θ的最大值ABCD 14.(2014四川)如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点.设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A1A. B.C .D . 15.(2013新课标Ⅱ)已知,m n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足,l m l n ⊥⊥,,l l αβ⊄⊄,则A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l16.(2013广东)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥17.(2012浙江)设l 是直线,,αβ是两个不同的平面A .若l ∥α,l ∥β,则α∥βB .若l ∥α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β, l ∥α,则l ⊥β18.(2012浙江)已知矩形ABCD ,1AB =,BC =将ABD ∆沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 19.(2011浙江)下列命题中错误..的是 A .如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面αγ⊥平面,平面βγ⊥平面,=l αβ,那么l γ⊥平面D .如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β20.(2010山东)在空间,下列命题正确的是A .平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .垂直于同一平面的两条直线平行 二、填空题21.(2018全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为_____. 22.(2016年全国II )α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥. ②如果m α⊥,n α∥,那么m n ⊥. ③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)23.(2015浙江)如图,三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是 .24.(2015四川)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,,E F 分别为,AB BC 的中点.设异面直线EM 与AF 所成的角为θ,则θcos 的最大值为_________.25.(2017新课标Ⅲ)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最小值为60°;其中正确的是________.(填写所有正确结论的编号) 三、解答题26.(2018江苏)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.D 11B 1A 1DCBA求证:(1)AB ∥平面11A B C ;(2)平面11ABB A ⊥平面1A BC .27.(2018浙江)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=,14A A =,11C C =,12AB BC B B ===.C 1B 1A 1CBA(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 与平面1ABB 所成的角的正弦值.28.(2017浙江)如图,已知四棱锥P ABCD -,PAD ∆是以AD 为斜边的等腰直角三角形,BC AD ∥,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点. (Ⅰ)证明:CE ∥平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.EDCBAP29.(2017江苏)如图,在三棱锥A BCD -中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .FABCDE30.(2017山东)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是DF 的中点. (Ⅰ)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.31.(2017江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为cm ,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm . 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm . 现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.32.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E BC A --的余弦值.33.(2016全国II )如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将ΔDEF 沿EF折到ΔD EF '的位置,OD '= (I )证明:D H '⊥平面ABCD ; (II )求二面角B D A C '--的正弦值.34.(2016全国III )如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ,=3AB AD AC ==,4PA BC ==,M 为线段AD 上一点,2AM MD =, N 为PC 的中点.(Ⅰ)证明MN平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.BD35.(2014山东)如图,四棱锥P ABCD -中,AP PCD ⊥平面,AD BC ∥,1,,2AB BC AD EF ==分别为线段,AD PC 的中点.(Ⅰ)求证:AP BEF ∥平面; (Ⅱ)求证:BE PAC ⊥平面.36.(2014江苏)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证:(Ⅰ)直线PA ∥平面DEF ;(Ⅱ)平面BDE ⊥平面ABC .37.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,AD求三棱锥E ACD -的体积.38.(2014天津)如图四棱锥P ABCD -的底面ABCD是平行四边形,BA BD ==,2AD =,PA PD ==E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60°, (ⅰ)证明:平面PBC ⊥平面ABCD(ⅱ)求直线EF 与平面PBC 所成角的正弦值.39.(2013浙江)如图,在四棱锥P ABCD -中,PA ⊥面ABCD ,2AB BC ==,AD CD ==,PA =120ABC ∠=,G 为线段PC 上的点.PDB(Ⅰ)证明:BD ⊥面APC ;(Ⅱ)若G 是PC 的中点,求DG 与APC 所成的角的正切值; (Ⅲ)若G 满足PC ⊥面BGD ,求PGGC的值. 40.(2013辽宁)如图,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点.(Ⅰ)求证:BC PAC ⊥平面;(Ⅱ)设Q 为PA 的中点,G 为AOC ∆的重心,求证:QG ∥平面PBC .41.(2012江苏)如图,在直三棱柱111ABC A B C -中,1111AB AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.1求证:(Ⅰ)平面ADE ⊥平面11BCC B ;(Ⅱ)直线1//A F 平面ADE .42.(2012广东)如图所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//,AB CD PD AD =,E 是PB 中点,F 是DC 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高.(Ⅰ)证明:PH ⊥平面ABCD ; (Ⅱ)若1,1PH AD FC ===,求三棱锥E BCF -的体积;(Ⅲ)证明:EF ⊥平面PAB .43.(2011江苏)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB AD =,BAD ∠=60°,E 、F 分别是AP 、AD 的中点.C求证:(Ⅰ)直线EF ∥平面PCD ; (Ⅱ)平面BEF ⊥平面PAD .44.(2011广东)如图在椎体P ABCD -中,ABCD是边长为1的棱形,且DAB ∠=60︒,PA PD ==2PB =,E ,F 分别是BC ,PC 的中点.(Ⅰ)证明:AD ⊥平面DEF ;(Ⅱ)求二面角P AD B --的余弦值.45.(2010天津)如图,在五面体ABCDEF 中,四边形ADEF 是正方形,FA ⊥平面ABCD ,BC∥AD ,CD =1,AD =,∠BAD =∠CDA =45°.(Ⅰ)求异面直线CE 与AF 所成角的余弦值; (Ⅱ)证明CD ⊥平面ABF ; (Ⅲ)求二面角B EF A --的正切值.46.(2010浙江)如图,在平行四边形ABCD 中,AB =2BC ,∠ABC =120°.E 为线段AB 的中点,将△ADE 沿直线DE 翻折成△A DE ',使平面A DE '⊥平面BCD ,F 为线段A C '的中点.(Ⅰ)求证:BF ∥平面A DE ';(Ⅱ)设M 为线段DE 的中点,求直线FM 与平面A DE '所成角的余弦值.。

空间立体几何点线面关系(课堂练习)

空间立体几何点线面关系(课堂练习)

空间立体几何点线面关系一、选择题一、选择题1、以下命题(其中a ,b 表示直线,a 表示平面)表示平面)①若a ∥b ,b Ìa ,则a ∥a ②若a ∥a ,b ∥a ,则a ∥b ③若a ∥b ,b ∥a ,则a ∥a ④若a ∥a ,b Ìa ,则a ∥b 其中正确命题的个数是其中正确命题的个数是其中正确命题的个数是( ))(A )0个(B )1个 (C )2个(D )3个2、已知a ∥a ,b ∥a ,则直线a ,b 的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交交;⑤不垂直且不相交..其中可能成立的有(其中可能成立的有( )) (A )2个 (B )3个 (C )4个 (D )5个3、如果平面a 外有两点A 、B ,它们到平面a 的距离都是a ,则直线AB 和平面a 的位置关系一定是定是 ( ))(A )平行(B )相交(C )平行或相交)平行或相交 (D )AB Ìa 4、已知m ,n 为异面直线,m ∥平面a ,n ∥平面b ,a ∩b =l ,则l ( ) (A )与m ,n 都相交都相交 (B )与m ,n 中至少一条相交中至少一条相交 (C )与m ,n 都不相交都不相交 (D )与m ,n 中一条相交中一条相交 5、已知直线m 、n 与平面α、β,给出下列三个命题:给出下列三个命题:①若m ∥α,n ∥α,则m ∥n ;②若m ∥α,n ⊥α,则n ⊥m ;③若m ⊥α,m ∥β,则α⊥β.其中真命题的个数是 A .0 B 0 B..1 C 1 C...2 D .2 D..36、若a 、b 为空间两条不同的直线,a 、b 为空间两个不同的平面,则a a ^的一个充分条件是条件是A .//a b 且a b ^B B..a b Ì且a b ^C C..a b ^且//b aD.a b ^且//a b7、设直线m n 、和平面a b 、,则下列命题中正确..的是的是 A .若//m n m n a b ÌÌ,,,则//a b B B.若.若//m n m n a b Ì^,,,则a b ^ C .若m m n n a b ^^Ì,,,则//a b D D.若.若//m n m n a b ^^,,,则a b ^ 8、对于平面a 和共面的直线m 、,n 下列命题中真命题是下列命题中真命题是A .若,,m m n a ^^则n a ∥B B.若.若m a a ∥,n ,n∥∥,则m ∥nC .若,m n a a Ì∥,则m ∥nD D.若.若m 、n 与a 所成的角相等,则m ∥n9、若直线a 与平面α不垂直,那么在平面α内与直线a 垂直的直线垂直的直线 ( ))A .只有一条.只有一条B .有无数条.有无数条C .所有直线.所有直线D .不存在.不存在 1010、经过平面、经过平面α外一点和平面α内一点与平面α垂直的平面有垂直的平面有( ))A .0个B .1个C .无数个.无数个D .1个或无数个个或无数个1111、已知直线、已知直线a ,b 和平面a ,下列命题中正确的是(,下列命题中正确的是( )) A .若b a b a //,,//则a a ÌB .若b a b a //,//,//则a aC .若a a //,,//a b b a 则ÌD .若a a a //,//,//b b a b a 或则Ì1212、已知直线、已知直线m ⊥平面α,直线Ìn 平面β,下列说法正确的有,下列说法正确的有 ( ))①若①若n m ^则,//b a ②若b a ^,则m //n ③若③若m //n ,则b a ^④若b a //,则n m ^A .1个B .2个C .3个D .4个1313、已知平面、已知平面α内有无数条直线都与平面β平行,那么平行,那么( )A .α∥βB .α与β相交相交C .α与β重合重合D .α∥β或α与β相交相交1414、经过平面外两点与这个平面平行的平面、经过平面外两点与这个平面平行的平面、经过平面外两点与这个平面平行的平面 ( ) A .只有一个.只有一个 B .至少有一个.至少有一个 C C.可能没有.可能没有.可能没有D .有无数个.有无数个1515、已知、已知,m n 是两条不同直线,,,a b g 是三个不同平面,下列命题中正确的是(是三个不同平面,下列命题中正确的是( ))A .,,m n m n a a 若则‖‖‖B .,,a g b g a b ^^若则‖C .,,m m a b a b 若则‖‖‖D D..,,m n m n a a ^^若则‖1616、设有直线、设有直线m 、n 和平面a 、b 。

立体几何-点线面的位置关系考试试题简单

立体几何-点线面的位置关系考试试题简单

姓名:__________ 日期:__________ 成绩:__________时间: 120分钟 满分: 150分 试卷类型: A 考试内容: 点线面的位置关系 . 一、选择题(本大题共10个小题,每个小题5分,共50分) 1.下列说法正确的是( )A .任意三点可确定一个平面B .四边形一定是平面图形C .梯形一定是平面图形D .一条直线和一个点确定一个平面 2.已知,m n 为两条不同的直线,,αβ为两个不同的平面,给出下列4个命题: ①若,//,//m n m n αα⊂则 ②若,//,m n m n αα⊥⊥则 ③若,,//m m αβαβ⊥⊥则 ④若//,//,//m n m n αα则 其中真命题的序号为( )A .①②B .②③C .③④D .①④3.已知,m n 是两条不同的直线,,,αβγ是三个不同的平面,下列命题中错误的是( ) A .若,m m αβ⊥⊥,则α∥β B .若α∥γ,β∥γ,则α∥β C .若,,m n m αβ⊂⊂∥n ,则α∥βD .若,m n 是异面直线,,,m n m αβ⊂⊂∥β,n ∥α,则α∥β4.设m ,n 是两条不同的直线,,,αβγ是三个不同的平 面,则下列为假.命题的是( ) A 、若,//m n αα⊥,则m n ⊥ B 、若//,//,,m m αββγαγ⊥⊥则 C 、若,,//m m αβαβ⊥⊥则 D 、若,,//αγβγαβ⊥⊥则 5.对于平面α与共面的直线m ,n ,下列命题为真命题的是( )A .若m ,n 与α所成的角相等,则m//nB .若m//α,n//α,则m//nC .若m n ⊥,m α⊥,则n //αD .若m α⊂,n//α,则m//n 6.已知:b αβ= ,a α//,a β//,则a 与b 的位置关系是( )A .a b //B .a b ⊥C .a ,b 相交但不垂直D .a ,b 异面7.若,,a b c 是空间三条不同的直线,,αβ是空间中不同的平面,则下列命题中不正确的是( ) A .若c α⊥,c β⊥,则//αβB .若b α⊂,b β⊥,则αβ⊥C .当,b a αα⊂⊄且c 是a 在α内的射影,若b c ⊥,则a b ⊥D .当b α⊂且c α⊄时,若//c α,则//b c8.设a 、b 是两条不同的直线,α、β是两个不同的平面,是下列命题中正确的是( ) A .若//a b ,//a α,则//b α B .若αβ⊥,//a α,则a β⊥C .若αβ⊥,a β⊥,则//a αD .若a b ⊥,a α⊥,b β⊥,则αβ⊥AB FED N CM9.关于直线,m n 与平面,αβ,有以下四个命题:①若//,//m n αβ且//αβ,则//m n ; ②若,m n αβ⊥⊥且αβ⊥,则m n ⊥; ③若,//m n αβ⊥且//αβ,则m n ⊥; ④若//,m n αβ⊥且αβ⊥,则//m n ; 其中真命题的序号是( )A .①②B .③④C .①④D .②③10.棱长为1的正方体ABCD A 1B 1C 1D 1中,点M,N 分别在线段AB 1,BC 1上, 且AM=BN,给出以下结论:①AA 1⊥MN ; ②异面直线AB 1,BC 1所成的角为60° ③四面体B 1 D 1CA 的体积为31; ④A 1C ⊥AB 1,A 1C ⊥BC 1. 其中正确的结论的个数为( ) A .1 B.2 C .3 D .4二、填空题(本大题共5个小题,每个小题5分,共25分)11.如果三个平面把空间分成六个部分,那么这三个平面的位置关系是 . 12.关于直线,m n 和平面,αβ,有如下四个命题: (1)若||,||,||m n αβαβ,则||m n ; (2)若||m n ,,n n αβ⊂⊥,则αβ⊥; (3)若,||m m n αβ= ,则||n β且||n β; (4)若,m n m αβ⊥= ,则n α⊥或n β⊥. 其中真命题的个数是 .13.已知:l m ,是不同的直线,βα,是不同的平面,给出下列五个命题:①若l 垂直于α内的两条直线,则α⊥l ; ②若α//l ,则l 平行于α内的所有直线; ③若,,βα⊂⊂l m 且,m l ⊥则βα⊥; ④若,β⊂l 且,α⊥l 则βα⊥; ⑤若βα⊂⊂l m ,且,//βα则l m //.其中正确命题的序号是 . 14.如图是正方体的平面展开图,在这个正方体中, ①//BM 平面DE ; ②//CN 平面AF ;③平面BDM //平面AFN ; ④平面BDE //平面NCF .以上四个命题中,正确命题的序号是 .F EDC BA P15.设,αβ为使互不重合的平面,,m n 是互不重合的直线,给出下列四个命题: ①//,,//m n n m αα⊂若则;②,,//////m n m n ααββαβ⊂⊂若,,则; ③//,,//m n m n αβαβ⊂⊂若,则;④若,,,,m n n m n αβαβαβ⊥⋂=⊂⊥⊥则. 其中正确命题的序号为 . 三、解答题(本大题共6个小题,共75分) 16.(本小题满分12分)如图,四棱锥P ABCD -的底面为平行四边形,PD ⊥平面ABCD ,M 为PC 中点. (1)求证://AP 平面MBD ; (2)若AD PB ⊥,求证:BD ⊥平面PAD .17.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,若E 、F 分 别为PC 、BD 的中点.(1)求证:EF //平面PAD ;(2) 求证:平面PDC ⊥平面PAD .P M B C DASDCBA如图,四边形A BCD 与A'ABB'都是边长为a 的正方形,点E 是A'A 的中点,AA 'ABCD ⊥平面 (1)求证:A 'C //BDE 平面;(2)求证:平面A 'AC BDE ⊥平面; (3)求体积ABCD A V -'与ABD E V -的比值.19.(本小题满分12分)已知ABC ∆中90ACB ∠= ,SA ⊥面ABC ,AD SC ⊥. 求证:AD ⊥面SBC .如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点. (1)求证:⊥AB 平面CDE ;(2)若G 为ADC ∆的重心,试在线段AE 上确定一点F ,使得GF//平面CDE .如图,在正四棱锥ABCD P -中,底面是边长为2的正方形,侧棱6=PA ,E 为BC 的中点,F 是侧棱PD 上的一动点。

点线面位置关系练习(有详细答案)

点线面位置关系练习(有详细答案)

【空间中的平行问题】(1)直线与平面平行的判定及其性质①线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

(线线平行→线面平行)②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(线面平行→线线平行)(2)平面与平面平行的判定及其性质两个平面平行的判定定理:①如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行) ②如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

(线线平行→面面平行) ③垂直于同一条直线的两个平面平行两个平面平行的性质定理:①如果两个平面平行,那么某一个平面内的直线与另一个平面平行。

(面面平行→线面平行) ②如果两个平行平面都和第三个平面相交,那么它们的交线平行。

(面面平行→线线平行)【空间中的垂直问题】(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

【空间角问题】(1)直线与直线所成的角①两平行直线所成的角:规定为 ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

高中数学立体几何小题100题(含答案与解析)

高中数学立体几何小题100题(含答案与解析)

立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C【解析】设AB =a.由题设知AQ 为棱锥Q -ABCD 的高,所以棱锥Q -ABCD 的体积V 1=.易证PQ ⊥面DCQ ,而PQ =,△DCQ 的面积为,所以棱锥P -DCQ 的体积V 2=.故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1:1,选C.25.正四面体ABCD ,线段AB //平面α,E ,F 分别是线段AD 和BC 的中点,当正四面体绕以AB 为轴旋转时,则线段AB 与EF 在平面α上的射影所成角余弦值的范围是( )A . [0,22]B .[22,1]C .[21,1] D .[21,22] 【答案】B【解析】试题分析:如图,取AC 中点为G ,结合已知得GF //AB ,则线段AB 、EF 在平面α上的射影所成角等于GF 与EF 在平面α上的射影所成角,在正四面体中,AB ⊥CD ,又GE //CD ,所以GE ⊥GF,所以222GF GE EF +=,当四面体绕AB 转动时,因为GF //平面α,GE 与GF 的垂直性保持不变,显然,当CD 与平面α垂直时,GE 在平面上的射影长最短为0,此时EF 在平面α上的射影11F E 的长取得最小值21,当CD 与平面α平行时,GE 在平面上的射影长最长为21,11F E 取得最大值22,所以射影11F E 长的取值范围是 [21,22],而GF 在平面α上的射影长为定值21,所以AB 与EF 在平面α上的射影所成角余弦值的范围是[22,1].故选B 考点:1线面平行;2线面垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同步练习第I 卷(选择题)1.已知,m n 是两条不同直线,,,αβγ是三个不同平面,则下列命题正确的是( ).A 、若m ∥,n α∥α,则m ∥nB 、若,αγβγ⊥⊥,则α∥βC 、若n ∥,n α∥β,则α∥βD 、若,m n αα⊥⊥,则m ∥n2.已知,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列命题中正确的是 ( )A .//,//m n αα,则//m nB .,m m αβ⊥⊥,则//αβC .//,//m n m α,则//n αD .,αγβγ⊥⊥,则//αβ3.已知m 、n 为两条不同的直线,α、β为两个不同的平面,下列命题中正确的是( )A .若α∥β,m ∥α,则m ∥βB .若α⊥β,m ⊥β,则m ⊥αC .若m ⊥α,m ⊥β,则α∥βD .若m ∥α,m ⊥n ,则n ⊥α4.已知l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( )A .若l α⊥,m α⊂,则l m ⊥B .若l m ⊥,m α⊂,则l α⊥C .若l ∥α,m α⊂,则l ∥mD .若l ∥α,m ∥α,则l ∥m5.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( )A .若l α⊥,l m //,则m α⊥B .若l m ⊥,m α⊂,则l α⊥C .若l α//,m α⊂,则l m //D .若l α//,m α//,则l m //6.设b a ,表示直线,γβα,,表示不同的平面,则下列命题中正确的是( )A .若α⊥a 且b a ⊥,则α//bB .若αγ⊥且βγ⊥,则βα//C .若α//a 且β//a ,则βα//D .若αγ//且βγ//,则βα//7.关于空间两条直线a 、b 和平面α,下列命题正确的是( )A .若//a b ,b α⊂,则//a αB .若//a α,b α⊂,则//a bC .若//a α,//b α,则//a bD .若a α⊥,b α⊥,则//a b8.给定空间中的直线l 及平面,条件“直线l 与平面 内无数条直线都垂直”是“直线l 与平面 垂直”的( )条件A .充要B .充分非必要C .必要非充分D .既非充分又非必要 9.设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中为真命题的个数( )①若m α⊥,//m n ,//n β,则αβ⊥ ②若αβ⊥,m α⊄,m β⊥,则//m α ③若m β⊥,m α⊂,则αβ⊥ ④若αβ⊥,m α⊂,n β⊂,则m n ⊥A .0个B .1个C .2个D .3个10.已知两个不同的平面αβ、和两个不重合的直线m 、n ,有下列四个命题:①若//,m n m n αα⊥⊥,则;②若,,//m m αβαβ⊥⊥则;③若,//,,m m n n αβαβ⊥⊂⊥则;④若//,//m n m n ααβ⋂=,则.其中正确命题的个数是( )A.0B.1C.2D.311.已知,m n 为不同的直线,,αβ为不同的平面,则下列说法正确的是A. ,////m n m n αα⊂⇒B. ,m n m n αα⊂⊥⇒⊥C. ,,////m n m n αβαβ⊂⊂⇒D. ,n n βααβ⊂⊥⇒⊥12.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题中正确..的是 (A )若//,m n αβ⊥且αβ⊥,则m n ⊥ (B )若,m n αβ⊥⊥且m n ⊥,则αβ⊥(C )若/,/n m αβ⊥且n β⊥,则//m α (D )若,m n αβ⊂⊂且//m n ,则//αβ13.对于空间的一条直线m 和两个平面,αβ,下列命题中的真命题是A.若,,m m αβP P 则αβPB. .若,,m m αβP P 则αβ⊥C.若,,m m αβ⊥⊥则αβPD. 若,,m m αβ⊥⊥则αβ⊥14.设,,l m n 表示三条不同的直线,,αβ表示两个不同的平面,则下列说法正确的是( )A .若l ∥m ,m α⊂,则l ∥α;B .若,,,l m l n m n α⊥⊥⊂,则l α⊥;C .若l ∥α,l ∥β,m αβ=I ,则l ∥m ;D .若,,l m l m αβ⊂⊂⊥,则αβ⊥.15.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A.若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥ B.若//,a b b α⊂,则//a α C.若//,,,a b αβαγβγ==I I 则//a b D.若,,//,//a b a b ββαα⊂⊂,则//βα第II 卷(非选择题)二、解答题(本题共7道小题,第1题0分,第2题0分,第3题0分,第4题0分,第5题0分,第6题0分,第7题0分,共0分)在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,若E 、F 分别为PC 、BD 的中点.(Ⅰ) 求证:EF //平面PAD ; (Ⅱ) 求证:平面PDC ⊥平面PAD ;B A17.(本题10分)如图,ABCD 是正方形,O 是该正方形的中心,P 是平面ABCD 外一点,PO ⊥底面ABCD ,E 是PC 的中点.求证:(1)PA ∥平面BDE ;(2)BD ⊥平面PAC .18.(本小题8分)如图在四棱锥P ABCD -中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且2PA PD AD ==,设E 、F 分别为PC 、BD 的中点. (1) 求证:EF //平面PAD ; (2) 求证:面PAB ⊥平面PDC ; (3) 求二面角B PD C --的正切值.POEC DBACBAD 1B 1A1C19.如图,底面是正三角形的直三棱柱111ABC A B C -中,D 是BC 的中点,12AA AB ==. (Ⅰ)求证:1//AC 平面1AB D ;(Ⅱ)求点A 1 到平面1AB D 的距离.20.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ABC ∠=o E 、F 分别是PB 、CD 的中点,且4PB PC PD ===.(1)求证:PA ABCD ⊥平面;(2)求证://EF 平面PAD ;(3)求二面角A PB C --的余弦值.21.如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形, PD =DC ,E ,F 分别是AB ,PB 的中点.(Ⅰ)求证://EF 平面PAD ;(Ⅱ)求证:EF CD ⊥;(Ⅲ)设PD=AD=a, 求三棱锥B-EFC 的体积.B A22.(本小题满分10分)P-中,底面ABCD是矩形,如图,在四棱锥ABCDAP=,E,F分别是PB,PC的中点.PA⊥平面ABCD,AB(Ⅰ)证明:EF∥平面PAD;AE⊥.(Ⅱ)求证:PC评卷人得分三、解答题(本题共3道小题,每小题10分,共30分)评卷人得分四、填空题(本题共4道小题,每小题0分,共0分)α,β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命题序号是______24.设,m n是两条不同的直线,,αβ是两个不同的平面,下列正确命题的序号是__________。

(1)若m ∥α,n ∥α,则m ∥n ; (2)若,m m n α⊥⊥则//n α;(3)若m α⊥,n β⊥且m n ⊥,则αβ⊥;(4)若β⊂m ,βα//,则α//m 。

25.10. 设c b ,表示两条直线,βα,表示两个平面,现给出下列命题:① 若,//b c αα⊂,则//b c ; ② 若,//b b c α⊂,则//c α;③ 若//,c ααβ⊥,则c β⊥; ④ 若//,c c αβ⊥,则αβ⊥.其中真命题是 ▲ .(写出所有真命题的序号)26.设m ,n 是两条不同直线,βα,是两个不同的平面,给出下列四个命题:①若n m n m //,//,则αα⊂; ②βαβα⊥⊥⊥⊥则,,,n m n m ;③若,//,//,//n m n m m αβαβ⋂=则且 ; ④若βαβα//,,则⊥⊥m m 其中正确的命题是 ________.试卷答案1.D2.B3.C4.A5.A6.D7.D8.C略9.D10.D.试题分析:对于①,因为α⊥m ,所以直线m 与平面α所成的角为090,又因为m ∥n ,所以直线n 与平面α所成的角也为090,即α⊥n 命题成立,故正确;对于②,若α⊥m ,β⊥m ,则经过m 作平面γ,设a =⋂αγ,b =⋂βγ,又因为α⊂a ,β⊂b ,所以在平面γ内,a m ⊥,b n ⊥,所以直线a 、b 是平行直线.因为β⊄a ,β⊂b ,a ∥b ,所以a ∥β.经过m 作平面θ,设c =⋂αθ,d =⋂βθ,用同样的方法可以证出c ∥β.因为a 、c 是平面α内的相交直线,所以α∥β,故正确;对于③,因为α⊥n ,m ∥n ,所以α⊥n .又因为β⊂n ,所以βα⊥,故正确; 对于④,因为m ∥β,n =⋂βα,当直线m 在平面β内时,m ∥n 成立,但题设中没有m 在平面β内这一条件,故不正确.综上所述,其中正确命题的个数是3个,应选D. 考点:平面的基本性质及推论.11.【知识点】空间中直线与平面之间的位置关系.G4 G5【答案解析】D 解析:A 选项可能有n α⊂,B 选项也可能有n α⊂,C 选项两平面可能相交,故选D.【思路点拨】分别根据线面平行和线面垂直的性质和定义进行判断即可.12.【答案解析】B 解析:A.直线,m n 成角大小不确定;B.把,m n 分别看成平面,αβ的法向量所在直线,则易得B 成立.所以选B.【思路点拨】根据空间直线和平面位置关系的判断定理与性质定理进行判断.13.【答案解析】C 解析:若,,m m αβP P 则平面,αβ可能平行可能相交,所以A,B 是假命题;显然若,,m m αβ⊥⊥则αβP 成立,故选C.【思路点拨】根据线面平行的性质,线面垂直的性质得结论.14.【答案解析】C 解析:对于A ,直线l 还有可能在平面α内,所以错误,对于B ,若m ∥n ,则直线l 与平面α不一定垂直,所以错误,对于D ,若,,l m l m αβ⊂⊂⊥,两面可以平行和相交,不一定垂直,所以错误,则选C.【思路点拨】判断空间位置关系时,可用相关定理直接判断,也可用反例排除判断.15.C16.(说明:证法不唯一,适当给分)证明:(1)取AD 中点G ,PD 中点H ,连接FG,GH,HE ,由题意:11//,//,//,//22FG AB HE CD AB CD FG HE ∴Q //EFGH EF GH ∴∴四边形是平行四边形, --------4分又,GH PAD EF PAD ⊆⊄平面平面,EF //平面PAD --------6分(2)Q 平面PAD ⊥底面ABCD ,,PAD ABCD AD ⋂=平面平面,CD AD CD ABCD ⊥⊆平面,∴CD PAD ⊥平面,--------10分又CD PDC ⊆平面,∴平面PDC ⊥平面PAD --------12分证明:(1)连接EO ,∵ 四边形ABCD 为正方形,∴ O 为AC 的中点.∵ E 是PC 的中点,∴ OE 是△APC 的中位线.∴ EO ∥PA .∵ EO ⊂平面BDE ,PA ⊂平面,∴ PA ∥平面BDE .(2)∵ PO ⊥平面ABCD ,BD ⊂平面ABCD ,∴ PO ⊥BD .∵ 四边形ABCD 是正方形,∴ AC ⊥BD .∵ PO∩AC=O ,AC ⊂平面PAC ,PO ⊂平面PAC ,∴ BD ⊥平面PAC .18.(Ⅰ)证明:ABCD 为平行四边形连结AC BD F =I ,F 为AC 中点, E 为PC 中点∴在CPA ∆中EF //PA且PA ⊆平面PAD ,EF ⊄平面PAD ∴PAD EF 平面// ………2分 (Ⅱ)证明:因为面PAD ⊥面ABCD 平面PAD I 面ABCD AD = ABCD 为正方形,CD AD ⊥,CD ⊂平面ABCD所以CD ⊥平面PAD ∴CD PA ⊥又PA PD AD ==,所以PAD ∆是等腰直角三角形, 且2PAD π∠= 即PA PD ⊥ CD PD D =I ,且CD 、PD ⊆面ABCDPA ⊥面PDC又PA ⊆面PAB 面PAB ⊥面PDC ………5分PO ECDBAM F E D C B A (Ⅲ)设PD 的中点为M ,连结EM ,MF , 则EM PD ⊥由(Ⅱ)知EF ⊥面PDC , EF PD ⊥,PD ⊥面EFM ,PD MF ⊥, EMF ∠是二面角B PD C --的平面角 Rt FEM ∆中,1224EF PA a == 1122EM CD a == 224tan 122a EF EMF EM a ∠=== 故所求二面角的正切值为22 ………8分 19.证明:(Ⅰ)连接1A B 交1AB 于O ,连接OD ,在1BAC ∆中,O 为1BA 中点,D 为BC 中点1//OD AC ∴ 111,OD AB D AC AB D ⊂⊄面面 11//AC AB D ∴平面1DH BB ∴⊥11DH A B BA ∴⊥面 且3sin 30DH AD =⋅=o 1111A AB D D AA B V V --=Q 即11513233h = 解得25h =解法二:由①可知11//AC AB D 平面 ∴点1A 到平面1AB D 的距离等于点C 到平面1AB D 的距离…………8分1AD B ∆Q 为Rt ∆ 115ADB S ∆∴=132ADC ABC S S ∆∆==分 设点C 到面1AB D 的距离为h11C AB D B ADC V V --=即11513233h =⨯ 解得25h =略20.(1)证明 取BC 的中点,M 连结,.AM PM,60AB BC ABC =∠=o Q ,ABM ∴∆为正三角形,.AM BC ∴⊥又 ,,PB PC PM BC =∴⊥,AM PM M =IBC ∴⊥平面PAM ,PA ⊂平面PAM ,同理可证 ,PA CD ⊥又,BC CD C PA =∴⊥I 平面.ABCD …4分.D(2)取PA 的中点N ,连结,.EN ND,,//,PE EB PN NA EN AB ==∴Q 且1.2EN AB =又//,FD AB 且1,2FD AB = //EN DF ∴,∴四边形ENDF 是平行四边形,//,EF ND ∴而EF ⊄平面,PAD ND ⊂平面,//PAD EF ∴平面.PAD …………………8分(3)取AB 的中点,G 过G 作GH PB ⊥于点,H 连结,.HC GC则,CG AB ⊥又,,CG PA PA AB A CG ⊥=∴⊥I 平面.PAB ,HC PB ∴⊥ GHC∴∠是二面角A PB C --的平面角.在Rt PAB ∆中,2,4,AB PB PA ==∴=又Rt BHG ∆∽Rt BAP ∆,,HG BGHG PA PB ∴=∴=. 在Rt HGC ∆中,可求得GC HC =∴=cos GHC∴∠=, 故二面角A PB C --………………12分. (注:若(2)、(3)用向量法解题,证线面平行时应说明EF ⊄平面PAD 内,否则扣1分;求二面角的余弦值时,若得负值,亦扣1分.)21.解:(Ⅰ)证明:∵E ,F 分别是AB ,PB 的中点,∴//EF AP .又∵EF Ë平面PAD ,AP ⊂平面PAD ,∴//EF 平面PAD . (Ⅱ)证明:∵四边形ABCD 为正方形,∴AD CD ^.又∵PD ^平面ABCD ,∴PD CD ^,且AD PD D =I .∴CD ^平面PAD ,又∵PA ⊂平面PAD ,∴CD ^PA .又∵//EF AP ,∴EF CD ⊥.(Ⅲ)连接,AC DB 相交于O ,连接OF ,则OF ⊥面ABCD ,则OF 为三棱锥F EBC -的高,1122OF PD a ==,21112224EBC a S EB BC a a =?创=V ∴B EFC F EBC V V --==211113322224EBC a a S OF a a ?鬃鬃V =. 略22.(Ⅰ)证明:Θ E ,F 分别是PB ,PC 的中点BC EF //∴ ……………2分 AD BC //ΘAD EF //∴⊄EF Θ平面PAD ,⊂AD 平面PAD ∴EF ∥平面PAD ……………4分 (Ⅱ) 证明:ΘAB AP = ,E 是PB 的中点PB AE ⊥∴ ……………6分 ΘPA ⊥平面ABCDBC PA ⊥∴ΘBC AB ⊥ 且A AB PA =I⊥∴BC 平面PAB ……………8分⊂AE Θ平面PABBC AE ⊥∴ΘB BC PB =I⊥∴AE 平面PBCPC AE ⊥∴ ……………10分23.(2) 、(3)24.(3)、(4);25.④26.②④。

相关文档
最新文档