数据结构 堆排序
数据结构排序算法总结表格

在计算机科学中,排序算法是用于对数据进行排序的一种算法。以下是一些常见的排序算法,总结在一张表格中:
算法名称
描述
时间复杂度
空间复杂度
稳定性
冒泡排序
通过重复地比较相邻元素并交换位置,将最大(或最小)的元素移到数组的末尾。
O(n²)
O(1)
是
选择排序
在未排序的序列中找到最小(或最大)的元素,将其放在已排序
插入排序
将一个元素插入到已排序的序列中,保持序列的有序性。
O(n²)
O(1)
是
希尔排序
将数组划分为多个子序列,然后分别对子序列进行插入排序,最后再进行一次插入排序。
O(n²)
O(1)
是
快速排序
选择一个元素作为基准,将数组划分为两个子序列,一个子序列的所有元素都比基准小,另一个子序列的所有元素都比基准大。递归地对子序列进行排序。
O(n log n)
O(1)(如果从数组创建堆时)
是(但是不稳定)
基数排序
通过按位(或数字的其他属性)对元素进行比较和交换位置来排序数组。是一种稳定的排序算法。
O(nk)(k是数字的位数)
O(n)(如果使用外部存储)
是
O(n log n) 到 O(n²)(最坏情况下)
O(log n) 到 O(n)(递归调用的开销)
否(但是快速选择是稳定的)
归并排序
将数组划分为两个子数组,分别对子数组进行排序,然后将两个已排序的子数组合并成一个有序的数组。递归地进行这个过程。
O(n log n)
O(n)(合并时)
是
堆排序
将数组构建成一个大顶堆或小顶堆,然后不断地将堆顶元素与堆尾元素交换,并重新调整堆结构。重复这个过程直到所有元素都已排序。
数据结构第八章_排序

49 38 65 97 76
三趟排序:4 13 27 38 48 49 55 65 76 97
算法描述
#define T 3 int d[]={5,3,1};
例 13 48 97 55 76 4 13 49 27 38 65 49 27 38 65 48 97 55 76 4 j j j
j
j
i
例 初始: 49 38 65 97 76 13 27 48 55 4 取d1=5 49 38 65 97 76 13 27 48 55 4 一趟分组:
一趟排序:13 27 48 55 4 取d2=3 13 27 48 55 4 二趟分组:
49 38 65 97 76 49 38 65 97 76
二趟排序:13 4 48 38 27 49 55 65 97 76 取d3=1 13 27 48 55 4 三趟分组:
初始时令i=s,j=t
首先从j所指位置向前搜索第一个关键字小于x的记录,并和rp
交换 再从i所指位置起向后搜索,找到第一个关键字大于x的记录, 和rp交换 重复上述两步,直至i==j为止 再分别对两个子序列进行快速排序,直到每个子序列只含有 一个记录为止
快速排序演示
算法描述
算法评价
例
38 49 49 38 65 76 97 13 97 76 97 27 13 30 97 27 97 30 初 始 关 键 字
38 49 65 13 76 27 76 13 30 76 27 76 30 97 第 一 趟
38 49 13 65 27 65 13 30 65 27 65 30
38 13 49
时间复杂度
最好情况(每次总是选到中间值作枢轴)T(n)=O(nlog2n) 最坏情况(每次总是选到最小或最大元素作枢轴)
数据结构课程设报告—各种排序算法的比较

数据结构课程设计报告几种排序算法的演示1、需求分析:运行环境:Microsoft Visual Studio 20052、程序实现功能:3、通过用户键入的数据, 经过程序进行排序, 最后给予数据由小到大的输出。
排序的方式包含教材中所介绍的几种常用的排序方式:直接插入排序、折半插入排序、冒泡排序、快速排序、选择排序、堆排序、归并排序。
每种排序过程中均显示每一趟排序的细节。
程序的输入:输入所需排序方式的序号。
输入排序的数据的个数。
输入具体的数据元素。
程序的输出:输出排序每一趟的结果, 及最后排序结果1、设计说明:算法设计思想:a交换排序(冒泡排序、快速排序)交换排序的基本思想是: 对排序表中的数据元素按关键字进行两两比较, 如果发生逆序(即排列顺序与排序后的次序正好相反), 则两者交换位置, 直到所有数据元素都排好序为止。
b插入排序(直接插入排序、折半插入排序)插入排序的基本思想是: 每一次设法把一个数据元素插入到已经排序的部分序列的合适位置, 使得插入后的序列仍然是有序的。
开始时建立一个初始的有序序列, 它只包含一个数据元素。
然后, 从这个初始序列出发不断插入数据元素, 直到最后一个数据元素插到有序序列后, 整个排序工作就完成了。
c选择排序(简单选择排序、堆排序)选择排序的基本思想是: 第一趟在有n个数据元素的排序表中选出关键字最小的数据元素, 然后在剩下的n-1个数据元素中再选出关键字最小(整个数据表中次小)的数据元素, 依次重复, 每一趟(例如第i趟, i=1, …, n-1)总是在当前剩下的n-i+1个待排序数据元素中选出关键字最小的数据元素, 作为有序数据元素序列的第i个数据元素。
等到第n-1趟选择结束, 待排序数据元素仅剩下一个时就不用再选了, 按选出的先后次序所得到的数据元素序列即为有序序列, 排序即告完成。
d归并排序(两路归并排序)1、两路归并排序的基本思想是: 假设初始排序表有n个数据元素, 首先把它看成是长度为1的首尾相接的n个有序子表(以后称它们为归并项), 先做两两归并, 得n/2上取整个长度为2的归并项(如果n为奇数, 则最后一个归并项的长度为1);再做两两归并, ……, 如此重复, 最后得到一个长度为n的有序序列。
数据结构第9章 排序

数据结构第9章排序数据结构第9章排序第9章排名本章主要内容:1、插入类排序算法2、交换类排序算法3、选择类排序算法4、归并类排序算法5、基数类排序算法本章重点难点1、希尔排序2、快速排序3、堆排序4.合并排序9.1基本概念1.关键字可以标识数据元素的数据项。
如果一个数据项可以唯一地标识一个数据元素,那么它被称为主关键字;否则,它被称为次要关键字。
2.排序是把一组无序地数据元素按照关键字值递增(或递减)地重新排列。
如果排序依据的是主关键字,排序的结果将是唯一的。
3.排序算法的稳定性如果要排序的记录序列中多个数据元素的关键字值相同,且排序后这些数据元素的相对顺序保持不变,则称排序算法稳定,否则称为不稳定。
4.内部排序与外部排序根据在排序过程中待排序的所有数据元素是否全部被放置在内存中,可将排序方法分为内部排序和外部排序两大类。
内部排序是指在排序的整个过程中,待排序的所有数据元素全部被放置在内存中;外部排序是指由于待排序的数据元素个数太多,不能同时放置在内存,而需要将一部分数据元素放在内存中,另一部分放在外围设备上。
整个排序过程需要在内存和外存之间进行多次数据交换才能得到排序结果。
本章仅讨论常用的内部排序方法。
5.排序的基本方法内部排序主要有5种方法:插入、交换、选择、归并和基数。
6.排序算法的效率评估排序算法的效率主要有两点:第一,在一定数据量的情况下,算法执行所消耗的平均时间。
对于排序操作,时间主要用于关键字之间的比较和数据元素的移动。
因此,我们可以认为一个有效的排序算法应该是尽可能少的比较和数据元素移动;第二个是执行算法所需的辅助存储空间。
辅助存储空间是指在一定数据量的情况下,除了要排序的数据元素所占用的存储空间外,执行算法所需的存储空间。
理想的空间效率是,算法执行期间所需的辅助空间与要排序的数据量无关。
7.待排序记录序列的存储结构待排序记录序列可以用顺序存储结构和和链式存储结构表示。
在本章的讨论中(除基数排序外),我们将待排序的记录序列用顺序存储结构表示,即用一维数组实现。
1234567堆排序比较次数详解

xxx堆排序比较次数详解在计算机科学领域,堆排序是一种基于堆数据结构的排序算法,它是一种非常高效的排序方法,尤其在大数据集上表现突出。
堆排序的关键在于利用堆的性质来实现排序过程,而其中一个重要的指标就是比较次数。
在本文中,我将对xxx堆排序的比较次数进行详细的解析,希望能够帮助大家更好地理解这一排序算法。
我们需要了解什么是堆排序。
堆排序是一种选择性排序,它利用了堆这种数据结构的特性来实现。
堆可以被看作一棵树,它满足两个性质:结构性和堆序性。
结构性是指堆是一个完全二叉树,而堆序性是指堆中任意节点的值都不大于(或不小于)其孩子节点的值。
根据堆的性质,我们可以利用堆来进行排序,这就是堆排序算法的基本思想。
在xxx堆排序中,比较次数是一个非常重要的指标。
比较次数可以用来衡量算法的效率和性能,它表示在排序过程中进行了多少次元素之间的比较操作。
对于堆排序来说,比较次数取决于待排序数据的特点以及具体的实现方式。
在最坏情况下,比较次数是一个与n相关的量级,其中n表示待排序数据的大小。
一般情况下,堆排序的比较次数大约为nlogn,这使得堆排序成为一种非常高效的排序算法。
在xxx堆排序的实现过程中,比较次数是如何计算的呢?在建立堆的过程中,需要进行n/2次比较,这是因为堆是一棵完全二叉树,而叶子节点不需要进行比较。
在堆排序的过程中,需要进行n-1次比较,这是因为每次将最大(或最小)的元素移出堆后,需要对剩余的元素进行调整,直到完成排序。
堆排序的比较次数可以用一个简单的公式表示:n/2 + (n-1) = 3n/2 - 2。
除了比较次数外,xxx堆排序还涉及到交换次数和空间复杂度等指标。
交换次数表示在排序过程中进行了多少次元素之间的交换操作,而空间复杂度表示算法在执行过程中所需的额外空间。
这些指标的综合考量可以帮助我们更全面地评估堆排序算法的性能和适用范围。
xxx堆排序的比较次数是一个非常重要的指标,它可以帮助我们评估算法的效率和性能。
数据结构(c言版)课件_第八章_排序_(严蔚敏、吴伟民编_清华大学出版社)

算法描述
算法评价
时间复杂度
记录移动次数
最好情况:0
最坏情况:3(n-1)
比较次数: n1 (n i) 1 (n2 n)
i 1
2
T(n)=O(n²)
空间复杂度:S(n)=O(1)
Ch8_6.c
堆排序
堆的定义:n个元素的序列(k1,k2,……kn),当且仅当 满足下列关系时,称之为堆
增量序列取法 无除1以外的公因子 最后一个增量值必须为1
8.2 交换排序
冒泡排序
排序过程
将第一个记录的关键字与第二个记录的关键字进行比较,若 为逆序r[1].key>r[2].key,则交换;然后比较第二个记录与第 三个记录;依次类推,直至第n-1个记录和第n个记录比较为 止——第一趟冒泡排序,结果关键字最大的记录被安置在最 后一个记录上
二趟排序:13 4 48 38 27 49 55 65 97 76
Ch8_3.c
希尔排序特点
子序列的构成不是简单的“逐段分割”,而是将相隔某个增 量的记录组成一个子序列
希尔排序可提高排序速度,因为 分组后n值减小,n²更小,而T(n)=O(n²),所以T(n)从总体 上看是减小了
关键字较小的记录跳跃式前移,在进行最后一趟增量为1 的插入排序时,序列已基本有序
9776
7163
6257 13
4390 27
3308
38
9173 76
7267 13
6350 27
49 30
49
927 13
7360 27
65 30
65
9370 76
2977 30 76
3初0 9第7 第 第 第 第 第 始一二三四五六 关趟趟趟趟趟趟 键 字
数据结构之各种排序的实现与效率分析

各种排序的实现与效率分析一、排序原理(1)直接插入排序基本原理:这是最简单的一种排序方法,它的基本操作是将一个记录插入到已排好的有序表中,从而得到一个新的、记录增1的有序表。
效率分析:该排序算法简洁,易于实现。
从空间来看,他只需要一个记录的辅助空间,即空间复杂度为O(1).从时间来看,排序的基本操作为:比较两个关键字的大小和移动记录。
当待排序列中记录按关键字非递减有序排列(即正序)时,所需进行关键字间的比较次数达最小值n-1,记录不需移动;反之,当待排序列中记录按关键字非递增有序排列(即逆序)时,总的比较次数达最大值(n+2)(n-1)/2,记录移动也达到最大值(n+4)(n-2)/2.由于待排记录是随机的,可取最大值与最小值的平均值,约为n²/4.则直接插入排序的时间复杂度为O(n²).由此可知,直接插入排序的元素个数n越小越好,源序列排序度越高越好(正序时时间复杂度可提高至O(n))。
插入排序算法对于大数组,这种算法非常慢。
但是对于小数组,它比其他算法快。
其他算法因为待的数组元素很少,反而使得效率降低。
插入排序还有一个优点就是排序稳定。
(2)折半插入排序基本原理:折半插入是在直接插入排序的基础上实现的,不同的是折半插入排序在将数据插入一个有序表时,采用效率更高的“折半查找”来确定插入位置。
效率分析:由上可知该排序所需存储空间和直接插入排序相同。
从时间上比较,折半插入排序仅减少了关键字间的比较次数,为O(nlogn)。
而记录的移动次数不变。
因此,折半查找排序的时间复杂度为O(nlogn)+O(n²)= O(n²)。
排序稳定。
(3)希尔排序基本原理:希尔排序也一种插入排序类的方法,由于直接插入排序序列越短越好,源序列的排序度越好效率越高。
Shell 根据这两点分析结果进行了改进,将待排记录序列以一定的增量间隔dk 分割成多个子序列,对每个子序列分别进行一趟直接插入排序, 然后逐步减小分组的步长dk,对于每一个步长dk 下的各个子序列进行同样方法的排序,直到步长为1 时再进行一次整体排序。
常见排序算法的时间复杂度比较和应用场景

常见排序算法的时间复杂度比较和应用场景排序算法是计算机科学中最基本的算法之一。
在数据结构和算法中,排序算法的研究一直是热门话题。
这篇文章将会介绍一些最基本的排序算法,探讨它们的时间复杂度和一些应用场景。
1. 冒泡排序冒泡排序是最基本的排序算法之一。
其主要思想是循环遍历待排序的序列多次,每次比较相邻的两个元素的大小,如果前面的元素大于后面的元素,则交换这两个元素。
一个简单的例子如下:```pythondef bubble_sort(arr):n = len(arr)for i in range(n):for j in range(n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```冒泡排序的时间复杂度为 $O(n^2)$,其中 $n$ 是待排序序列的长度。
由于其时间复杂度较高,冒泡排序只适用于小规模的排序任务。
2. 快速排序快速排序是一种高效的排序算法。
其主要思想是选取序列中的一个元素作为基准值,将序列中小于基准值的元素放在基准值左边,大于基准值的元素放在右边,然后递归地对左右两部分进行排序。
一个简单的例子如下:```pythondef quick_sort(arr):if len(arr) <= 1:return arrpivot = arr[len(arr)//2]left = [x for x in arr if x < pivot]right = [x for x in arr if x > pivot]middle = [x for x in arr if x == pivot]return quick_sort(left) + middle + quick_sort(right)```快速排序的时间复杂度为 $O(n\log n)$,其中 $n$ 是待排序序列的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
佛山科学技术学院
实验报告
课程名称数据结构
实验项目实现典型的排序算法
专业班级 09计算机(1)班姓名梁志恒学号________2009314138________
指导教师黄营成绩____________ 日期________ _______
题目:请编程实现堆排序算法。
#include<stdio.h>
#define maxsize 100
typedef struct
{
int key[maxsize];
int length;
}SqList;
//堆排序大根堆
void HeapAdjust(SqList *L,int s,int m)
{
int j;
L->key[0]=L->key[s];
for(j=2*s;j<=m;j=2*j)
{
if(j<m && L->key[j]>L->key[j+1])
j++;
if(!(L->key[0]>L->key[j]))
break;
L->key[s]=L->key[j];
s=j;
}
L->key[s]=L->key[0];
}
void HeapSort(SqList *L)
{
//对顺序表key进行堆排序
int i;
for(i=L->length/2;i>0;i--)
HeapAdjust(L,i,L->length);
for(i=L->length;i>1;i--)
{
L->key[0]=L->key[1];
L->key[1]=L->key[i];
L->key[i]=L->key[0];
HeapAdjust(L,1,i-1);
}
}
void main()
{
SqList L;
int i,s=1;
printf("元素的个数length=");
scanf("%d",&(L.length));
for(i=1;i<=L.length;i++)
{
scanf("%d",&(L.key[i]));
}
HeapSort(&L,s,L.length);
printf("排序后:\n");
for(i=1;i<=L.length;i++)
printf("%d ",L.key[i]);
printf("\n");
}
1.请为所建立的堆选择适合的数据结构。
链式存储结构
typedef struct BiTNode
{
int data;
struct BiTNode *lchild,* rchild;
}BiTNode , *BiTree;
顺序存储结构
#define maxsize 100
typedef struct
{
int key[maxsize];
int length;
}SqList;
2.给出如下12个数字,请画出建立小根堆的过程。
36,47,58,12,17,22,97,10,21,28,72,80
36,47,58,12,17,22,97,10,21,28,72,80
3.请画出从小根堆输出升序序列的过程。
输出 10
58
7297 80
58
7297
80
58
7297
80
58
7297
80
输出10 12 17 21 22 28 36 47 58
80
7297
80
7297
72
8097
72
8097输出10 12 17 21 22 28 36 47 58 72
97 80
80
97
80
97
输出10 12 17 21 22 28 36 47 58 72 80
97
输出10 12 17 21 22 28 36 47 58 72 80 97。