化工基础学习知识原理上册课后习题集及其规范标准答案

合集下载

《化工基础学习知识原理》实验思考题题目及其规范标准答案

《化工基础学习知识原理》实验思考题题目及其规范标准答案

实验一流体流动阻力测定1、倒∪型压差计的平衡旋塞和排气旋塞起什么作用? 怎样使用?平衡旋塞是打开后,可以进水检查是否有气泡存在,而且能控制液体在U型管中的流量而排气旋塞,主要用于液柱调零的时候使用的,使管内形成气-水柱操作方法如下:在流量为零条件下,打开光滑管测压进水阀和回水阀,旋开倒置U型管底部中间的两个进水阀,检查导压管内是否有气泡存在。

若倒置U型管内液柱高度差不为零,则表明导压管内存在气泡,需要进行赶气泡操作。

开大流量,使倒置U型管内液体充分流动,以赶出管路内的气泡;若认为气泡已赶净,将流量阀关闭;慢慢旋开倒置U型管上部的放空阀,打开底部左右两端的放水阀,使液柱降至零点上下时马上关闭,管内形成气-水柱,此时管内液柱高度差应为零。

然后关闭上部两个放空阀。

2、如何检验测试系统内的空气已经排除干净?在流量为零条件下,打开光滑管测压进水阀和回水阀,旋开倒置U型管底部中间的两个进水阀。

若倒置U型管内液柱高度差不为零,则表明导压管内存在气泡,需要进行赶气泡操作。

知道,U型管高度差为零时,表示气泡已经排干净。

3、U型压差计的零位应如何调节?操作方法如下:在流量为零条件下,打开光滑管测压进水阀和回水阀,旋开倒置U型管底部中间的两个进水阀,检查导压管内是否有气泡存在。

若倒置U型管内液柱高度差不为零,则表明导压管内存在气泡,需要进行赶气泡操作。

开大流量,使倒置U型管内液体充分流动,以赶出管路内的气泡;若认为气泡已赶净,将流量阀关闭;慢慢旋开倒置U型管上部的放空阀,打开底部左右两端的放水阀,使液柱降至零点上下时马上关闭,管内形成气-水柱,此时管内液柱高度差应为零。

然后关闭上部两个放空阀。

4、测压孔的大小和位置、测压导管的粗细和长短对实验有无影响?为什么?有,有影响。

跟据公式hf=Wf/g=λlu平方/2d也就是范宁公式,是沿程损失的计算公式。

因此,根据公式,测压孔的长度,还有直径,都是影响测压的因素。

再根据伯努利方程测压孔的位置,大小都会对实验有影响。

化工原理(上册)答案

化工原理(上册)答案

化工原理课后习题解答(夏清、陈常贵主编.化工原理.天津大学出版社,2005.)第一章流体流动1.某设备上真空表的读数为 13.3×103 Pa,试计算设备内的绝对压强与表压强。

已知该地区大气压强为 98.7×103 Pa。

解:由绝对压强 = 大气压强–真空度得到:设备内的绝对压强P绝= 98.7×103 Pa -13.3×103 Pa=8.54×103 Pa设备内的表压强 P表 = -真空度 = - 13.3×103 Pa2.在本题附图所示的储油罐中盛有密度为 960 ㎏/㎥的油品,油面高于罐底 6.9 m,油面上方为常压。

在罐侧壁的下部有一直径为 760 mm 的圆孔,其中心距罐底 800mm,孔盖用14mm的钢制螺钉紧固。

若螺钉材料的工作应力取为39.23×106 Pa ,问至少需要几个螺钉?分析:罐底产生的压力不能超过螺钉的工作应力即P油≤σ螺解:P螺 = ρgh×A = 960×9.81×(9.6-0.8) ×3.14×0.762150.307×103 Nσ螺 = 39.03×103×3.14×0.0142×nP油≤σ螺得 n ≥ 6.23取 n min= 7至少需要7个螺钉3.某流化床反应器上装有两个U型管压差计,如本题附图所示。

测得R1 = 400 mm , R2 = 50 mm,指示液为水银。

为防止水银蒸汽向空气中扩散,于右侧的U 型管与大气连通的玻璃管内灌入一段水,其高度R3 = 50 mm。

试求A﹑B两处的表压强。

分析:根据静力学基本原则,对于右边的U管压差计,a–a′为等压面,对于左边的压差计,b–b′为另一等压面,分别列出两个等压面处的静力学基本方程求解。

解:设空气的密度为ρg,其他数据如图所示a–a′处 P A + ρg gh1 = ρ水gR3 + ρ水银ɡR2由于空气的密度相对于水和水银来说很小可以忽略不记即:P A = 1.0 ×103×9.81×0.05 + 13.6×103×9.81×0.05= 7.16×103 Pab-b′处 P B + ρg gh3 = P A + ρg gh2 + ρ水银gR1P B = 13.6×103×9.81×0.4 + 7.16×103=6.05×103Pa4. 本题附图为远距离测量控制装置,用以测定分相槽内煤油和水的两相界面位置。

化工原理课后习题(参考答案)

化工原理课后习题(参考答案)


x
1 / 17 0.0105 1 / 17 100 / 18
p* 798 E= 76 kPa x 0.0105 1 / 17 c 0.584 kmol / m3 (100 1) / 998 .2
0.584 H c / p 0.73kmol /(m3 kPa) 0.798 y * 798 / 100 10 3 7.98 10 3
1 1 m K Y k Y kY
1 m 比较 与 kY kX
(2)
N A KY Y Y *


5-15Байду номын сангаас在一吸收塔中,用清水在总压为0.1MPa、温度20oC条件下吸收混合 气体中的CO2,将其组成从2%降至0.1%(摩尔分数)。20oC时CO2水溶 液的亨利系数为E=144MPa。吸收剂用量为最小用量的1.2倍。试求(1) 液-气比L/G及溶液出口组成X1;(2)总压改为1MPa时的L/G及溶液出口 组成X1 解:(1)
qm qm1 qm 2 20 10 30t / h 30000 kg / h
qv qm / 30000 / 998 .2 30.05m3 / h 流速为 v 1.0m / s
d
4qv 4 30.05 0.103 m 103 mm v 3600 1.0
G(Y1 Y2 ) L( X 1 X 2 )
Y1 Y2 L G min X 1,max X 2
通过
算出最小液气比:(L/G)min
(2)解题过程类似于(1)小题
0.01 1.8 10 4 解 x1 0.01 1 997 / 18
p1 1.662 10 5 1.8 10 4 29.92 kPa

化工原理课后习题答案上下册(钟理版)

化工原理课后习题答案上下册(钟理版)

第一章 流体流动习题解答1-1 已知甲城市的大气压为760mmHg ,乙城市的大气压为750mmHg 。

某反应器在甲地操作时要求其真空表读数为600mmHg ,若把该反应器放在乙地操作时,要维持与甲地操作相同的绝对压,真空表的读数应为多少,分别用mmHg 和Pa 表示。

[590mmHg, 7.86×104Pa]解:P (甲绝对)=760-600=160mmHg 750-160=590mmHg=7.86×104Pa1-2用水银压强计如图测量容器内水面上方压力P 0,测压点位于水面以下0.2m 处,测压点与U 形管内水银界面的垂直距离为0.3m ,水银压强计的读数R =300mm ,试求 (1)容器内压强P 0为多少?(2)若容器内表压增加一倍,压差计的读数R 为多少?习题1-2 附图[(1) 3.51×104N ⋅m -2 (表压); (2)0.554m] 解:1. 根据静压强分布规律 P A =P 0+g ρHP B =ρ,gR因等高面就是等压面,故P A = P BP 0=ρ,gR -ρgH =13600×9.81×0.3-1000×9.81(0.2+0.3)=3.51×104N/㎡ (表压) 2. 设P 0加倍后,压差计的读数增为R ,=R +△R ,容器内水面与水银分界面的垂直距离相应增为H ,=H +2R∆。

同理, ''''''02R p gR gH gR g R gH gρρρρρρ∆=-=+∆--000p g g p p 0.254m g g 10009.81g g 136009.812R H R ρρρρρρ⨯∆⨯⨯,,,4,,-(-)- 3.5110====---220.30.2540.554m R R R ∆,=+=+=1-3单杯式水银压强计如图的液杯直径D =100mm ,细管直径d =8mm 。

化工基础学习知识原理规范标准答案第四章传热

化工基础学习知识原理规范标准答案第四章传热

化工基础学习知识原理规范标准答案第四章传热第四章传热热传导【4-1】有一加热器,为了减少热损失,在加热器的平壁外表面,包一层热导率为0.16W/(m·℃)、厚度为300mm 的绝热材料。

已测得绝热层外表面温度为30℃,另测得距加热器平壁外表面250mm 处的温度为75℃,如习题4-1附图所示。

试求加热器平壁外表面温度。

解2375℃, 30℃t t ==计算加热器平壁外表面温度1t ,./()W m λ=?016℃231212t t t t b b λλ--=(1757530025005016016)t --= ..145025********t =?+=℃【4-2】有一冷藏室,其保冷壁是由30mm 厚的软木做成的。

软木的热导率λ=0.043 W/(m·℃)。

若外表面温度为28℃,内表面温度为3℃,试计算单位表面积的冷量损失。

解已知.(),.123℃,28℃,=0043/℃003t t W m b m λ==?=,则单位表面积的冷量损失为()()../.q t t W m bλ=-=-=-2120043328358 003【4-3】用平板法测定材料的热导率,平板状材料的一侧用电热器加热,另一侧用冷水冷却,同时在板的两侧均用热电偶测量其表面温度。

若所测固体的表面积为0.02m 2,材料的厚度为0.02m 。

现测得电流表的读数为2.8A ,伏特计的读数为140V ,两侧温度分别为280℃和100℃,试计算该材料的热导率。

解根据已知做图热传导的热量 .28140392Q I V W =?=?=()12AQ t t bλ=-.().()12392002002280100Qb A t t λ?==-- ()./218W m =?℃【4-4】燃烧炉的平壁由下列三层材料构成:耐火砖层,热导率λ=1.05W/(m·℃),厚度230b mm =;绝热砖层,热导率λ=0.151W/(m·℃);普通砖层,热导率λ=0.93W/(m·℃)。

化工原理(第二版)上册课后习题答案完整版柴诚敬主编

化工原理(第二版)上册课后习题答案完整版柴诚敬主编

大学课后习题解答之化工原理(上)-天津大学化工学院-柴诚敬主编绪 论1. 从基本单位换算入手,将下列物理量的单位换算为SI 单位。

(1)水的黏度μ=0.00856 g/(cm·s) (2)密度ρ=138.6 kgf ·s 2/m 4(3)某物质的比热容C P =0.24 BTU/(lb·℉) (4)传质系数K G =34.2 kmol/(m 2·h ·atm) (5)表面张力σ=74 dyn/cm(6)导热系数λ=1 kcal/(m ·h ·℃)解:本题为物理量的单位换算。

(1)水的黏度 基本物理量的换算关系为1 kg=1000 g ,1 m=100 cm则 )s Pa 1056.8s m kg 1056.81m 100cm 1000g 1kg s cm g 00856.044⋅⨯=⋅⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅=--μ(2)密度 基本物理量的换算关系为1 kgf=9.81 N ,1 N=1 kg ·m/s 2则 3242m kg 13501N s m 1kg 1kgf N 81.9m s kgf 6.138=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅=ρ (3)从附录二查出有关基本物理量的换算关系为1 BTU=1.055 kJ ,l b=0.4536 kg o o 51F C 9=则()C kg kJ 005.1C 5F 10.4536kg 1lb 1BTU kJ 055.1F lb BTU 24.0︒⋅=⎥⎦⎤⎢⎣⎡︒︒⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡︒=p c (4)传质系数 基本物理量的换算关系为1 h=3600 s ,1 atm=101.33 kPa则()kPa s m kmol 10378.9101.33kPa 1atm 3600s h 1atm h m kmol 2.34252G ⋅⋅⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅⋅=-K(5)表面张力 基本物理量的换算关系为1 dyn=1×10–5 N 1 m=100 cm则m N 104.71m 100cm 1dyn N 101cm dyn 7425--⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡=σ(6)导热系数 基本物理量的换算关系为1 kcal=4.1868×103 J ,1 h=3600 s 则()()C m W 163.1C s m J 163.13600s 1h 1kcal J 104.1868C h m kcall 132︒⋅=︒⋅⋅=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡︒⋅⋅=λ 2. 乱堆25cm 拉西环的填料塔用于精馏操作时,等板高度可用下面经验公式计算,即()()()LL310CB4E 3048.001.121078.29.3ραμZ D G A H -⨯=式中 H E —等板高度,ft ;G —气相质量速度,lb/(ft 2·h); D —塔径,ft ;Z 0—每段(即两层液体分布板之间)填料层高度,ft ; α—相对挥发度,量纲为一; μL —液相黏度,cP ; ρL —液相密度,lb/ft 3A 、B 、C 为常数,对25 mm 的拉西环,其数值分别为0.57、-0.1及1.24。

化工原理(第二版)上册课后习题答案完整版柴诚敬主编

化工原理(第二版)上册课后习题答案完整版柴诚敬主编

大学课后习题解答之化工原理(上)-天津大学化工学院-柴诚敬主编绪 论1. 从基本单位换算入手,将下列物理量的单位换算为SI 单位。

(1)水的黏度μ=0.00856 g/(cm·s) (2)密度ρ=138.6 kgf ·s 2/m 4(3)某物质的比热容C P =0.24 BTU/(lb·℉) (4)传质系数K G =34.2 kmol/(m 2·h ·atm) (5)表面张力σ=74 dyn/cm(6)导热系数λ=1 kcal/(m ·h ·℃)解:本题为物理量的单位换算。

(1)水的黏度 基本物理量的换算关系为1 kg=1000 g ,1 m=100 cm则 )s Pa 1056.8s m kg 1056.81m 100cm 1000g 1kg s cm g 00856.044⋅⨯=⋅⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅=--μ(2)密度 基本物理量的换算关系为1 kgf=9.81 N ,1 N=1 kg ·m/s 2则 3242m kg 13501N s m 1kg 1kgf N 81.9m s kgf 6.138=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅=ρ (3)从附录二查出有关基本物理量的换算关系为1 BTU=1.055 kJ ,l b=0.4536 kg o o 51F C 9=则()C kg kJ 005.1C 5F 10.4536kg 1lb 1BTU kJ 055.1F lb BTU 24.0︒⋅=⎥⎦⎤⎢⎣⎡︒︒⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡︒=p c (4)传质系数 基本物理量的换算关系为1 h=3600 s ,1 atm=101.33 kPa则()kPa s m kmol 10378.9101.33kPa 1atm 3600s h 1atm h m kmol 2.34252G ⋅⋅⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅⋅=-K(5)表面张力 基本物理量的换算关系为1 dyn=1×10–5 N 1 m=100 cm则m N 104.71m 100cm 1dyn N 101cm dyn 7425--⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡=σ(6)导热系数 基本物理量的换算关系为1 kcal=4.1868×103 J ,1 h=3600 s 则()()C m W 163.1C s m J 163.13600s 1h 1kcal J 104.1868C h m kcall 132︒⋅=︒⋅⋅=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡︒⋅⋅=λ 2. 乱堆25cm 拉西环的填料塔用于精馏操作时,等板高度可用下面经验公式计算,即()()()LL310CB4E 3048.001.121078.29.3ραμZ D G A H -⨯=式中 H E —等板高度,ft ;G —气相质量速度,lb/(ft 2·h); D —塔径,ft ;Z 0—每段(即两层液体分布板之间)填料层高度,ft ; α—相对挥发度,量纲为一; μL —液相黏度,cP ; ρL —液相密度,lb/ft 3A 、B 、C 为常数,对25 mm 的拉西环,其数值分别为0.57、-0.1及1.24。

化工基础学习知识原理17章习题集规范标准答案解析

化工基础学习知识原理17章习题集规范标准答案解析

目录第一章流体流动与输送机械 (2)第二章非均相物系分离 (32)第三章传热 (42)第四章蒸发 (69)第五章气体吸收 (73)第六章蒸馏 (95)第七章固体干燥 (119)第一章 流体流动与输送机械1. 某烟道气的组成为CO 2 13%,N 2 76%,H 2O 11%(体积%),试求此混合气体在温度500℃、压力101.3kPa 时的密度。

解:混合气体平均摩尔质量kg/mol 1098.2810)1811.02876.04413.0(33--⨯=⨯⨯+⨯+⨯=∑=i i m M y M ∴ 混合密度333kg/m 457.0)500273(31.81098.28103.101=+⨯⨯⨯⨯==-RT pM ρm m2.已知20℃时苯和甲苯的密度分别为879 kg/m 3和867 kg/m 3,试计算含苯40%及甲苯60%(质量%)的混合液密度。

解:8676.08794.012211+=+=ρρρa a m混合液密度 3kg/m 8.871=m ρ3.某地区大气压力为101.3kPa ,一操作中的吸收塔塔内表压为130kPa 。

若在大气压力为75 kPa 的高原地区操作该吸收塔,且保持塔内绝压相同,则此时表压应为多少?解:''表表绝+p p p p p a a =+=∴kPa 3.15675)1303.101)(''=-==+(-+真表a a p p p p4.如附图所示,密闭容器中存有密度为900 kg/m 3的液体。

容器上方的压力表读数为42kPa ,又在液面下装一压力表,表中心线在测压口以上0.55m ,其读数为58 kPa 。

试计算液面到下方测压口的距离。

解:液面下测压口处压力 gh p z g p p ρρ+=∆+=10m 36.255.081.990010)4258(30101=+⨯⨯-=+ρ-=ρ-ρ+=∆∴h g p p g p gh p z题4 附图5. 如附图所示,敞口容器内盛有不互溶的油和水,油层和水层的厚度分别为700mm 和600mm 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:流体流动二、本章思考题1-1 何谓理想流体?实际流体与理想流体有何区别?如何体现在伯努利方程上?1-2 何谓绝对压力、表压和真空度?表压与绝对压力、大气压力之间有什么关系?真空度与绝对压力、大气压力有什么关系?1-3 流体静力学方程式有几种表达形式?它们都能说明什么问题?应用静力学方程分析问题时如何确定等压面?1-4 如何利用柏努利方程测量等直径管的机械能损失?测量什么量?如何计算?在机械能损失时,直管水平安装与垂直安装所得结果是否相同? 1-5 如何判断管路系统中流体流动的方向?1-6何谓流体的层流流动与湍流流动?如何判断流体的流动是层流还是湍流?1-7 一定质量流量的水在一定内径的圆管中稳定流动,当水温升高时,Re 将如何变化? 1-8 何谓牛顿粘性定律?流体粘性的本质是什么? 1-9 何谓层流底层?其厚度与哪些因素有关?1-10摩擦系数λ与雷诺数Re 及相对粗糙度d / 的关联图分为4个区域。

每个区域中,λ与哪些因素有关?哪个区域的流体摩擦损失fh 与流速u 的一次方成正比?哪个区域的fh 与2u 成正比?光滑管流动时的摩擦损失fh 与u 的几次方成正比?1-11管壁粗糙度对湍流流动时的摩擦阻力损失有何影响?何谓流体的光滑管流动? 1-12 在用皮托测速管测量管内流体的平均流速时,需要测量管中哪一点的流体流速,然后如何计算平均流速? 三、本章例题例1-1 如本题附图所示,用开口液柱压差计测量敞口贮槽中油品排放量。

已知贮槽直径D 为3m ,油品密度为900kg/m3。

压差计右侧水银面上灌有槽内的油品,其高度为h1。

已测得当压差计上指示剂读数为R1时,贮槽内油面与左侧水银面间的垂直距离为H1。

试计算当右侧支管内油面向下移动30mm 后,贮槽中排放出油品的质量。

解:本题只要求出压差计油面向下移动30mm 时,贮槽内油面相应下移的高度,即可求出排放量。

首先应了解槽内液面下降后压差计中指示剂读数的变化情况,然后再寻求压差计中油面下移高度与槽内油面下移高度间的关系。

设压差计中油面下移h 高度,槽内油面相应下移H 高度。

不管槽内油面如何变化,压差计右侧支管中油品及整个管内水银体积没有变化。

故当1-1附图压差计中油面下移h 后,油柱高度没有变化,仍为h1,但因右侧水银面也随之下移h ,而左侧水银面必上升h ,故压差计中指示剂读数变为(R-2h ),槽内液面与左侧水银面间的垂直距离变为(H1-H-h )。

当压差计中油面下移h 后,选左侧支管油与水银交界面为参考面m ,再在右侧支管上找出等压面n (图中未画出m 及n 面),该两面上的表压强分别为:gh H H p m 01)(ρ--= (0ρ为油品密度)gh R g h p Hg n ρρ)2(101-+=因nm p p =,由上二式得:gh H H 01)(ρ--=gh R g h Hg ρρ)2(101-+ (1)上式中第一项gR g h g H Hg ρρρ10101+= (2)将式(2)代入(1),并整理得:0)2(ρρρ-=Hg h H取3/13600m kg Hg =ρ,将已知值代入上式: mH 8767.0900)900136002(03.0=-⨯=即压差计右侧支管油面下移30mm ,槽内液面下降0.8767m ,油品排放量为: kgH D 55749008767.0344202=⨯⨯⨯=πρπ例1-2 直径D 为3m 的贮水槽下部与直径d 为40mm 的水平输送管相连。

管路上装有一个闸阀,闸阀上游设有水银液柱压差计,开口管水银面上方有一段'R 为20mm 的清水。

当阀门全关时,压差计上读数R 为740mm ,左侧指示剂液面与水管中心线间的垂直距离h 为1m 。

当阀门全开时,不包括管子出口损失的系统阻力用经验公式240u h f =∑计算。

式中fh ∑为流动系数的总摩擦阻力,J/kg ,u 为水在管路中的流速,m/s 。

试求将水放出24m3需经历若干时间。

解: 根据题意画出如附图所示的流程图。

由题意知流动过程中槽内水面不断下降,故本题属于不可压缩流体作非定态流动系统。

液面高度随流动时间增加而逐渐降低,管中水的流速随液面下降而逐渐减小。

在微分时间内列全系统的物料衡算,可求得液体高度随时间变化的微分关系,再列1-2附图瞬间的柏努利方程式可以获得液体在输送管内流速随液面高度的变化关系。

联立微分式和瞬间的柏努利式即可求出排水时间。

以水平管的中心线为基准面,另初始液面与基准面间的垂直距离为H 1,放出24m 3水后的最终液面与基准面间的垂直距离为H 2(图中未画出)。

用静力学基本方程式先求出H 1,再用贮槽体积、直径、液体深度间的关系求出H 2。

当阀门全关时,压差计读数R=0.74m ,按常规的方法在压差计上确定等压参考面,可得:g R h R g h H Hg O H O H ρρρ+=+22')(1 取g O H 2ρ=1000kg/m 3、Hg ρ=13600 kg/m 3,故: (H 1+1)×1000=0.02×1000+0.74×13600 解得 H 1=9.084m 放出24m 3水后液面高度为: m H 687.5)3(424084.922=-=π实际上本题是计算贮槽液面由9.084m 降到5.687m 所需时间。

设θd 秒内液面下降高度为dH ,管中瞬间流速为u ,在θd 时间内列全系统水的体积衡算:A dV d V d V +=θθ01式中 1V ——水的瞬间加入量,m 3/s ; 0V ——水的瞬间排出量,m 3/s ;A dV ——θd 时间内,水在槽中的积累量,m 3。

式中各项为: 1V =0 0V =u d 204πdH D ud d Vd A 22044πθπ+=整理得 udHd D d 20)(-=θ (1) 上式中瞬间液面高度H 与瞬间速度u 的关系可通过列瞬间柏努利式求得。

在瞬间液面'11-(图中未画出)及管出口内侧截面'22-间列瞬间柏努利方程式,以水平管中心线为基准面:21,2222211122-∑+++=++f h up gz u p gz ρρ式中 H z =1 02=z01=p (表压) 02=p (表压) 01≈u u u =2(瞬间速度) 221,40u h f =∑-∴ 2240281.9u u H += 或 H u 4922.0= (2)将式(2)代入式(1): HdHd D d 4922.0)(20-=θ 或 HdH H dH d 114304922.0)04.03(2-=-=θ 积分上式的边界条件为:01=θ m H 084.91= s 22θθ= m H 687.52=∴ ⎰⎰-==221211430θθθH H HdH d084.9687.52112)(211430==-⨯=H H H H )687.5084.9(211430-⨯= h s 414380≈= 例1-3 流体在管内的汽化用虹吸管将水从水池中吸出,水池 液面与虹吸管出口的垂直距离m z 5=, 管路最高点与水面的垂直距离为2m , 虹吸管出口流速及虹吸管最高点压强 各为多少?若将虹吸管延长,使池中 水面与出口的垂直距离增为m z 8'=, 出口流速有何变化?(水温为30℃, 大气压为101.3kPa ,水按理想流体处理)。

解:(1)由断面1-1、1-2之间的机械能守恒式得mh1-3附图9.9581.9222=⨯⨯==gz u m/s由断面1-1和C-C 之间的机械能守恒式,并考虑到2u u C =可得 )(22z h g p u gh p p a C a C +-=--=ρρρ=1.013×105-1000×9.81×7=3.27×104Pa(2)虹吸管延长后,假定管内流体仍保持连续状态,由断面1-1和'2'2-之间的机械能守恒式得 '2'2gz u =)'(2''2h z g p u gh p p a C a C +-=--=ρρρ=1.013×105-1000×9.81×10=3.30×103Pa因C p '小于水在30℃的饱和蒸汽压V p =4242Pa ,故在最高点C 附近将出现汽化现象。

此时,C 点压强不再按机械能守恒式的规律变化,而保持为流体的饱和蒸汽压不变。

因此,在断面1-1和'2'2-间,机械能守恒式不适用,算出的2'u 无效。

但是,在断面1-1和C-C 之间,流体依然是连续的,C 点的流速可在断面1-1和C-C 之间列出机械能守恒式求出:4.12)281.91000424210013.1(2)(2'5=⨯--⨯=--=g p p u Va C ρρm/s出口流速C u u ''2=。

例1-4 阻力损失与势能的消耗高位槽水面距管路出口的垂直距离保持为5m 不变,水面上方的压强为4.095×104Pa (表压),管路直径为20mm ,长度为24m (包括管件的当量长度),阻力系数为0.02,管路中装球心阀一个,试求:(1)当阀门全开(4.6=ξ)时,管路的阻力损失为多少?阻力损失为出口动能的多少倍?(2)假定λ数值不变,当阀门关小(20=ξ)时,管路的出口动能和阻力损失有何变化? 解:(1)在断面1-1和2-2之间列机械能衡算式f h u p gz u p gz ∑+++=++2222222111ρρ)()(2211ρρρψp gz p gz +-+=∆f h u u ∑+-=22122若取大气压强和管出口高度为基准,并忽略容器内的流速(即01=u ),则2)(222220u d lu p gH ξλρρ++=+=∆ψkg J d l p gH u /1.34.602.02402.01100010905.4581.912422=+⨯+⨯⨯⨯=+++=ξλρ Kg J u d lh f /951.3)4.624(2)(22=⨯+=+=∑ξλ或 kg J u h f /951.3)81.95100010905.4(2422=-⨯+⨯=-∆ψ=∑ρ4.304.602.02402.0222=+⨯=+=∑ξλd l u h f (倍) 此结果表明,实际流体在管内流动时,阻力损失和动能的增加是造成流体势能减少的两个原因。

但对于通常管路,动能增加是一个可以忽略的小量,而阻力损失是使势能减小的主要原因。

换言之,阻力损失所消耗的能量是由势能提供的。

(2)当20'=ξ时kg J d l p gH u /2.22002.02402.01100010905.4581.9'12'422+⨯+⨯+⨯=+++=ξλρ kg J u h f /9.952.2)100010905.4581.9(2''422=-⨯+⨯=-∆ψ=∑ρ与(1)比较,当阀门关小时,出口动能减少而阻力损失略有增加,但是,绝不可因此而误解为阻力所消耗的能量是由动能提供的。

相关文档
最新文档