化工原理基础理论知识
化工原理基本知识点总结

化工原理基本知识点总结化工原理,是指运用基本化学原理和物理原理,研究物质的本质、结构、性质以及相互作用等方面的学科。
在化工生产过程中,化工原理是一个关键环节,因此,对于化工从业人员来说,必须熟练掌握化工原理的基本知识点。
一、化学反应化学反应是化学过程中最基本的概念之一。
化学反应指两种或两种以上物质发生作用,最终生成新的物质。
如下面这个例子:2H2 + O2 → 2H2O这是一个简单的化学反应方程式。
其中,2H2和O2是反应物,2H2O则是生成物。
化学反应的速率受很多因素的影响,如反应物浓度、温度、催化剂等。
在工业生产中,为了加快反应速率,常常使用催化剂或加热等方法。
二、物理性质物理性质是指物质固有的、不随化学变化而改变的性质。
例如,半径、密度、硬度、颜色等都是物理性质。
其中,密度是物质不变的基本性质之一,它可以帮助我们分辨不同种类的物质。
三、热力学热力学是研究物质在温度、压力、体积等方面的物理变化,以及这些变化背后的热量和功的关系。
在热力学中,有很多基本概念需要掌握,如焓、熵、自由能等。
其中,焓指的是热力学过程中,压力下单位质量物质所含的能量。
熵是衡量物质混乱程度的指标,也是一种能量形式。
自由能则是热力学过程中,可以利用的最大能量。
四、电化学电化学是研究化学反应中电子转移的现象和机理的学科。
在电化学中,有两个基本概念:氧化和还原。
氧化是指物质失去电子,还原则是指物质获得电子。
在电池中,氧化和还原同时进行,从而产生电流。
五、化工流程化工流程是工业化学工程的核心。
化工流程包括物料输入、反应和产物输出等环节。
在化工流程中,需要考虑到工艺设计、设备选型、安全防护等因素,以确保生产过程的正常进行。
六、分离技术分离技术是化工生产中常用的技术之一,包括蒸馏、萃取、结晶、膜分离等方法。
分离技术用于将反应产物中的目标物质分离出来,以便进行下一步的操作。
七、化学工艺设计化学工艺设计是指在化工生产过程中,根据物料特性和反应要求,制定出合理的工艺方案,并确定所需的设备和工艺条件。
化工原理知识点总结笔记

化工原理知识点总结笔记一、化工原理概述化工原理是化学工程学的基础和核心分支,是研究化工过程基本原理和规律的一门学科。
在化工生产中,化工原理被广泛应用于控制反应过程、设计分离装置、优化工艺条件等方面。
化工原理主要包括热力学、化学动力学、传质传热、流体力学等方面的知识。
二、化工热力学热力学是研究能量转化和宏观物质运动规律的学科,化工热力学是将热力学原理应用于化工过程的一种方法。
化工热力学主要包括热力学基本原理、热力学性质、热力学循环等内容。
在化工过程中,热力学原理被用于计算反应热、确定工艺条件、分析热平衡等方面。
1. 热力学基本原理热力学基本原理包括能量守恒、熵增原理、热力学第一定律、热力学第二定律等。
能量守恒原理指出在封闭系统中,能量的总量是不变的;熵增原理指出封闭系统中熵总是增加的;热力学第一定律指出能量既不会被创建,也不会被销毁,只会在不同形式之间转化;热力学第二定律规定了热能不可能自发地从低温物体传递给高温物体。
2. 热力学性质热力学性质包括物质的热力学性质和烃的三相平衡等内容。
物质的热力学性质是指物质在不同温度、压力下的性质表现,例如,比热容、热膨胀系数、热导率等;烃的三相平衡是指烃在气态、液态和固态之间的平衡关系,包括气液平衡、固液平衡、气固平衡等。
3. 热力学循环热力学循环是指利用热能转换成机械能的过程,如蒸汽轮机循环、汽轮机循环、空气循环等。
在化工领域,热力学循环常常用于设计和优化化工过程中的能量转化装置。
三、化学动力学化学动力学是研究化学反应速率和反应机理的学科,主要包括反应速率、反应动力学方程、反应机理等内容。
在化工生产中,化学动力学常用于优化反应条件、控制反应速率、提高产物收率等方面。
1. 反应速率反应速率是指单位时间内反应物的消耗量或产物的生成量,通常用化学反应方程式来表示,如:A + B → C + D,反应速率可表示为:-d[A]/dt = -d[B]/dt = d[C]/dt = d[D]/dt。
化工原理基本知识

化工原理基本知识化工原理是化学工程学科中的基础课程,主要涉及物质的物理性质和化学性质,以及化学反应过程和反应动力学等内容。
本文将从化工原理的基本概念、物质的物理性质与化学性质、化工反应过程和反应动力学等方面进行介绍和探讨。
一、化工原理的基本概念化工原理是研究物质的性质和变化规律的基础学科。
它通过对物质的组成、结构和性质进行研究,揭示物质之间的相互作用及其变化规律。
化工原理是化学工程学科的理论基础,为化学工程技术的应用提供了理论指导。
二、物质的物理性质与化学性质物质的物理性质是指物质在不改变其化学组成的条件下所表现出的性质。
物质的物理性质包括密度、熔点、沸点、溶解度、导电性等。
这些性质可以通过实验测定来获得。
物质的化学性质是指物质在参与化学反应时所表现出的性质。
化学性质包括物质的化学稳定性、化学活性、反应性等。
化学性质的研究需要通过实验方法来确定。
三、化工反应过程化工反应是物质发生化学变化的过程。
化工反应可以是物质的合成反应,也可以是物质的分解反应。
化工反应过程中需要考虑反应的速率、热力学和动力学等因素。
化工反应的速率决定了反应的快慢,而热力学和动力学则研究了反应的热效应和反应速率的变化规律。
四、反应动力学反应动力学是研究化学反应速率和反应机理的学科。
反应动力学研究反应速率与反应物浓度、温度、压力等因素之间的关系,并建立反应速率方程。
反应速率方程可以用来描述反应速率与反应物浓度和温度等因素之间的定量关系。
在反应动力学中,常常使用反应级数来描述反应速率与反应物浓度的关系。
反应级数可以是零级、一级、二级等。
反应级数与反应速率方程的指数相关,可以通过实验测定来获得。
总结起来,化工原理是化学工程学科中的基础课程,它研究物质的物理性质、化学性质、化工反应过程和反应动力学等内容。
了解化工原理的基本知识,对于掌握化学工程技术和解决实际问题都具有重要意义。
通过深入学习和理解化工原理,我们可以更好地进行化学工程设计和生产操作,提高工作效率和安全性。
基础化工原理知识点总结

基础化工原理知识点总结化工是现代工业的重要分支之一,它主要研究和应用物质转化的基本原理和操作技术。
化工过程中涉及到许多基础原理,包括化学反应、物质传递、控制系统等等。
本文将从基础化工原理的角度,对化工过程中的一些重要知识点进行总结,以帮助读者更好地理解化工原理。
一、化学反应原理1. 化学反应动力学化学反应动力学是研究化学反应速率和反应机理的科学。
化学反应速率受到温度、浓度、催化剂等因素的影响。
2. 化学平衡化学反应达到平衡时,反应物和生成物的浓度不再发生变化。
平衡常数K描述了反应的平衡状态,K的大小和方向能够表示反应的趋势。
3. 反应热力学反应热力学研究热力学性质对反应进行计算分析的一门学科。
它对气相、溶液中化学反应进行了详细研究。
4. 催化剂作用原理催化剂是一种能够提高反应速率的物质,通过提供新的反应路径,使得反应更容易进行。
二、质量传递原理1. 扩散扩散是物质在不均一介质中沿浓度梯度方向传播的过程。
扩散的速率取决于浓度梯度的大小和物质的扩散系数。
2. 质量传递系数质量传递系数是描述物质在传递过程中的速率的参数。
它受到传质物理性质和传质过程条件的影响。
3. 蒸馏蒸馏是利用液体和气体之间的相变进行分离的工艺。
在蒸馏过程中,液体被加热使其蒸发,然后再冷凝为液体。
4. 吸附吸附是指物质在其表面上被其它物质捕捉的过程。
吸附过程可以应用于分离、净化和催化等工艺中。
三、动力学原理1. 流体力学流体力学是研究流体在运动和静止时的力学行为的科学。
它包括了流体静力学和流体动力学两个方面。
2. 混合与搅拌混合与搅拌是化工过程中常见的操作。
它的目的是将不同物质混合均匀,以便进行后续的反应或分离。
3. 传热原理传热是热能在物体之间传递的过程。
传热可以通过传导、对流和辐射三种方式进行。
四、控制系统原理1. 反馈控制反馈控制是一种通过不断监测系统输出并与目标值进行比较,以调整输入来保持系统稳定的控制方式。
2. PID控制器PID控制器是一种常用的控制算法,它由比例、积分和微分三个部分组成,可以对系统进行精确的控制。
化工原理基础知识总结

化工原理基础知识总结化工原理是指化学工程中的基础理论和原理知识。
它是化学工程师必备的核心知识,对于掌握化工工艺过程、优化工艺设计、解决工艺问题具有重要意义。
本文将从化工原理的基础知识出发,对其进行总结。
一、物质的组成和性质物质的组成和性质是化工原理的基础。
物质由分子或离子组成,分子由原子构成。
原子的基本结构包括质子、中子和电子。
化学键是原子之间的相互作用力,包括共价键、离子键和金属键等。
物质的性质包括物理性质和化学性质。
物理性质包括密度、熔点、沸点等,而化学性质则包括反应性、稳定性等。
二、化学反应和化学平衡化学反应是指物质之间发生的化学变化。
反应速率是指单位时间内反应物消失或生成物形成的量。
反应速率受到浓度、温度、催化剂等因素的影响。
化学平衡是指反应物浓度和生成物浓度达到一定比例的状态。
平衡常数是描述平衡状态的指标,与温度有关。
平衡反应受到Le Chatelier原理的影响,当外界条件改变时,平衡会向着减少变化的方向移动。
三、质量守恒和能量守恒质量守恒是指在化工过程中,物质的质量不会凭空消失或产生。
质量守恒原理是化工过程设计和控制的基础。
能量守恒是指能量在化工过程中的转化和传递。
热力学是研究能量转化和传递的学科,包括热力学系统、热力学过程和热力学循环等。
热力学定律包括热力学第一定律和热力学第二定律。
热力学第一定律是能量守恒定律,热力学第二定律是热力学过程的方向性规律。
四、质量传递和动量传递质量传递是指物质在不同相之间的传递过程,例如气体和液体之间的传质。
质量传递的驱动力包括浓度差、温度差和压力差等。
质量传递过程中的传质速率受到物理和化学因素的影响。
动量传递是指物质的运动和流动,主要涉及流体力学的基本原理。
流体的运动可以通过流体力学方程来描述,包括连续性方程、动量方程和能量方程。
五、传热和传质传热是指热量在不同物体之间的传递过程。
传热方式包括导热、对流和辐射。
导热是指由于温度差引起的热量传递。
对流是指通过流体的传导和对流传热方式。
化工原理 知识点

化工原理知识点
化工原理的知识点包括:
1. 热力学:热力学原理、热力学态函数、热力学过程、热力学平衡、热力学循环等。
2. 流体力学:流体性质、流体静力学、流体动力学、流体流动等。
3. 传热学:传热基本过程、传热方程、传热导数、传热换热设备、传热工艺等。
4. 反应工程学:反应平衡、反应动力学、反应器设计、催化剂、反应工艺控制等。
5. 分离工程学:物质平衡、质量传递、分离技术、萃取、吸收、蒸馏、晶体分离等。
6. 化学工程原理:流程图、物料平衡、能量平衡、动力学、热力学、传质、传热、流体力学等。
7. 设备与工艺:乙炔化工艺、氧化过程、氢化工艺、脱硫过程、脱氧过程、催化裂化等。
8. 安全与环保:化工安全、环境保护法规、废弃物处理、环境影响评估等。
9. 经济与管理:成本估算、投资分析、工艺优化、工艺设计、流程控制等。
10. 化工原理应用:化学工业应用、石油炼制、化学品生产、
材料制备、环境治理等。
以上知识点是化工原理的一些基本内容,涵盖了热力学、流体力学、传热学、反应工程学、分离工程学等方面的内容,并且包括了安全与环保、经济与管理等应用领域。
在学习化工原理
时,需要系统地掌握这些知识点,并能够将其应用于实际问题的解决。
化工基础入门知识资料

化工基础入门知识资料化工基础是学习化工的第一步,它主要包括化工原理、化学反应、物理化学、化学工程等方面的知识。
以下是化工基础入门知识资料的详细介绍。
一、化学反应基础1.化学反应类型化学反应根据反应物和生成物的物质状态可以分为气态反应、液态反应和固态反应。
根据反应的速率又可以分为瞬时反应、缓慢反应和爆炸反应。
2.化学反应平衡化学反应在接近一定时间后往往会趋于平衡状态。
平衡时反应物与生成物浓度、压力、温度等物理量保持不变。
同时,反应物与生成物浓度的比例也始终保持不变,这就是化学平衡常数。
3.化学平衡常数对于一般的化学反应,可以用化学平衡常数来描述反应物与生成物之间的平衡状态。
化学平衡常数与温度有关,一般情况下,化学平衡常数随着温度的升高而增大。
4.化学平衡的影响因素影响化学平衡的因素很多,比如反应物浓度、温度、压力、催化剂等等。
根据不同的反应而言,不同的影响因素可能会产生不同的效应。
二、化工原理1.物质分类化工原理的基础是物质分类,物质可以按照化学成分的不同进行分类,通常分为无机物和有机物两大类。
其中,有机物是由碳、氢、氧、氮、硫等元素组成的化合物,无机物则不包含碳或者只包含极少量的碳元素。
2.化学反应化学反应是化学工业中最基本的操作之一,大部分化学工业生产过程都离不开化学反应。
化学反应包括酸碱反应、氧化还原反应、配位反应等多种形式。
3.化学平衡化学反应平衡是化学反应中一种非常重要的现象,它决定了反应的方向、反应速率以及反应最终达到的状态。
化学平衡可以通过平衡常数来描述反应物和生成物之间的关系。
三、物理化学1.物理化学基础物理化学是物理和化学的交叉学科,它主要研究物质在热学、热力学、电磁学、光学等多个方面的物理性质和化学性质。
2.热力学基础热力学主要研究物质在热力学平衡状态下的状态变化和热量交换。
热力学的核心是热力学第一定律和第二定律。
3.化学动力学基础化学动力学研究化学反应的速率及其影响因素,包括反应物浓度、温度、催化剂等。
化工原理知识点总结

化工原理知识点总结一、化工原理的概念和基本原理1. 化工原理的概念化工原理是指研究化工过程中各种物质变化和能量变化规律的科学。
化工原理是化学工程学科的基础,它研究化工过程中的化学反应、物质传递、热力学、流体力学等基本原理和规律。
2. 化工原理的基本原理化工原理的基本原理包括热力学、化学反应动力学、物质传递和流体力学等方面的基本原理。
(1)热力学热力学是研究物质的能量转化规律和能量平衡的科学。
在化工过程中,热力学原理适用于研究热平衡、热力学循环、热力学分析等方面的问题。
(2)化学反应动力学化学反应动力学是研究化学反应速率和影响因素的科学。
化工过程中的化学反应速率、反应机理、反应平衡等问题都需要运用化学反应动力学的原理进行分析和研究。
(3)物质传递物质传递是指物质在不同相之间的传递过程,包括物质的扩散、对流,以及传质设备的设计和运行原理等问题。
(4)流体力学流体力学是研究流体运动规律和流体性质的科学。
在化工过程中,很多问题都需要用到流体力学原理,如管道输送、泵的选择和设计、流体混合等方面的问题。
这些基本原理是化工原理研究的基础,它们为化工过程的设计、优化和运行提供了理论支持和技术指导。
二、化工过程的热力学分析1. 化学平衡在化工过程中,化学反应是一个重要的环节,化学反应的平衡状态对于产品的质量和产率有很大的影响。
因此,分析化学平衡是化工过程设计和运行中的重要内容。
2. 热力学循环热力学循环是指利用热力学原理设计和运行的热力系统,如蒸汽发电系统、制冷系统等。
热力学循环的分析和设计对于提高能量利用率和节能减排具有重要意义。
3. 热力学分析热力学分析是指利用热力学原理对化工过程中的能量转化和热平衡进行分析。
热力学分析通常包括能量平衡、热效率、热损失等方面的内容,它是化工过程优化和节能改造的重要手段。
三、化工过程的化学反应动力学分析1. 反应速率反应速率是指化学反应中物质的转化速率,其大小受到温度、浓度、压力等因素的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理基础理论知识一、现场设备知识1、什么叫泵?答:加压或输送液体的流体机械叫泵。
2、什么缘故离心泵启动前要灌泵?答:由于泵内空气密度远小于液体密度,在离心泵的运转条件下,气体通过离心泵所能得到的压升专门小,即叶轮入口真空度专门低,与吸液室的压差不足以吸入液体,使泵不上量,产生“气缚”现象,故离心泵启动前均要灌泵排气。
3、启动电机前应注意些什么?答:停机时刻较长的电机及重要电机的启动,要与电工联系进行绝缘和电气部分的检查:螺栓是否松动、接地和清洁卫生情形合格,电机外部检查正常,盘车,防止定子与转子间有卡住的情形,用手盘车,禁止电动盘车,电机处于热态时只承诺启动一次,冷态下承诺启动三次,要求低负荷启动,当电机自动跳闸后,要查明缘故,排除故障,然后再启动。
4、电动机什么缘故要装接地线?答:当电机内绕组绝缘被破坏漏油时,机壳带电,手摸上去就会造成触电事故。
安装接地线是为了将漏电从接地线引入大地回零。
如此形成回路,以保证人身安全,因此当接地线损坏或未接上时应及时处理。
5、在电机运转时检查风叶工作应注意些什么?答:在电机运转时检查风叶工作应注意:要注意风扇叶片螺丝有无松动,以防止固定螺丝松动造成叶片打坏,要注意站在电机侧面检查,站在风机前面检查时要保持一定距离,以防止衣襟下摆或其他东西被吸入风罩的事故。
6、设备常规检查的要点是什么?答:要检查各设备的介质流量、压力、物位、温度情形;电机电流、功率、温度、振动、噪音情形;润滑油温度、压力、液位、油质及密封情形;联锁投用情形;转动设备的温度、振动、声音等机械性能情形;同时应重点进行检查对比,尽短时刻发觉隐患,确保各设备运行正常。
7、离心泵扬程的意义?答:单位重量流体进出泵的机械能差值。
8、离心泵启动前先关出口阀,停泵前也先关出口阀的缘故?答:离心泵启动前先关出口阀,其流量为零,泵对外不做功,启动功率为零,电机负载最小,幸免由于启动泵过程中负荷过大,而烧坏电机或跳闸;停泵时先关出口阀是由于离心泵的扬程均专门高,停泵时为防止管线内的液体倒流而松动叶轮或损坏电机。
9、液体性质对离心泵特性的阻碍?答:离心泵的特性曲线一样是用清水作实验求得的,输送不同性质的液体,应考虑液体性质对离心泵特性的阻碍:液体密度与泵的功率成正比,密度增大时,吸入装置的有效汽蚀余量将降低,泵易发生汽蚀;液体粘度增加时,在相同流量下,泵的扬程和效率将减小,轴功率增加。
扬程相同时,流量将变小。
另外,泵的抗汽蚀性能随粘度增加而下降;液体饱和蒸汽压升高时,泵的抗汽蚀性能下降。
10、离心泵按叶轮数目可分为那些形式?答:可分为单级泵和多级泵11、离心泵的要紧性能参数有哪些?答:离心泵的要紧性能参数有:转速n、流量Q、扬程H、功率N、效率η、承诺吸上真空度和承诺气蚀余量等。
泵铭牌上所列的数字,是指泵在最高效率下的性能。
12、离心泵汽蚀的危害?答:使泵性能突然下降,使泵产生振动和噪音,使泵的过流部件表面受到损坏。
13、润滑油的作用有哪些?答:冷却、减震、卸荷、冲洗、润滑、防腐、密封14、简述润滑的原理?答:由防界油膜和流淌油膜而形成的完整的油膜将两个摩擦的金属表面完全隔开,将原先两个金属面之间的摩擦变成润滑油分子之间的摩擦,从而降低了摩擦,减少了磨损,起到了润滑作用。
15、润滑油治理的“五定”“三级过滤”是哪些?答:五定指:定点、定时、定质、定量,定人。
三级过滤指:润滑油原装桶一级过滤到固定油桶,固定油桶二级过滤到油壶,油壶三级过滤到各润滑点。
16、机泵有哪些润滑部位?答:机泵的要紧润滑部位有:轴承箱内的轴和轴承,曲轴箱内的齿轮、主轴轴承、曲轴轴承、滑道、连杆、轴瓦,减速箱内的蜗轮蜗杆等。
17、轴承润滑是否正常如何鉴不?答:鉴不的方法要紧有以下几种:润滑油不变质:不乳化,不含杂质,不含水,不发黑。
油位正常:在视镜的2/3~1/2处。
甩油环甩油正常。
轴承的温度合适,不至太高。
用听棒听轴承运转,无专门声音。
18、引起润滑油变质的缘故有哪些?答:引起润滑油变质的要紧缘故有:使用油品质量不行,如带水、酸值高、含杂质等,润滑治理制度不落实,使杂质和水随润滑油带入油箱,轴承箱润滑油室进水,轴承温度过高,造成润滑油氧化变质,轴承刹架拆断,轴承滚珠或滚柱镀铬层剥落混入润滑油中呈黑色,新泵轴承箱水套中的粘砂未清除或红丹漆脱落。
19、往复式活塞压缩机的特点有哪些?答:往复式活塞压缩机是容积式压缩机、转速不能太高、使用压力范畴广、气体脉动式输出。
20、选用压力表的标准有哪些?答:一样工业压力测量采纳1.5级、2.5级压力表,测量稳固压力中最大量程应为测量值的1.5倍,测量波动压力时,最大应为测量值的2倍。
21、排除静电最简单、最常用的方法?答:接地。
22、常用的机械传动有哪些方式?答:齿轮传动、链传动、皮带传动、凸轮传动、蜗轮螺杆传动。
23、机泵密封要紧形式有哪些?答:填料密封和机械密封。
24、外表及管线保温的目的是什么?答:外表及管线保温的目的在于保证外表及检测调剂系统的正常工作,减少测量附加误差,通过保温应满足:检测的介质不应产生冻结、冷凝、结晶、析出等现象;外表应处于技术条件所承诺的工作温度范畴之内。
25、安装压力表时,如何选用密封垫片?答:被测介质低于80ºC及2.0Mpa时,可选用橡皮或皮垫片;低于450ºC及5.0Mpa时,可选用石棉垫或铅垫片;温度和压力更高时,应选用退火紫铜垫或铝垫。
测量氧气压力时,不得使用浸油垫片或有机化合物垫片,测量乙炔压力时,不得使用铜垫,因为它们均有发生爆炸的危险。
26、在什么情形下电机要紧急停车?答:在下列情形下电机要紧急停车:危及人身安全时。
电机冒烟、有臭味或起火时。
发生专门大的振动或轴向串动时。
机身或轴承发热到极限。
电机转速慢,并有不正常声音。
27、简述离心式压缩机的工作原理?答:叶轮在高速旋转时通过叶片对通道内的气体作功,使气体在离心力的作用下提高压力,动能也大大增加,同时,在扩压器内由于流道截面逐步增大,一部分动能转变为静压能。
28、夏季生产对大型机组有哪些阻碍?答:夏季气温高、机组负荷大、昼夜温差大、工况变化大;是大型机组故障的多发季节;爱护要重点检查润滑油系统、冷却水系统,注意调剂冷却水,确保较低的冷后温度;29、操作人员在工作中,对设备应具有哪些差不多知识?答:操作人员应通过专门培训,学习岗位操作法和设备爱护、检修规程,做到“四明白”(明白结构、明白原理、明白性能、明白用途),三会(会使用、会爱护保养、会排除故障),并通过考试合格后才能上岗操作。
30、简述离心泵的一样启动步骤。
答:1)钳电仪检查正常;2)冷却水投用正常;3)润滑油质、油位等检查确认正常;4)盘车轻松、无卡涩正常;5)出入口流程打通,灌泵排气正常;6)工艺条件具备,通知相关人员;7)关出口阀,启动机泵,调剂出口阀,操纵好流量、压力;8)机泵运行稳固后,人才可离开。
二、差不多理论知识1、连锁聚合反应:单体经引发形成活性中心,瞬时赶忙与单体连锁聚合形成高聚物的化学反应称连锁聚合反应。
2、逐步聚合反应:单体之间专门快形成二聚体、三聚体,再逐步形成高聚物的化学反应称为逐步聚合反应。
3、自由基聚合反应:单体经外因作用形成单体自由基活性中心,自由基活性中心再与单体连锁聚合形成高聚物的化学反应称为自由基聚合反应。
4、链转移:链转移是链自由基与其它的分子相互作用,使原链自由基失去活性成为稳固高分子链,被转移的分子产生新的自由基,使聚合反应连续进行下去的过程。
5、离子型聚合反应:单体经离子型引发剂引发生成单体离子活性中心和,并按连锁聚合反应机理形成高聚物的聚合反应称为离子型聚合反应。
6、应变:材料受到外力作用而所处的条件使它不能产生惯性移动时,它的几何形状和尺寸将发生变化,这种变化称为应变。
7、弹性模量:材料发生单位应变时的应力,它表征材料抗击变形能力的大小。
8、强度:在一定的条件下,材料所能承担的最大应力称为强度。
9、拉伸强度:拉伸强度是在规定的温度、湿度与速度下,在标准试样上沿轴向施加拉伸负荷,直到试样被拉断为止。
试样断裂前承担的最大载负与试样截面积的比值称为拉伸强度。
10、抗冲击强度:抗冲击强度是衡量材料韧性的一种强度指标,表征材料抗冲击载荷破坏能力,定义为试样受冲击载荷面折断时,单位截面积所吸取的能量。
11、硬度:硬度是衡量材料表面抗击机械压力能力的一种指标,硬度的大小与材料的扩张强度扣弹性模量有关。
12、熔融指数:在一定的温度和负荷下,树脂熔体在10分钟内通过标准口模的重量,简称熔融指数,简写MFR。
13、灰分:材料经灼烧后剩余的无机残渣,一样用百分数表示。
聚丙烯的灰分为850±50℃高温灼烧后仍不能挥发的残余杂质占整个样品的百分含量。
14、表观密度:单位体积材料自然堆积时的质量。
15、等规聚丙烯:聚丙烯所有的甲基都排在主链的同一侧,单体单元的叔碳原子都具有相同的立体构型。
16、无规聚丙烯:聚丙烯分子中的甲基无规则地排在主链的两侧,其大分子没有主体次序。
17、间规聚丙烯:聚丙烯所有的甲基有规则地交互分布在主链的两侧,单体单元的甲基叔碳原子按相反的构型规则地排列。
18、单元操作:从原材料到产品的化工生产过程,除化学反应之外的所有物理操作过程称之为单元操作。
19、电解:电解质溶液在直流电的作用下发生化学分解的过程叫电解。
20、临界温度:气体加压液化所承诺的最高温度称为临界温度。
21、临界压力:气体在临界温度时发生液化所需要的最小压力称为临界压力。
22、饱和蒸气压:某一温度下气相与液相达成相平稳时的压力称为饱和蒸气压。
23、分子筛:具有选择性通过某种分子的吸附剂称为分子筛,分子筛是人工合成的晶体硅酸盐,也有天然的叫泡沸石。
24、分子筛吸附原理:分子筛吸附产生在空穴内部,能把小于空穴的分子吸入孔内,把大于空穴的分子挡在孔外,起着筛分分子的目的。
25、分子筛再生原理: 当分子筛受热时能把吸附在空穴上的大分子解吸出来,解吸后的分子筛在冷却后能像新的分子筛一样重新进行吸附,从而达到循环使用,即分子筛得到了再生。
26、节流效应:当压缩气体通过节流阀时,由于流体受到局部阻力而造成压力有较大的降低过程称为节流过程,气体经节流后产生的温度变化称为节流效应。
27、精馏:精馏是利用各物质的沸点不同,在精馏塔内多次地进行混合蒸气的部分冷凝和混合液的部分蒸发,分离出高纯度组分的过程。
28、离心泵的工作原理:离心泵在启动前先向壳内充满被输送的液体。
泵启动后轴承带动叶轮一起旋转,迫使叶片间的液体旋转,液体在离心力的作用下自叶轮中心被甩向外围并获得能量,使流向叶轮外围的液体静压能增加,流速增大。
液体离开叶轮进入泵壳后由于流道截面逐步增大,一部分动能转变为静压能。
29、冰机制冷原理:冰机的制冷原理是气态的制冷剂经压缩机压缩为高压气体,到冷凝器内冷却为温度较高的液体,再经节流阀节流后成为低温液体,低温液体流到蒸发器内与冷却介质换热。