离散选择模型
离散选择模型

Yi 0 1GPAi 2 INCOMEi ui
其中:
1 Yi 0
第i个学生拿到学士学位后三年内去读研 该生三年内未去读研
GPA=第i个学生本科平均成绩 INCOME=第i个学生家庭年收入(单位:千美元)
设回归结果如下(所有系数值均在10%水平统计上显著):
ˆ Yi 0.7 0.4GPAi 0.002 INCOMEi
yi 0 yi 1
函数可以简化为:
L (1 F ( X ))1 yi F ( X ) yi
yi 1
对方程左右取对数我们便得到:
ln L [ yi ln F ( X ) (1 yi ) ln(1 F ( X ))]
i 1
n
似然函数为
fi ln L n yi fi [ (1 yi ) ]xi 0 Fi 1 Fi i 1
Pr ob(Y 1 X ) X F ( X ) f ( X ) X
因此我们在遇到二元响应模型时,估计出参数我们不能盲目的 将其解释为:解释变量变动一个单位,相对应的因变量变化参 数个单位。
为了解决偏效应的问题我们引入调整因子的概念。 在上式中的 f ( X ) 我们 便称为比例因子或调整因子,它与全部 的解释变量有关,为了方便起见,我们要找一个适用于模型所有 斜率的调整因子。有两种方法可以解决: (1)用解释变量的观测值计算偏效应的表达式,调整因子为:
四、二元选择模型的估计
1.除了LPM模型以外,二元选择模型的估计都是以极大似然法为基础 的 。由前面的讨论我们知道:
P(Y 1 X ) F ( X )
由此我们可以得到模型的似然函数为:
P(Y1 y1 ,Yn yn X ) (1 F ( X )) F ( X )
离散选择模型完整版

离散选择模型HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第五章离散选择模型在初级计量经济学里,我们已经学习了解释变量是虚拟变量的情况,除此之外,在实际问题中,存在需要人们对决策与选择行为的分析与研究,这就是被解释变量为虚拟变量的情况。
我们把被解释变量是虚拟变量的线性回归模型称为离散选择模型,本章主要介绍这一类模型的估计与应用。
本章主要介绍以下内容:1、为什么会有离散选择模型。
2、二元离散选择模型的表示。
3、线性概率模型估计的缺陷。
4、Logit模型和Probit模型的建立与应用。
第一节模型的基础与对应的现象一、问题的提出在研究社会经济现象时,常常遇见一些特殊的被解释变量,其表现是选择与决策问题,是定性的,没有观测数据所对应;或者其观测到的是受某种限制的数据。
1、被解释变量是定性的选择与决策问题,可以用离散数据表示,即取值是不连续的。
例如,某一事件发生与否,分别用1和0表示;对某一建议持反对、中立和赞成5种观点,分别用0、1、2表示。
由离散数据建立的模型称为离散选择模型。
2、被解释变量取值是连续的,但取值的范围受到限制,或者将连续数据转化为类型数据。
例如,消费者购买某种商品,当消费者愿意支付的货币数量超过该商品的最低价值时,则表示为购买价格;当消费者愿意支付的货币数量低于该商品的最低价值时,则购买价格为0。
这种类型的数据成为审查数据。
再例如,在研究居民储蓄时,调查数据只有存款一万元以上的帐户,这时就不能以此代表所有居民储蓄的情况,这种数据称为截断数据。
这两种数据所建立的模型称为受限被解释变量模型。
有的时候,人们甚至更愿意将连续数据转化为上述类型数据来度量,例如,高考分数线的设置,就把高出分数线和低于分数线划分为了两类。
下面是几个离散数据的例子。
例研究家庭是否购买住房。
由于,购买住房行为要受到许多因素的影响,不仅有家庭收入、房屋价格,还有房屋的所在环境、人们的购买心理等,所以人们购买住房的心理价位很难观测到,但我们可以观察到是否购买了住房,即我们希望研究买房的可能性,即概率(1)P Y =的大小。
《离散选择模型》课件

极大似然估计法
通过最大化似然函数,估计模型 的参数值。
差分法估计法
通过对变量的差分进行估计,减 少了共线性问题的影响。
一般化估计方程法
通过建立一般化估计方程,对参 数进行估计。
离散选择模型的应用
公共交通出行方式选择
分析人们在选择公共交通出行方式时的决策行为,为政府制定交通政策提供依据。
食品品牌选择
确定性
选择结果是确定的,参与者 不受随机因素的影响。
离散选择模型的数学模型
1Байду номын сангаас
多项式Logit模型
通过对选择概率进行建模,预测参与者选择各个选项的概率。
2
二项式Logit模型
基于二项分布,预测参与者是否选择某个选项。
3
线性概率模型
使用线性回归方法,预测选择某个选项的概率。
离散选择模型的参数估计方法
离散选择模型是一种描述人们在面临离散选择时决策行为的数学模型。
2 离散选择模型的应用领域
离散选择模型被广泛应用于诸多领域,如公共交通、市场营销和行为经济学等。
离散选择模型的基本假设
可比性
各个选择项之间可以进行比 较,存在客观标准用于决策。
独立性
参与者之间的选择行为是独 立的,不受其他参与者的影 响。
《离散选择模型》PPT课 件
离散选择模型是一种用于分析人们在面临离散选择时的决策行为的统计模型。 本课件将介绍离散选择模型的定义、基本假设、数学模型、参数估计方法、 应用、不足及未来发展方向。
什么是离散选择模型
离散选择模型是一种用于研究人们在面临可选项时所作出的离散决策行为的统计模型。
1 离散选择模型的定义
将离散选择模型与其他决策模 型进行结合,以提高模型的准 确性和解释能力。
离散选择模型

六、二元选择模型的参数检验 6.1 单个系数的显著性检验
一个解释变量(对二元决策的概率)是否有显著性影响的检验,如同正态
线性回归分析的单个系数的检验类似,根据模型中的待估系数与其方差计算 z 统计量,并检验假设 H0 : βi = 0 。
6.2 总体显著性检验 由于 Logit 模型、Probit 模型是非线性的,在同时检验多个系数是否为 0 时,
33潜回归我们假设存在一个不可观察的潜在变量称为决策倾向是指标变量的连续性函数记为iy它与指标变量ix之间具有如下线性关系i1kkiiiyxxu该方程称为潜回归方程其中iu是随机扰动项1ikixx??????????1k??????????34量变临界值选取量变到多少时个体才进行选择呢
离散选择模型
郑安
是估计系数的协方差
矩阵, βˆ 是无约束模型得到的估计值。可以证明,W 渐进服从 χ 2 (k −1) 分布。
所以 W 检验只需要估计无约束模型 (2)对数似然比检验(只适用于线性约束) H0 : β2 = β3 = " = βk = 0
检验统计量: LR = −2[ln L(βˆR ) − ln L(βˆ)]
其中,ln L(βˆR ) 是约束模型的最大对数似然函数值,ln L(βˆ) 是非约束模型的最大
对数似然函数值。可以证明,在零假设下,LR 渐进服从 χ 2 (k −1) 分布。所以 LR
检验既需要估计有约束模型,又需要估计无约束模型 (3)拉格朗日乘子检验(适用于线性和非线性约束) H0 : β2 = β3 = " = βk = 0
离散选择模型起源于 Fechner 于 1860 年进行的动物条件二元反射研究。1962 年,Warner 首次应用于经济领域。20 世纪 70 和 80 年代,离散选择模型普遍应 用于经济布局、交通问题、就业问题、购买决策问题等经济决策领域的研究。 模型的估计方法主要发展于 20 世纪 80 年代初期,远远滞后于模型的应用,并 且至今还在不断改进,它属于微观计量经济学——即研究大量个人、家庭或企 业的经济信息,McFadden 因为在微观计量经济学领域的贡献而获得 2000 年诺 贝尔经济学奖。
离散选择模型和连续选择模型的比较分析

离散选择模型和连续选择模型的比较分析一、引言选择模型是指通过研究个体选择行为来预测市场需求的一种模型。
根据选择的属性是否可测,选择模型可以分为离散选择模型和连续选择模型。
离散选择模型是指选择行为的结果是分类的,例如选择是A、B还是C。
而连续选择模型是指选择行为的结果是连续的,例如选择的数量是多少。
本文将对离散选择模型和连续选择模型进行比较分析。
二、离散选择模型离散选择模型常用于解释市场需求中的离散选择行为,包括二项选择模型、多项选择模型、有序多项选择模型等。
1、二项选择模型二项选择模型常用来解释个体在两个选项之间进行选择的概率。
其模型设定为,在两个选项中,个体选择第一个选项1的概率为P,选择第二个选项2的概率为1-P,二者之和为1。
该模型假设个体根据其效用(utility)差异进行选择,即个体会选择能够获得最大效用的选项。
2、多项选择模型多项选择模型常用来解释个体在多个选项之间进行选择的概率。
其模型设定为,对于N个选项,个体选择第i个选项的概率为Pi,所有选项的概率之和为1。
该模型假设个体会选择能够获得最大效用的项,效用函数通常采用对数线性模型(Logit Model)。
3、有序多项选择模型有序多项选择模型常用来解释个体在多个选项之间进行有序选择的概率。
例如,当个体面对三个不同价格的产品时,个体有可能在选择第一价格区间的产品、第二价格区间的产品或者第三价格区间的产品。
该模型假设选择的概率是对价值的一次函数,因此需要先对选项进行排序以确定选择的顺序,然后再推导选择的概率。
三、连续选择模型连续选择模型常用于解释市场需求中的连续选择行为,包括对数线性模型、线性规划模型等。
1、对数线性模型对数线性模型是一种常用的连续选择模型。
它假设个体的效用函数是一个对数线性函数,其中因变量是一个连续变量,例如价格、数量等。
对数函数可以将效用函数转化为线性形式,从而便于分析。
2、线性规划模型线性规划模型是一种常用的数学优化模型,用于解决连续选择问题。
第10章(离散选择模型) 计量经济学

R2 0.996, DW 0.58, F 1896.54
这一结果表明,分别来看,我国储蓄函数 的截距和斜率在1990年前后发生了结构变 化。
《计量经济学》,高教出版社, 2011年6月,王少平、杨继生、欧
对β1和β3的联合为0的原假设,我们使用约束的F检验。其约 束条件为 β1=β3 =0。记RSSr为有约束的残差平方和,RSSu为 无约束的残差平方和,构造并计算F统计量:
2011年6月,王少平、杨继生、欧
《计量经济学》,高教出版社, 2011年6月,王少平、杨继生、欧
可以使用通常的t统计量检验单个回归系数 β1或β3的显著性,而对于β1,β3的联合显著 性,则使用通常受约束的F统计量。模型 (10.1.5)的估计结果如下:
St 14847.4 13615.4 Dt 0.832GDPt 0.481Dt GDP et
( RSSr RSSu ) / q (6.44 108 2.67 108 ) / 2 F 17.65 8 RSSu /(n k 1) 2.67 10 /(29 3 1)
由于计算得到的F统计量值17.65>F0.05(2.25)=3.39 ,故拒绝原 假设,接受备择假设,我国储蓄函数在1990年前后发生显著 结构变化。 1990年以前的边际储蓄倾向为 β2 +β3=0.832-0.481 =0.351 1990年后的边际储蓄倾向为0.832
估计结果如下:
GDPt 13049.0 2125.3 D1t 2700.3 D2t 12747.4 D3t 1362.1 T et
t= (6.83) (1.)
第五周:离散选择模型分析技术——每周一讲多变量分析

第五周:离散选择模型分析技术——每周一讲多变量分析离散选择模型(Discrete Choice Model),也叫做基于选择的结合分析模型(Choice-Based Conjoint Analysis,CBC),是一种非常有效且实用的市场研究技术。
该模型是在实验设计的基础上,通过模拟所要研究产品/服务的市场竞争环境,来测量消费者的购买行为,从而获知消费者如何在不同产品/服务属性水平和价格条件下进行选择。
这种技术可广泛应用于新产品开发、市场占有率分析、品牌竞争分析、市场细分和价格策略等市场营销领域。
同时离散选择模型也是一种处理离散的、非线性的定性数据的复杂高级多元统计分析技术,它采用Multinomial Logit Model进行数据统计分析。
根据Sawtootch公司调查显示:在市场研究中,CBC方法正在快速增长,应用比传统的结合分析(联合分析)应用更多!离散选择模型主要用于测量消费者在实际或模拟的市场竞争环境下如何在不同产品/服务中进行选择。
通常是在正交实验设计的基础上,构造一定数量的产品/服务选择集(Choice Set),每个选择集包括多个产品/服务的轮廓(Profile),每一个轮廓是由能够描述产品/服务重要特征的属性(Attributes)以及赋予每一个属性的不同水平(Level)组合构成。
例如消费者购买手机的重要属性和水平可能包括:品牌(A,B,C)、价格(1500元,1750万元,2000元)、功能(短信,短信语音,图片短信)等,离散选择模型是测量消费者在给出不同的产品价格、功能条件下是选择购买品牌A,还是品牌B或者品牌C,还是什么都不选择。
离散选择模型的一个重要的假定是:消费者是根据构成产品/服务的多个属性来进行理解和作选择判断;另一个基本假定是:消费者的选择行为要比偏好行为更接近现实情况。
它与传统的全轮廓结合分析(Full Profiles Conjoint Analysis)都是在全轮廓的基础上采用分解的方法测量消费者对某一轮廓(产品)的选择与偏好,对构成该轮廓的多个属性和水平的选择与偏好,用效用值(Utilities)来描述。
离散选择模型(研究1025)

离散选择模型§ 1 离散选择回归模型一、离散的变量如果我们用0,1,2,3,4,…说明企业每年的专利申请数,申请数是一个离散的变量,但是它是间隔尺度变量,该变量类型不在本章的讨论的被解释变量中。
但离散变量0和1可以用来说明企业每年是否申请专利的事项,类似表示状态的变量才在本章的讨论中。
在专利申请数的问题中,离散变量0,1,2,3和4等数字具有具体的经济含义,不能随意更改;而在是否申请专利的两个选择对象的选择问题中,数字0和1只是用于区别两种不同的选择,是表示一种状态。
本专题讨论有序尺度变量和名义尺度变量的被解释变量。
离散选择模型 1离散选择模型2二、离散的因变量在讨论家庭是否购房的问题中,可将家庭购买住房的决策用数字1 表示,而将家庭不购买住房的决策用数字0表示。
10yes x no⎧=⎨⎩ 如果x 作为说明某种具体经济问题的自变量,则应用以前介绍虚拟变量知识就足够了。
如果现在考虑某个家庭在一定的条件下是否购买住房问题时,则表示状态的虚拟变量就不再是自变量,而是作为一个被说明对象的因变量出现在经济模型中。
因此,需要对以前讨论虚拟变量的分析方法进行扩展,以便使其能够适应分析类似家庭是否购房的问题。
因为在家庭是否购房问题中,虚拟因变量的具体取值仅是为了区别不同的状态,所以将通过虚拟因变量讨论备择对象选择的回归模型称为离散选择模型。
离散选择模型3三、线性概率模型现在约定备择对象的0和1两项选择模型中,下标i 表示各不同的经济主体,取值0或l 的因变量i y 表示经济主体的具体选择结果,而影响经济主体进行选择的自变量i x 。
如果选择响应YES的概率为(1/)i p y =i x ,则经济主体选择响应NO的概率为1(1/)i i p y -=x ,则(/)1(1/)0(0/)i i i i i i E y p y p y =⨯=+⨯=x x x =(1/)i i p y x =。
根据经典线性回归,我们知道其总体回归方程是条件期望建立的,这使我们想象可以构造线性概率模型(1/)(/)i i i i i p y x E y x '===x β011ik i k ix x u βββ=++++描述两个响应水平的线性概率回归模型可推知,根据统计数据得到的回归结果并不一定能够保证回归模型的因变量拟合值界于[0,1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元选择模型
解释变量与因变量的关系
解释变量与因变量的关系
在二元选择模型中,解释变量与因变量之间的关系
如何描述呢? 首先,我们可以将模型写成如下形式:
P Y 1 F x
但是由于 F x 不一定是线性函数,因此x对于Y的 影响不能简单的用 表示。
二元选择模型
二元选择模型的一个例子
分析劳动力就业情况,Y=1表示就业,Y=0表示失
业,若x为影响因素,β为参数向量,则劳动力就业 的概率与影响因素的关系就可以表示为:
P Y 1 F x, P Y 0 1 F x,
其中,F (x, β)是与x和β有关的分布函数。
解释变量与因变量的关系
由于有
P Y 1 E Y F x
所以x对于事件Y 1 发生的概率,即 P Y 1 的影响
为:
E Y dF x f x x d x
解释变量与因变量的关系
由于变量Y是一个二元变量,因此有:
N1 E Y P Y 1 E Y F x, N
二元选择模型
分布函数的几种不同形式
线性概率模型
线性概率模型即假设分布函数为线性形式: 因此有:
F x, x
Y E Y Y E Y
Pij P Yi j P U ij U i j
Logit模型
与二元选择模型的思路一样,我们使用一种特定的
分布函数来描述这一概率,假设 ij 独立同分布,且 服从Weibull分布,分布函数的形式为:
F t exp e t
则前述模型变为:
二元选择模型
设定检验
单个系数的显著性检验
与回归分析类似,二元选择模型中单个系数的显著
性检验也是计算t统计量并进行t检验
模型整体的显著性检验
由于二元选择模型模型的常用形式,即Probit模型
和Logit模型是非线性的,因此F检验不再适用。 通常用对数似然比检验,计算LR统计量:
ˆ 为在原假设H 成立情况下的参数估计值。 其中, R 0 2 LR渐进服从 k 分布,其中k为变量的个数。
发生的概率为:
, X n xn
n
L L x1 , x2 ,
L 即为似然函数
, xn ; p xi ;
i 1
极大似然估计
所谓极大似然估计指的是找到一个使得似然函数达 到最大的参数 ˆ ,即令
L x1 , x2 ,
则
ˆ max L x , x , , xn ; 1 2
对于Probit模型,这一影响是:
E Y x x
对于Logit模型,这一影响是:
E Y x 1 x x x e 2 x 1 e
二元选择模型
参数估计
估计方法的选择
yi 1 i
, Yn yn
F x 1 F x
yi i i i
1 yi
二元选择模型的极大似然估计
将似然函数对数化,可得:
ln L
ln 1 F x ln F x
yi 0 i yi 1 i
有序数据:满意度,偏好
有序反应模型
多重选择模型
无序反应模型
无序反应模型的一个例子
假定有I个消费者面临着J种方案可以选择
其中,消费者 i 若选择了方案 j 则会获得如下随机
效用:
Uij xij ij
ij
若消费者是理性的,则可知: U
Ui j
这样,消费者 i 选择方案 j 的概率就可以表示为:
令F (x, β)为逻辑斯蒂分布,即:
x e x F x, x t dt x 1 e
其中:
et t 1 et t d e t t t 1 t 2 t dt 1 e
ˆ ln L ˆ LR 2 ln L R
模型整体的显著性检验
二元选择模型整体显著性的检验方法还有:
Wald检验
1 ˆ ˆ q W R q RVR R
拉格朗日乘子检验(LM)
LM g Vg
2 W和LM都渐进服从 k 分布,其中k为变量的个数。
Pij P Yi j
e
k
xij xi j
e
为待估参数 其中,
令 X1 , X 2 ,
合分布为:
n
, X n 为来自总体 X 的样本,则它们的联
p X ;
i 1 i
极大似然估计
令 x1 , x2 ,
件:
, xn 为 X1 , X 2 ,
, X n 的一个观察值,则事
X1 x1, X 2 x2 ,
y ln F x 1 y ln 1 F x
i i i i i
令对数似然函数的一阶条件等于0,可以得到参数
ˆ 的估计值
Logit模型的似然函数
L e e 1 x x 1 e 1 e i e 1 x x i 1 e 1 e
二元选择模型的参数估计一般使用极大似然法。
不选择最小二乘法的原因主要是由于最小二乘法需
要因变量是连续型,且需要满足关于回归模型的一 系列假设,而在二元选择模型中并不能够提供这种 保证。 极大似然估计则可以避免上述问题
极大似然估计
若总体X为离散型,且有
P X x p x;
ln L
x
yi 1 yi
x
yi
x
1 yi
e x e x yi ln 1 yi ln 1 x x 1 e 1 e i e x 1 yi ln 1 yi ln x x 1 e i 1 e
拟合优度分析
在古典回归模型中我们通常用判定系数 R 2 来度量模
型的拟合优度,在二元选择模型中,类似指标是似 然指数(LRI)。
ln L LRI 1 ln L0
与 R 2 同样,LRI的取值在0无序数据:民族,职业,购买品牌
无序反应模型
离散选择模型
首都经济贸易大学 统计学院
离散因变量
有很多我们要研究的变量其形式是离散的
购买决策:购买,不购买
满意度:满意,一般,不满意 次数:一次,两次,三次,四次
因其变量是离散型,所以无法使用古典回归的方法,
者要求我们发展新的方法对其进行研究。 当因变量为二元变量,即只有0和1两种可能取值时, 我们要建立的模型就是二元选择模型。
, xn ;
ˆ arg max L x , x , 1 2
, xn ;
为“极大似然估计值”
二元选择模型的极大似然估计
建立似然函数
L P Y1 y1 , Y2 y2 ,
yi 0 i
1 F x F x
F x, Y E Y
Y E Y 为随机扰动,因此,上述方程可 其中,
以变为:
Y x
线性概率模型的特性
由于线性概率模型具有与连续因变量回归模型相同
的性质,因此可以使用古典线性回归模型估计。 但是线性概率模型具有两个显著的缺点: 不能保证 x 的取值在0和1之间
具有异方差性,即:
Var x 1 x
因此该模型并不适合用作对二元选择模型的研究
概率单位(Probit)模型
令F (x, β)为标准正态分布,即:
F x, x t dt
x
对数单位(Logit)模型