角平分线与垂直平分线知识点
角平分线和垂直平分线

角平分线和垂直平分线[知识目标]1、角平分线(1)性质:角平分线上的点到角两边距离相等。
(2)判定:到角两边距离相等的点在角平分线上。
角平分线是到角两边距离相等的所有点的集合2、垂直平分线:(1)性质:垂直平分线上的点到线段两端点距离相等。
(2)判定:到线段两端点距离相等的点在线段的垂直平分线上。
线段的垂直平分线是到线段两端点距离相等的点的集合。
3、轴对称的特征:(1)全等:形状大小完全相同(2)对称点的连线被对称轴垂直平分。
[典型例题]角平分线和垂直平分线的尺规作图:1、如图,a,b表示两条公路,A,B表示两个城镇,要建一座电视信号发射塔,使发射塔至两条公路的距离相等,到两个城镇的距离也相等,发射塔应建在何处?在图上找到它的位置。
b2、如图,请你找出一个点P,使P点到A、B两点的距离相等,并且使P在∠ACB的平分线上。
C3、如图所示,M、N为三角形ABC边AB与AC上两点,在BC上求作一点P,使三角形PMN的周长最小。
4、如图,已知E、F分别是△ABC的边AB和AC上的两个定点,问在BC上能否找到一点M,使得△EFM的周长最小?● 角平分线的性质与判定1、如图所示,已知AB=AC ,PB=PC ,PD ⊥AB ,PE ⊥AC ,垂足分别是D 、E ,求证:PE=PD2、如图所示,△ABC 中,∠C=900,AC=BC,DA 平分∠CAB 交BC 于D 点,部能否在AB 上确定一点E,使△BDE 的周长等于AB 的长,请说明理由.4、如图, ∠C=∠B=900,M 为BC 的中点,AM 平分∠DAB,(1)求证:DM 平分∠ADC(2)求∠DMA 的度数5、如图,已知,P 为∠AOB 内一点,过点P 的两条直线PD ⊥OB,PC ⊥OA,垂足分别是D 、C ,交OA 、OB 于M 、N 。
(1) 若点P 在∠AOB 的平分线上,求证:MD=NC (2) 若MD=NC ,求证:点P 在∠AOB 的平分线上● 角平分线的对称性3、如图,在△ABC 中, ∠C=2∠B, ∠1=∠2,求证:AB=AC+CDAA BE CA B MNBCD垂直平分线1、如图,E是∠AOB平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D,求证:OE是CD的垂直平分线。
三角形的角平分线与垂直平分线

三角形的角平分线与垂直平分线角平分线与垂直平分线是三角形中重要的几何概念。
它们可以帮助我们研究三角形的性质和推导出一些有用的结论。
本文将详细介绍角平分线与垂直平分线的定义、性质和应用。
一、角平分线角平分线定义为从一个角的顶点出发,将这个角分成两个相等的角的线段。
以三角形ABC为例,假设角A的角平分线为AD,则角BAD 与角DAC是相等的。
这一定义可以推广到任意三角形中的任意角。
角平分线具有以下性质:1. 一个角的两条平分线相交于该角的顶点,并将该角平分成两个相等的角。
2. 三角形的内角平分线三条相交于一点,称为内心。
这个点到三角形三边的距离相等,可以证明是三角形内接圆的圆心。
3. 三角形的外角平分线三条相交于一点,称为外心。
这个点到三角形的顶点的距离相等,可以证明是三角形外接圆的圆心。
4. 三角形的角平分线分割对边成比例,即根据角平分线定理可得:AB/BC=AD/DC。
角平分线的应用广泛,特别是在证明三角形的性质和推导结论时非常有用。
例如,可以利用角平分线证明角的等分性质、三角形的相似性质、垂心定理等。
二、垂直平分线垂直平分线定义为从一个线段的中点出发,与该线段垂直且将该线段平分为两段相等的线段。
以三角形ABC为例,假设AB的垂直平分线为DE,则AD=BD=BE=CE=CD。
这一定义可以推广到任意线段。
垂直平分线具有以下性质:1. 一个三角形的三条垂直平分线交于一点,称为垂心。
这个点到三角形三顶点的距离相等,可以证明是三角形外接圆的圆心。
2. 一个角的垂直平分线经过角的顶点,并将该角平分成两个相等的角。
3. 垂直平分线等分线段,即对于一个线段AB,若点D是其垂直平分线的交点,则AD=DB。
垂直平分线也有许多应用,特别是在几何证明中常常能发挥关键作用。
例如,可以利用垂直平分线证明角的等分性质、直角三角形的性质、垂心定理等。
总结:角平分线与垂直平分线是三角形中重要的概念,它们有着许多有用的性质和应用。
三角形的角平分线与垂直平分线

三角形的角平分线与垂直平分线在几何学中,三角形是一个基本的形状,由三条线段连接的三个点组成。
这个形状具有丰富的属性和特性,其中包括角平分线和垂直平分线。
本文将探讨三角形的角平分线和垂直平分线的性质及其重要性。
一、角平分线角平分线是指从一个三角形的顶点出发,将对角的两个角度平均分开的线段。
每个角度由两个角平分线所夹,这些角度称为平分线所包围的对应角度。
对于任意三角形ABC,假设D是BC边上的一个点,使得角BAD与角CAD相等。
则AD称为角BAC的角平分线。
性质1:角平分线将对应角分成相等的两个角。
根据定义,角平分线将对应角分成两个相等的部分。
在三角形ABC 中,如果AD是角BAC的角平分线,则角BAD和角CAD相等。
性质2:角平分线与对边相交于一点。
在三角形ABC中,如果AD是角BAC的角平分线,则AD与BC相交于一点D。
这个点D被称为平分线的交点。
性质3:角平分线上的点到三角形的两边的距离相等。
在三角形ABC中,假设AD是角BAC的角平分线,那么点D到AB和AC的距离相等。
这个距离等于点D到对边BC的距离。
二、垂直平分线垂直平分线是指从一个三角形的边上一点出发,与该边垂直相交并将其平分的线段。
垂直平分线具有以下性质:性质1:垂直平分线垂直于被平分的边。
在三角形ABC中,如果DE是边BC的垂直平分线,那么DE垂直于BC。
性质2:垂直平分线将被平分的边分成相等的两部分。
根据定义,垂直平分线将边BC平分为BD和DC,这两段线段的长度相等。
性质3:垂直平分线与对边相交于三角形的垂直平分点。
在三角形ABC中,如果DE是边BC的垂直平分线,那么点D和点E分别是边AB和边AC的垂直平分点。
角平分线和垂直平分线的重要性:角平分线和垂直平分线在几何学中具有重要的应用和推论。
它们是许多几何问题的基础,包括角的相似性、三角形的面积、三角形内部点的位置等等。
例如,通过角平分线和垂直平分线,我们可以证明关于三角形的中心和内心的性质。
三角形的角平分线和垂直平分线

三角形的角平分线和垂直平分线三角形是几何学中最常见的形状之一,它由三条边和三个角组成。
在研究三角形的性质时,我们经常会遇到角平分线和垂直平分线这两个重要的概念。
本文将详细介绍三角形的角平分线和垂直平分线的定义、性质以及它们在解题中的应用。
一、角平分线1. 定义:三角形的角平分线是指从一个角的顶点出发,将该角分为两个相等的角的线段。
具体而言,设三角形ABC中的∠BAC的角平分线为AD,那么AD将∠BAC分为两个相等的角∠BAD和∠DAC。
2. 性质:(1)角平分线与对边的关系:角平分线将对边分成两个部分,这两个部分的长度之比等于与它们相对的两个角的正弦值之比。
即AB/AC = BD/DC = sin∠BAD/sin∠DAC。
(2)角平分线的交点:三角形的三条角平分线交于一点,称为内心。
内心是三角形内切圆的圆心,三条角平分线相交于该点的原因是,该点到三条边的距离相等,满足等距离定理。
(3)内心到三边的距离:内心到三边的距离相等,且等于内切圆的半径。
设内心到三边的距离分别为r₁、r₂和r₃,那么r₁=r₂=r₃=r。
二、垂直平分线1. 定义:三角形中的垂直平分线是指从一个角的顶点出发,与对边垂直相交,并将对边分成两个相等部分的直线。
以三角形ABC中∠BAC的垂直平分线为例,假设该垂直平分线与BC相交于点D,那么BD=DC。
2. 性质:(1)垂直平分线与对边的关系:垂直平分线平分对边,并且被平分的两部分的长度相等。
即BD=DC。
(2)垂直平分线与角平分线的关系:垂直平分线与角平分线互相垂直。
也就是说,三角形的垂直平分线同时也是它的内角平分线。
三、角平分线和垂直平分线的应用角平分线和垂直平分线在解决三角形相关问题时起着重要的作用,它们能够提供关键的几何信息,帮助我们求解未知量、证明定理。
1. 解题应用:(1)角平分线的应用:在求解三角形相关问题时,可以利用角平分线的性质来求解未知量,比如利用角平分线将角分为两个相等的角,从而应用三角函数关系进行计算。
小学数学认识简单的角的平分线与垂直平分线

小学数学认识简单的角的平分线与垂直平分线角是数学中常见的概念,我们可以将其理解为由两条射线所构成的形状。
在学习角的同时,我们也需要了解与角相关的一些重要概念,比如角的平分线和垂直平分线。
本文将为大家详细介绍小学数学中角的平分线和垂直平分线的知识。
1. 角的平分线角的平分线是指将一个角平分为两个相等的部分的射线或线段。
对于任意一个角ABC,我们可以通过黄色的射线AD将其平分为∠BAD和∠DAC两个相等的角,射线AD即是角ABC的平分线。
如下图所示:(图片描述:射线AD为角ABC的平分线)2. 垂直平分线垂直平分线是指将一个线段垂直平分为两段相等的线段的直线。
对于任意一个线段AB,我们可以通过橙色的直线CD将其垂直平分为AC和CB两段相等的线段,直线CD即是线段AB的垂直平分线。
如下图所示:(图片描述:直线CD为线段AB的垂直平分线)3. 平分线与垂直平分线的共同特点虽然平分线和垂直平分线是两个不同的概念,但它们也有一些共同的特点:(1)平分线和垂直平分线都将一个形状等分为两个相等的部分。
对于平分线来说,它将一个角等分为两个相等的角;对于垂直平分线来说,它将一个线段等分为两段相等的线段。
(2)平分线和垂直平分线都是一条直线。
平分线是射线或线段,而垂直平分线是直线。
4. 角的平分线与垂直平分线的应用角的平分线和垂直平分线在几何学中有着广泛的应用。
下面,让我们来看一些具体的应用实例:(1)角的平分线应用示例在正方形ABCD中,如图所示,我们可以通过EF将∠ADE角平分为两个相等的角∠AEF和∠DEF。
利用角的平分线,我们可以得到∠AEF=∠DEF=45°。
这对于解决与正方形角度相关的问题非常有用。
(图片描述:EF为∠ADE角的平分线)(2)垂直平分线应用示例在矩形EFGH中,如图所示,我们可以通过IJ将线段GH垂直平分为两段相等的线段GI和HJ。
利用垂直平分线,我们可以得到GI=HJ。
这对于解决与矩形线段相关的问题非常有帮助。
几何中的角平分线与垂直平分线

几何中的角平分线与垂直平分线在几何学中,角平分线和垂直平分线是两个重要的概念。
它们不仅帮助我们理解和解决各种几何问题,还具有广泛的应用。
本文将介绍角平分线和垂直平分线的定义、性质以及它们在实际问题中的应用。
一、角平分线的定义和性质角平分线是指将一个角平分为两个相等角的线段。
设角BAC是一个角,如果直线AD将该角分为两个相等的角,即∠BAD = ∠DAC,则称直线AD为角BAC的角平分线。
角平分线具有以下性质:1. 角平分线将原角分为两个相等的角。
根据定义可知,角平分线将原角BAC分为∠BAD和∠DAC,且∠BAD = ∠DAC。
2. 角平分线上的点到角两边的距离相等。
设点D为角BAC的角平分线,点E、F分别位于边BA和边AC 上,且DE = DF。
根据三角形的性质可知,∠BDE ≌∠CDF(角平分线AD将角BAC分为两个相等角),因此△BDE ≌△CDF。
根据全等三角形的性质可得,BE = CF,即角平分线上的点到角两边的距离相等。
3. 角平分线与角的两边垂直。
根据性质2可知,点D到边BA的距离等于点D到边CA的距离,即DE = DF。
而∠BED和∠CED为角内角,因此根据三角形的性质可得,△BED ≌△CED,进而得出BE = CE。
根据等腰三角形的性质可知,BE = CE,则∠BDE = ∠CDE = 90°。
因此,角平分线与角的两边垂直。
二、垂直平分线的定义和性质垂直平分线是指将线段垂直平分为两个相等线段的线。
设线段AB为一条线段,如果直线CD同时垂直于线段AB并将其等分,即AC = CB,则称直线CD为线段AB的垂直平分线。
垂直平分线具有以下性质:1. 垂直平分线将原线段分为两个相等线段。
根据定义可知,垂直平分线CD将线段AB分为AC和CB,且AC = CB。
2. 垂直平分线上的点到线段两端点的距离相等。
设点D为线段AB的垂直平分线,点E、F分别为线段AB的两个端点,且DE = DF。
空间几何中的角平分线与垂直平分线

空间几何中的角平分线与垂直平分线空间几何是研究三维空间中各种图形的性质和关系的数学分支。
在空间几何中,角平分线和垂直平分线是两个重要的概念。
本文将介绍角平分线和垂直平分线的定义、性质以及它们在几何问题中的应用。
一、角平分线在平面几何中,我们知道,如果一条线段将一个角分成两个相等的部分,那么这个线段就称为角的平分线。
同样地,在空间几何中,角平分线也有类似的定义。
定义:在空间中,如果一条直线通过一个角的顶点,并且将这个角分成两个相等的角,那么这条直线就称为这个角的平分线。
角平分线的性质:1. 角平分线将角分成两个相等的角。
2. 角平分线与角的边相交于角的顶点。
3. 如果一个平面与角的两个边相交于角的顶点,并且将这个角分成两个相等的角,那么这个平面就是这个角的平分面。
而角平分线正好是角的平分面在角的顶点上的交线。
角平分线的应用:1. 角平分线可以帮助我们确定角的大小。
通过寻找并绘制角的平分线,我们可以将角分成两个相等的部分,从而更方便地计算和推导角的性质。
2. 角平分线可以用来解决一些几何问题。
例如,当我们希望构造一个特定大小的角时,可以通过角平分线的方法来实现。
二、垂直平分线垂直平分线是另一个在空间几何中常见的概念。
在平面几何中,垂直平分线是指一条通过线段中点并且垂直于这条线段的直线。
在空间几何中,垂直平分线的定义稍有不同。
定义:在空间中,如果一条直线垂直于一条线段,并且将这条线段分成两个相等的部分,那么这条直线就称为这条线段的垂直平分线。
垂直平分线的性质:1. 垂直平分线将线段分成两个相等的部分。
2. 垂直平分线与线段的中点相交。
3. 如果一平面垂直于一线段,并且将这线段分成两个相等的部分,那么这平面就是这线段的垂直平分面。
而垂直平分线则是垂直平分面在线段中点上的交线。
垂直平分线的应用:1. 垂直平分线可以帮助我们确定线段的长度。
通过绘制线段的垂直平分线,我们可以将线段分成两个相等的部分,从而更方便地计算和推导线段的性质。
角平分线和线段的垂直平分线

角平分线和线段的垂直平分线一、知识点讲解:1. 定理1:在角的平分线上的点到这个角的两边的距离相等;定理2:在一个角的内部,到这个角的两边距离相等的点,在这个角的平分线上。
2.角平分线另一种定义:角的平分线是到角的两边距离相等的所有点的集合。
3.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设。
那么这两个命题叫做互逆命题,其中一个叫做另一个的逆命题。
4.如果一个定理的逆命题是经过证明的真命题,那么它也是一个定理,这两个定理叫互逆定理。
其中一个叫另一个的逆定理,虽然一个命题都有逆命题,但一个定理并不都有逆定理。
5.定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6.线段的垂直平分线另一种定义:线段的垂直平分线可以看作和线段两个端点距离相等的所有点的集合。
二、例题精讲例1.已知如图,在ΔABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,求证:AD⊥EF。
分析:欲证AD⊥EF,就要证∠AOE=∠AOF=∠EOF=90°。
所以要考虑证ΔAEO≌ΔAFO。
由题中条件可知ΔAEO,ΔAFO已有一边(公共边)一角对应相等,只要证出AE=AF问题就解决了,所以需先证明ΔAED≌ΔAF D。
证明:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC(已知)∴DE=DF(角平分线上的点到这个角的两边距离相等)在RtΔAED和RtΔAFD中∴RtΔAED≌RtΔAFD(HL), ∴AE=AF(全等三角形的对应边相等)在ΔAEO和ΔAFO中∴ΔAEO≌ΔAFO,∴∠AOE=∠AOF (全等三角形对应角相等)∴∠AOE=∠EOF=90°,∴AD⊥EF(垂直定义)。
例2.写出下列定理的逆命题,并判断真假。
(1)同位角相等,两直线平行。
(2)如果x=3,那么x2=9.(3)如果ΔABC是直角三角形,那么当每个内角取一个对应外角时,ΔABC的三个外角中只有两个钝角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角平分线与垂直平分线知识点
一、角平分线
1.角平分线可以得到两个相等的角。
(角平分线的定义)
∵AD是∠CAB的角平分线
1∠CAB
∴∠CAD=∠B AD=
2
2.角平分线上的点到角两边的距离相等。
(角平分线的性质)
∵AD是∠CAB的角平分线,DC⊥AC ,DB⊥AB
∴DC=DB
3.三角形的三条角平分线交于一点,称作三角形内心。
三角形的内心到三角形三边的距离相等。
4.到角两边的距离相等的点在角平分线上。
(角平分线的判定)
∵DC⊥AC ,DB⊥AB,DC=DB
∴点D在∠CAB的角平分线上。
二、角平分线图模(对称性)
1、角平分线作垂线
角平分线+垂直一边:“图中有角平分线,可向两边作垂线,作完垂线全等必出现”
若PA⊥OM于点A,可以过P点作PB⊥ON于点B,则PB=PA。
利用角平分线的性质定理,可以得到∆OAP≌∆OBP(AAS)。
2、角平分线+垂线:“角分垂必延长”垂直角分线,等腰全等现。
若AP⊥OP于点P,可延长AP交ON于点B,构造△AOB是等腰三角形,P是底边AB的中点,三线合一,∆OAP≌∆OBP(ASA)。
3、角平分线+斜线:“截等长构造全等”
若点A是射线OM上任意一点,可以在ON上截取OB=OA,连接PB,构造△OPB≌△OPA(SAS)。
4、角平分线+平行线:“角平分线+平行线,等腰三角形必出现”
若过P点作PQ∥ON交OM于点Q,利用平行的内错角相等及等角对等边
可以得到△POQ是等腰三角形。
5、角平分线+对角互补:“截长补短构造全等”
6、夹角模型
①双内角角平分线模型:BP、CP分别是∠ABC、∠ACE的角平分线,则:
∠P=90°+1
2∠A.
②内角和外交角平分线模型:BP、CP分别是∠ABC、∠ACE的角平分线,则:
∠P=1
2∠A.
③双外角角平分线模型:BP、CP分别是∠CBD、∠BCD的角平分线,则:
∠D=90°-1
2∠B.
在∠AOB中,画角平分线:
1.以点O为圆心,以任意长为半径画弧,两弧交∠AOB两边于点M,N。
2.分别以点M,N为圆心,以大于1
2MN的长度为半径画弧,两弧交于点P。
3.作射线OP。
射线OP就是所求作的∠AOB的角平分线。
三、垂直平分线(中垂线)
1、经过某一条线段的中点,并且垂直于这条线段的直线是线段的垂直平分线。
(垂直平分线的定义)
∵PC是AB的垂直平分线
∴AC=BC ,∠ACP=∠BCP=90°
2、线段垂直平分线上的点到这条线段的两个端点的距离相等。
(垂直平分线的性质)
∵PC是AB的垂直平分线
∴AP=BP
3、到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(垂直平分线的判定)
∵AC=BC ,∠ACP=∠BCP=90°
∴PC是AB的垂直平分线
或∵AP=BP
∴点P在AB的垂直平分线上。
4、三角形三条垂直平分线的交点叫外心,外心到三个顶点的距离是相等的。
5、垂直平分线的画法:
1.先用圆规取大于1
2AB的长度
2.分别以A、B为圆心在线段两边,向上下界面画弧
3.连接两个交点所得到的直线就是线段AB的垂直平分线。