含硼金刚石结构及应用研究

合集下载

掺硼金刚石薄膜电极在水处理中应用的研究进展_方宁

掺硼金刚石薄膜电极在水处理中应用的研究进展_方宁

可以被完 全矿化 , 原液 所需 能耗和 时间分 别为 80 kW · h/ m3 、4 h ;经过预处理的渗滤液所需能耗和时 间分别为 61 kW · h/ m3 、3 h[ 25] 。 2 .1 .3 染 料 用 BDD 薄膜电极电解还原酸性橙 Ⅱ的过程中 , 偶氮键(N =N)断裂生成小分子电解产物后 , 继续被 矿化 。在酸性介质中 , 还原产物(苯胺)以铵正离子 的形态存在 , 不易被继续降解 ;在碱性介质中 , 酸性 橙 Ⅱ降解为苯胺后继续被矿化成 CO 2 和 H 2 O ;当支 持电解质中存在氯离子时 , 电化学氧化过程生成次 氯酸根离子 , 次氯酸根离子的存在 , 加速了酸性橙 Ⅱ 的降解[ 26] 。 文献[ 27] 考察研究了 BDD 薄膜电极对活性艳 红的处理效果 。通过循环伏安扫描 , 发现其比石墨 电极和 P t 电极的响应电流大 , 石墨电极和 P t 电极 响应几乎没有 , 说明 BDD 薄膜对活性艳红具有一定 的降解能力 。 但是经过连续扫描 3 次以后 , 其响应 电流峰值变小 , 究其原因是由于表面钝化所导致 。 2 .1 .4 除草剂 复杂的有机氯除草剂如敌草隆(3-(3 , 4-二氯苯 基)-1 , 1-二甲基脲)、3 , 4-二氯苯胺[ 28] 、4-氯-2-甲基苯 氧基乙酸 、2-(4-氯代苯氧基)-2-甲基丙酸和 2-(4-氯2-甲基苯氧基)丙酸[ 29] 等在 BDD 薄膜电极上也表现 出了较好的降解效果 。 降解过程中苯环断裂 , 有氯离 子 、铵离子和中间产物小分子有机酸生成 。在较低的 反应物浓度下 , 其电流效率仍然能大于 20 %。 2 .1 .5 表面活性剂 对于大分子表面活性剂 , 用十二烷基苯磺酸纳 和十六烷基三甲基铵氯化物作为目标物[ 30] , 在 BDD 薄膜电极表面上的电化学氧化表明 , 十二烷基苯磺 酸纳(阳离子)平均电流效率为 6 %, 十六烷基三甲 基铵氯化物(阴离子)平均电流效率为 12 %。 2 .1 .6 羧 酸 羧酸在 BDD 薄膜电极上的电化学氧化有苯甲 酸[ 31] , 在电解过 程中生成水杨酸 、氢醌 和羟基苯甲 酸等中间产物 , 而后进一步被降解为 H 2 O 和 CO 2 。 对于芳香族化合物来说 , 电流效率的高低主要 受传质的影响 , 降解速率受传质的控制 , 由于反应物 是大分子有机物 , 在电极表面往往要分好几步才能 被彻底矿化 , 因此中间产物的生成不能忽视 。 有些 中间产物在溶液中生成不溶性聚合物 , 当电压较小 时 , 容易在电极表面聚合而使电极钝化 。 溶液中存 在一些可被氧化的阴离子与主反应竞争 , 从而降低 电流效率 。

自锐性含硼金刚石磨削性能研究

自锐性含硼金刚石磨削性能研究

摘要 : 本文通过将 自锐性 含硼金 刚石 和普通 R V D金刚石分别制成树脂砂轮 , 磨削硬质合金工件 , 对磨 削比、 磨削功率 、 磨粒出刃高度进行 表征 , 实验表明 , 自锐性含硼金刚石磨削 比比普通金刚石高 2 2 %, 主轴功率上升斜 率小 3 8 %, 磨 削过程更稳定 , 结 合剂把持力更强 , 砂 轮
表 2 磨 削参 表
工 艺 参 数 砂轮转速/ ( r / m i n )
进 刀方 式
数据
l 5 0 0
双 边进 刀
1 6 2 0. 0 2 4 2 5 ×0. 0 2
工 作 台纵 向 进 给 速 度/ ( m / m i n )
工作台横向进 给量/ mm 单刀进刀量/ m m
Ab s t r a c t : I n t h i s p a p e r , t h e s e l f —s h a r p e n i n g b o r o n—d o p e d d i a mo n d a n d RV D d i a mo n d w e r e ma d e i n t o r e s i n g i r n d i n g wh e e l a n d g r i n d i n g c a r b i d e wo r k p i e c e .T h e g r i n d i n g r a t i o , g r i n d i n g p o w e r a n d a b r a s i v e b l a d e h e i g h t w e r e c h a r a c t e r i z e d .Ex p e r i me n t s s h o w t h a t t h e s e l f —s h a pe r n i n g b o r o n—d o p e d d i a mo n d g i r n d i n g i s 2 2 % h i g h e r t h a n o r d i n a r y d i a mo n d, t h e s p i n d l e p o w e r i r s e s l o p e i s 3 8 % l e s s , t h e g r i n d i n g p r o c e s s i s mo r e s t a b l e , t h e b o n d i n g a g e n t i s s t r o n g e r , t h e ri g n d i n g wh e e l c a n k e e p s h a p. r Ke y wo r d s : d i a mo n d;b o r o n d i a mo n d;g i r n d i n g t e s t

金刚石的成因研究(报告)

金刚石的成因研究(报告)

金刚石的成因研究一、金刚石的基本特征1.化学成分除碳外,还经常含硅、铝、钙、镁、锰、铬、铁、氮和硼等杂质元素。

除氮和硼外,其它杂质元素多以包裹体的形式存在,如磁铁矿、镁铝榴石、铬透辉石、绿泥石、黑云母、橄榄石以及石墨等。

宝石级金刚石含杂质很少,研究证明主要杂质元素是氮和硼,并因此可划分出不同的类型,含氮者称Ⅰ型,其中若氮聚集成片晶,为Ⅰa型,若氮少且成分散状,则为Ⅰb型;不含氮者为Ⅱ型,其中含硼者为Ⅱb型,不含硼者为Ⅱa型。

2.物理性质[1]金刚石纯净的为无色透明,常见的有含石墨包体的呈黑色,含铬的呈天蓝色,含铝或氮的呈黄色,此外还有较常见的褐色、烟灰色及少到罕见的乳白色、浅绿色、玫瑰色、红色、紫色、蓝色等金刚石。

金刚石的硬度是物质中最坚硬的,它的硬度是矿物硬度中最高的,为10(莫斯硬度)。

严格的测量矿物硬度的大小是用绝对硬度—显微硬度计,金刚石的显微硬度为8000-10000kg/mm2,是刚玉的3-4倍,是石英的8倍。

金刚石的比重为3.47~3.56,抗磨性好,熔点高,约为4000℃,化学性质稳定,绝缘性好,耐酸、耐碱。

具发光性,日光曝晒后或强光照射后,夜间在暗室中发出淡青蓝色磷光,在紫外线照射下发绿色、天蓝色或紫色萤光或不发光,不同地区的金刚石所发光色不同。

并且钻石的热导率是所有矿物中最高的。

3.晶体特征金刚石的晶体结构具立方面心晶胞。

碳原子除位于立方体晶胞的角顶及面中心外,把此立方体晶胞划分成八个小立方体,则在相间排列的小立方体中心还存在着碳原子。

图表 1 金刚石的晶体结构每一碳原子周围有四个碳原子围绕,形成四面体配位,整个构造可视为以角顶连接的四面体组合图一。

碳原子间以共价键连结,致使金刚石具有高硬度、高熔点、不导电、化学性质稳定以及很强的抗酸性和抗碱性等特征。

金刚石晶体为立方晶系其结晶习性最常见是八面体,此外,还有立方体、菱形十二面体以及变立方体等。

也有呈磨圆的或呈扁平的,双晶常见。

硼掺杂金刚石半导体的高温导电率

硼掺杂金刚石半导体的高温导电率

硼掺杂金刚石半导体的高温导电率
硼掺杂金刚石因其卓越的物理化学性质,如高热导率、高击穿场强、化学稳定性好以及优异的半导体性能,在高温环境中具有潜在的优势。

硼原子掺杂进金刚石晶格后,可以转变金刚石为P型半导体,这是因为硼原子取代金刚石晶格中的碳原子时,会贡献一个空穴作为载流子,从而增加了金刚石的导电性。

关于硼掺杂金刚石在高温下的导电率,通常情况下,其导电性在一定的温度范围内随着温度的上升而增加。

然而,对于所有半导体来说,温度过高时,载流子(在这种情况下是空穴)的数量会因为热激发而增多,但同时载流子的平均自由程也会因晶格振动加剧而缩短,这两个效应共同决定了半导体电阻率随温度的变化趋势。

理论上,当温度足够高以至于接近或超过半导体的本征温度时,导电性会达到一个峰值,之后随着温度的继续上升,由于热激发产生的非平衡载流子会超出掺杂水平,导致载流子复合增强,电阻率反而会增大。

硼对人造金刚石表面结构及性能的影响

硼对人造金刚石表面结构及性能的影响

硼对人造金刚石表面结构及性能的影响徐 岩,周金海,荣春玲,李亚选(郑州华晶金刚石股份有限公司,河南 郑州 450000)摘 要:硼对金刚石晶体性能有明显影响。

文章结合以往的文献资料,重点介绍了硼对金刚石表面结构及性能的影响,希望为相关人员提供一定的借鉴。

关键词:硼;人造金刚石;表面结构;性能;影响中图分类号:O649 文献标志码:A 文章编号:1672-3872(2019)16-0241-01——————————————作者简介: 徐岩(1988—),男,河南郑州人,工程师,研究方向:人造金刚石。

1 含硼金刚石的合成方法现在,多数含硼金刚石单晶都是在具有超高温高压的铰链六侧超压缩机上使用掺杂硼的石墨或掺杂硼的催化剂合成的。

在这中间,硼掺杂催化剂的制备方法:粉末冶金法和触媒片渗硼法。

详细的实验操作方法:在碳源方面,以片状的含硼镍锰合金为触媒、含硼石墨为主,经轴向交替分层为叶蜡石后在高压容器中合成。

一些学者使用碳化硼(b4c)作为碳源,以合成腔合成的ni70mn25co5和fe55ni2lco 合金作为催化剂,就会得到含硼量大于1wt%的高含硼黑色金刚石。

由于被b 和c 分隔的碳原子数量很少,因此金刚石的生长速度缓慢,并且金刚石中铁磁杂质含量极低。

使用含硼T641的石墨做为渗硼剂,原料则使用不含硼的含氮人造金刚石,在超高压高温条件下通过将ni70mn25co5硼的石墨夹层复合阳离子为碳源,高温高压合成含硼金刚石的工艺方法。

CICS 的阶数越低,所合成的金刚石含硼量越高,其抗氧化温度和导电性也会有显著的提升。

2 实验过程实验过程期间,操作人员需要将合成好的金刚石,按照技术规范与操作原理要求,进行提纯、筛分、分选以及称重等工作。

与此同时,需要利用相关设备及时测量出金刚石的实际抗压强度以及氧化温度等参数数据。

一般来说,在金刚石抗压强度测量设备的选择方面,最好选用JDY-1型单颗粒抗压强度测定仪。

另外,在金刚石氧化温度的测量方面,最好选用LCP-1型差热膨胀仪设备。

含硼聚晶金刚石复合片(B-PDC)的研究

含硼聚晶金刚石复合片(B-PDC)的研究
21 0 2年 2月 第 1 期 第3 2卷 总 第 17期 8
金刚石与磨料磨具工程
D a n & Ab a ie gn e i g i mo d r sv sEn i e rn
F b. 01 e 2 2 No. V0 . 2 S ra .1 7 1 1 3 e i1 8
ma e c b c r s . Th p ro ma c s f d fee t a ls d u i p e s e e f r n e o i r n s mpe we e e t d n t e e ul we e ic s e a d f r t se a d h r s t s r d s u s d n
LU Y—o ,, S N Y n1n X a - n,, I a g , LU Ch n -u n , Z N o g x n 。 I i b U a . g , U Y nj Y N Xin o u I e gy a HE G Y n -i g a
人造 金 刚石 烧 结 体 的发 展 始 于上 个 世纪 6 0年 代
初期 , 国 G E 公司在 7 美 .. 0年 代 初 率 先研 制 成 功 金 刚
而 成 的带硬质 合 金 衬底 的多 晶金 刚石 产 品 , 泛 应 用 广
摘要
利 用 国产六 面顶压机 , 高温 高压 的条件 下 , 用黏 结 剂 C 在 采 o熔渗 催化 方 法合成含 硼 聚 晶金 刚石 复
合 片。对加 入 不 同体 积分数 的含 硼金 刚石 合成 的样 品进行 性 能测试 , 最后 对样 品 的性 能 测试 结果 进 行讨
论 分析 , 并对 聚 晶金 刚石 层微观 结 构做 了扫描 电镜 观察 和 X D物 相 分析 。结 果表 明 : 品的抗 冲击韧 性 R 样 和 耐热性 比普 通金 刚石 复合 片有显 著提 高 , 当添加 含硼金 刚石微粉 体积 分数 为 2 % ~ a 时综合 性 能 最 a 3%

不同形状掺硼金刚石薄膜

不同形状掺硼金刚石薄膜

谢 谢
金刚石微粉电极
金刚石粉末微电极在含O.005 mol/L的 K3Fe(CN)6/K4Fe(CN)6的0.1 mol/LKCl 溶液中不同扫描速率的循环伏安曲线, 图中曲线由里向外扫描速率依次为O.01、 O.02、0.05、O.2、0.4、0.5、0.6、0.8、 1.0 V/s。 [Fe(CN)6]4-/[Fe(CN)6]3-偶对的氧化、 还原过程是电化学工作者常用来研 究新型电极的经典体系,是公认的电化 学可逆过程。
由图可知,每条曲线上都有一对氧化还原峰,它们相应 于[Fe(CN)6]4-/[Fe(CN)6]3-偶对的氧化还原过程。可见, 对于每一种扫描速率的循环伏安曲线,氧化峰与还原峰 的峰形基本对称,氧化峰电流与还原峰电流的比值近似 等于1,并且随着扫描速率的增加,氧化、还原峰电流不 断增加,[Fe(CN)6]4-的氧化峰电位向正方向移动,而 [Fe(CN)6]3-的还原峰电位向负方向移动。氧化峰和还原 峰电位差ΔEp范围为59-140 mv,表明它是一个准可逆反 应(可逆反应的ΔEp等于59 mV),并且随着扫描速率的增 加,可逆性逐渐变差。
交流阻抗(EIS)
交流阻抗技术是研究电极界面过程常用的电化学技术。 通常情况下,阻抗一般包括电极系统的电化学反应阻抗、 电池内部各界面层的阻抗以及电极反应离子在电解质中 的扩散阻抗等,其各部分参数与电极的结构密切相关。 通过研究阻抗图能够间接理解电极的结构变化情况,同 时还可以认识电极界面性质及其变化规律。此外,交流 阻抗技术还可以利用等效电路对对所研究体系进行模拟。 电池的交流阻抗图谱正极负极和电解质中产生的各种阻 抗,通常采用Nyquist图来表示。
结果发现BDD电极具有与其他标准电极材料如Ti-Pt、Au等 相媲美的神经记录性质。

硼掺杂金刚石硼浓度计算

硼掺杂金刚石硼浓度计算

硼掺杂金刚石硼浓度计算硼掺杂是一种重要的金刚石改性方法,它能够显著改善金刚石的性能,使其在工业应用中更加出色。

硼是一种常见的掺杂元素,它能够通过提高晶格的稳定性和改变能带结构来增强金刚石的硬度、热导率和化学稳定性。

因此,硼掺杂金刚石被广泛应用于高压高温领域、电子器件制造以及其他重要的工业应用中。

为了实现理想的硼掺杂金刚石,我们需要计算硼的浓度。

浓度计算是合成硼掺杂金刚石的前提和基础,它能够帮助我们了解金刚石的具体结构和性质。

下面,我将详细介绍硼掺杂金刚石的浓度计算方法。

第一步是选择合适的理论方法。

硼掺杂金刚石的浓度计算通常使用第一性原理计算方法,如密度泛函理论(DFT)。

DFT是一种基于量子力学原理的计算方法,它能够准确地描述原子和分子的结构和性质。

在选择DFT方法时,我们需要考虑其计算精度、计算效率以及适用的计算范围。

第二步是建立模型。

在进行计算之前,我们需要构建包含硼掺杂金刚石结构的模型。

模型可以采用周期性边界条件,以保证计算结果的准确性。

同时,我们还需要选择适当的体系尺寸和超胞大小来确保模型的稳定性。

第三步是确定硼的掺杂位置和浓度。

掺杂位置通常选择为晶格内的间隙位置,例如位置4和6。

而硼的浓度则可以通过改变硼原子的数目来实现,一般以原子的百分比来表示。

第四步是进行计算。

通过数值优化和能量计算,我们可以得到硼掺杂金刚石的稳定结构和能量。

同时,还可以计算硼掺杂金刚石的晶格常数、电子结构、电子态密度等性质。

最后,我们需要对计算结果进行分析和比较。

通过比较不同硼浓度下的结构与性质,我们可以选择最优的硼浓度,以满足具体应用需求。

总之,硼掺杂金刚石的浓度计算是合成功能优化的关键一步,它可以指导我们合理设计和合成具有理想性能的硼掺杂金刚石材料。

通过选择适当的计算方法、建立合理的模型、确定掺杂位置和浓度,并进行准确的计算和分析,我们能够为金刚石材料的设计和应用提供科学依据和技术支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含硼金刚石结构及其应用研究金刚石主要分为两种:一种是天然金刚石,另一种是人造金刚石。

由于天然金刚石产量稀少,不能满足工业需求,因此世界各国都很重视发展并广泛使用.人造金刚石合成的含硼金刚石聚晶具有超导特性,这进一步引起了人们对含硼金刚石的广泛关注。

但天然的含硼金刚石仅占天然金刚石总量的1~2%12”,远远不能满足工业需求。

因此,如何用人工方法合成出高质量的含硼金刚石成为生产者和使用者追逐的目标。

(一)含硼金刚石的性能一般来说,含硼金刚石与普通金刚石相比,具有抗氧化性强、耐热性好、化学惰性好、抗压性能佳和半导体性能优异等特点。

尤其是含硼金刚石的电学性能极佳,具有禁带宽、载流子迁移率高、介电常数低、导热性能好的特点,特别适合制造高性能的电力电子器件,可以在更高温度和恶劣环境下正常工作,是一种有发展前途的高温、大功率半导体材料。

含硼金刚石晶体中的硼含量一般很低,但对改善和提高金刚石晶体性能的影响是显著的。

研究结果表明,硼元素对金刚石的影响主要在以下几个方面:①颜色在显微镜下观察,金刚石由于硼含量浓度的不同,分别呈无色、蓝色或黑色。

蓝色金刚石晶体在电子工业中用作半导体材料,其它颜色晶体常用作磨料与工具材料。

②耐热性含硼金刚石的表面起始氧化温度比普通金刚石的高150℃~250℃。

其原因是因为硼原子与金刚石表面上的碳原子成键时形成硼碳结构,没有多余价电子与外来缺电子原子如氧原子发生反应,金刚石处于稳定状态,晶体的耐热性提高。

但晶体内硼原子含量的变化,会使表面起始氧化温度有所不同。

③冲击韧性冲击韧性是检测金刚石质量水平的重要手段之一。

黑色含硼金刚石具有良好的冲击韧性,车刀在载荷断续切削共晶硅铝合金、粉末钛合金、玻璃钢等材料时很少崩刃。

④耐磨性含硼金刚石晶体的耐磨性和研磨能力好,特别适用于研磨硬而韧的材料,可用作耐磨涂层、磨料、钻头、切削刀具等。

⑤化学惰性用黑金刚石聚晶做成的车刀,可以切削高硬度的淬山东火钢材。

在切削过程中与铁的粘连现象比普通金刚石刀具小,不粘刀,不形成切削瘤,工件的加工质量显著提高。

⑥半导体性能金刚石晶体中掺入硼、氮或磷元素之后,可由绝缘体转变为半导体甚至导体。

具有三个价电子的硼原子进入金刚石晶格后会以替位形式取代碳原子成为受主中心,晶格中产生空穴载流子,金刚石成为空穴半导体,这种掺杂称为P型掺杂。

硼在金刚石中的杂质能级位于价带顶上方0.37eV处,是浅受主杂质。

随硼含量的增加,金刚石的电导率增加。

(二)含硼金刚石的合成方法目前含硼金刚石单晶大多采用掺硼石墨或掺硼触媒在铰链式六面顶压机超高温高压装置上进行合成。

其中掺硼触媒的制备方法有:粉末冶金法和触媒片渗硼法。

具体的实验方法有:以片状的含硼镍锰合金为触媒、含硼石墨为碳源,沿轴向交替分层装入叶腊石后在高压容器内合成;有的学者采用碳化硼(B4C)作碳源,Ni70Mn25Co5及Fe55Ni2l Co l合金作触媒,装入合成腔内合成,得到含硼量大于1wt%的高含硼黑色金刚石。

由于B、C分离出碳原子少,金刚石生长速度较慢,金刚石中铁磁性杂质含量低。

用含硼T641石墨做渗硼剂,以不含硼的含氮人造金刚石作原料,在超高压高温条件下进行共渗,使硼进入金刚石中,得到了硼富集于晶体表面的硼皮含氮人造金刚石。

对Ni70Mn25Co5触媒合金进行固体掺硼,与石墨片间隔横片式组装,合成工艺采用两次施压法,合成得到的含硼金刚石抗压强度、耐热性和优质粗晶粒百分比均有提高,但单次合成产量下降。

采用离子注入法,以氧化硼或纯硼为源对天然金刚石表面进行渗硼,得到的透明硼皮金刚石抗氧化性能有显著提高。

也有人提出采用含硼的石墨层间化合物GICs作为碳源,高温高压合成含硼金刚石的工艺方法。

GICS的阶数越低,所合成的金刚石含硼量越高,其抗氧化温度和导电性明显提高。

实验证明,合成时控制好石墨或触媒材料中的含硼量和合成工艺,是合成性能和用途不同的金刚石的关键问题,特别是合成半导体性质的金刚石显得更重要。

(三)含硼金刚石的晶体结构分析本章利用X射线衍射仪(XRD)、电子探针(EPMA)、拉曼光谱仪(Raman)、红外光谱仪(Infrared Ray)和透射电子显微镜(TEM)对Di—A,Di—Bl型和Di.B2型金刚石的晶体结构,内部杂质和微观结构进行了分析。

结论如下:(1)XRD实验表明,Di.B2型金刚石的(111)面的衍射强度与其它晶面的强度比值明显高于Di.A和Di—Bl型金刚石。

说明掺杂的硼原子促进了金刚石(111)面的生长。

金刚石晶形主要为八面体图4.1(a)是Di.A型金刚石的x射线衍射图。

XRD谱表明在20~1 00。

范围内存在三条尖锐的衍射峰,其位置分别28=44.2(d=2.05nm),20=75.4。

(d=1.25 nm),20=91.4。

(d=1 07 nm)。

图4.1(b)和4.1(C)分别是Di—Bl和Di.B2型金刚石的X射线衍射图谱。

可以看出,这两种金刚石样品的晶面取向发生了变化:Di—B.型金刚石的(111)面衍射峰强度增加,(220)面的衍射峰强度减小,几乎消失。

而Di-B2型金刚石试样只观察到(111)面的衍射谱线,其.强度峰值略小于Di—Bl型金刚石。

对照立方金刚石的标准x射线衍射卡(见图4.2),可以确定,三种金刚石都为立方结构,且结晶程度较好。

(2)EPMA分析表明,金刚石表面硼元素的浓度随着触媒中硼含量的增加而增加。

同一金刚石颗粒的(100)晶面与(111)晶面上硼元素浓度是不同的,(111)面的浓度较高。

(3)Raman光谱的实验结果证明,三种金刚石都具有高结晶度。

Di.A型金刚石的Raman特征峰(1 333cm。

)与天然金刚石的Raman峰(1 332.5。

)非常接近,说明缺陷浓度很低。

Di.Bl和Di—B2型金刚石因为硼原子的掺入,使其特征峰向低频率方向漂移,半峰宽也逐渐宽化。

(4)在含硼金刚石(Di.Bl和Di.B2型)的红外光谱中,发现了因硼原子与碳原子成键而引起的特征吸收峰(2842cm‘1),说明两种金刚石均属于11 b型金刚石。

随着硼原子浓度的增加,在Di—B2型金刚石中发现了B.O键和B.CH3键的吸收峰,说明硼原子在金刚石品格间隙中也存在。

同时,Di.B2型金刚石中因为大量的硼原子占据了氮原子的位置,使与氮有关的吸收峰强度大幅度降低。

(5)利用透射电子显微镜观察到的硼化物有面心立方的Fe23(C,B)6,多晶Fe3(C,B),正交结构的(Fe,Yi)B,四方结构的Fe2B,正交结构的Ni3B,六方结构的B4c。

这些硼化物是高温高压条件下合金中的硼元素从熔融的合金扩散进入金刚石,与晶体中的碳及其它杂质元素化合形成的,并因金刚石合成后快速冷却而来不及析出,保留在金刚石晶体内。

四运用与结论1.将硼铁粉掺入粉末冶金铁基金刚石催化剂中,制得片状铁基含硼触媒,以石墨做碳源,用常规的高温高压法可以合成出含硼金刚石单晶。

2.含硼金刚石单晶随触媒中硼含量的高低而呈灰黑色或不透明的黑色。

电子探针的实验结果表明,金刚石与触媒中的硼含量变化趋势是一致的,即触媒中硼含量越高,相应的金刚石中硼浓度越大。

在同一含硼金刚石单晶颗粒的不同晶面上,硼含量不同。

3.金刚石形貌测试系统与XRD的分析结果表明:常规金刚石多呈规则的六一八面体,而含硼金刚石的晶形以八面体为主。

这是因为硼原子促进了金刚石(111)晶面的生长速率所致。

4.利用扫描电镜和原子力显微镜对含硼金刚石表面进行观察,发现其表面形貌复杂。

存在因冷却过程中触媒凝固而形成的枝蔓状和河流状花纹;还有因活化态的碳原子和硼原子迁移到位错与金刚石晶体表面相遇处沉积下来而形成的阶梯状台阶形貌。

含硼金刚石的(111)面上平行的台阶和螺旋型台阶证明,台阶生长是金刚石生长的重要方式。

金刚石(100)面还存在大量金刚石颗粒集团,尺寸为100一300nm,其表面粗糙度较高(约20nm)。

5.含硼金刚石的Raman特征峰向低频方向漂移,半峰宽发生宽化,金刚石中硼浓度越高,峰位漂移和半峰宽宽化现象越明显。

红外光谱证明,合成的含硼金刚石中存在II b型金刚石特征吸收峰(2842cm。

)。

硼原子浓度较高时,除与碳原子成键外还形成了B—O键和B.CH3键。

同时,当硼原子浓度较高时,与氮原子有关的吸收峰强度大幅度降低。

6.利用透射电子显微镜观察到含硼金刚石中存在面一Ii,立方的Fe23(C,B)6,多晶Fe3(c,B),正交结构的(Fe,Ni)B,四方结构的Fe2B,正交结构的Ni3B和六方结构的B4c等多种硼化物。

这些硼化物是高温高压条件下合金中的硼元素从熔融的合金扩散进入金刚石,与晶体中的碳及其它杂质元素化合形成的,在淬火过程中保留在金刚石晶体内。

7.根据人造金刚石等级划分标准,合成的含硼金刚石为MBD8级。

触媒中少量的硼掺杂使金刚石的静压强度及冲击韧性(包括普通冲击韧性和热冲击韧性)均较常规金刚石单晶有所提高。

8.差热分析的实验结果表明,含硼金刚石的抗氧化性优于普通金刚石。

金刚石的高温氧化反应因为硼原子的掺入而受到抑止,起始氧化温度可以由761.7℃提高到951.6℃。

金刚石中存在硼含量的最佳值,硼元素浓度超过这一值后若继续增加,则金刚石的抗氧化性降低。

9.用自制的电阻.温度测量系统测量了含硼金刚石的电阻一温度系数。

发现少量掺杂对金刚石的电阻影响不大,金刚石依然为绝缘体。

当硼原子浓度较高时,金刚石的电阻明显降低,并且电导随温度升高而增大,具有负的电阻温度系数,即出现半导体特征。

室温~570K范围内,含硼金刚石存在两种导电机制:低温时(室温~350K),位于浅受主能级上的硼原子的空穴跃迁到价带,引起电导增大,此时的电离能较小,为O.368ev;温度升高(350K~570K),深受主能级中的杂质受到激发,产生较高的电离能(约0.602ev),电导增大速度加快。

实验证明,含硼金刚石在773K 以上进入本征电离区,此时的电离能为3.97ev。

因此。

其最高工作温度可达773K,适合制作高温半导体器件。

l 0.熔媒法合成金刚石的表面总是包覆着一层几十微米的金属包膜,它与金刚石的生长密切相关。

透射电镜(TEM)对含硼金刚石表面的__金属薄膜进行检测,证明薄膜内层中最主要的高碳相是Fe3(C,B),没有发现石墨、金刚石和无定形碳结构。

因此,Fe3(C,B)应是金刚石合成的过渡相。

根据价电子结构的计算结果和热力学知识分析,认为金刚石的形核方式是以位于薄膜内层的铁碳化合物为基底的非均匀形核。

11.用场发射扫描电镜(FESEM)观测到金属薄膜表面存在片层状生长的棱锥状晶体和规则的锯齿状台阶。

分析认为,金刚石形核后从包覆膜中可以析出类金刚石结构单元,堆积在金刚石表面。

金刚石晶核以片层或台阶方式生长。

相关文档
最新文档