电磁兼容报告

电磁兼容报告
电磁兼容报告

PCB中的电磁兼容技术

PCB中的电磁兼容技术

一、引言

随着信息化社会的发展,电子产品的数量及种类不断增加,其功能和速度也

在不断提高, 使得印制电路板(PCB) 承载的电子器件和线路的密度飞速提高,随之而来的电磁兼容性(EMC Electro Magnetic Compatibility) 问题也变得越来越突出。PCB设计不再只是器件之间的电气连接,还必须考虑电磁兼容性。因此,在进行PCB 设计时,应根据实际需要选择合适的印制板板层设置,进行合理的元器件布局和信号走线,并采取一些基本的措施以降低电磁干扰,增强电路的抗干扰能力,满足电磁兼容性指标的要求。

二、EMC及相关概念

2.1 电磁兼容

电磁兼容(Electro Magnetic Compartibility——EMC 直译为“电磁兼容性”) 一般指电气及电子设备在共同的电磁环境中能执行各自功能的共存状态。它是研究在有限的空间、时间和频率资源下各种设备和系统可以相互共存而不至于造成性能下降甚至无法正常工作的科学。它主要包括两个方面的内容:一是发射性;二是抗扰性。即电磁骚扰性和电磁敏感性。

电磁兼容是通过控制电磁干扰来实现的,电磁干扰产生的问题包含过量的电磁辐射及对电磁辐射的敏感性两方面。EMI表现为当数字系统加电运行时,会对周围环境辐射电磁波,从而干扰周围环境中电子设备的正常工作。它产生的主要原因是电路工作频率太高以及布局布线不合理。PCB是产生EMI的源头,所以PCB 设计直接关系到电子产品的电磁兼容性(EMC)。如果在高速PCB设计中对EMC/EMI 予以重视,将有助缩短产品研发周期加快产品上市时间。

2.2 PCB上的电磁干扰

2.2.1 元器件的高频寄生特性

在一块PCB 板上,导线、电阻、电容、电感等在不同频率下表现出不同的特性,如图1 所示:

图1 元器件在高低频时不同特性

导线:一般不把PCB 上的走线看做射频辐射器,除非走线特别长,并且频率很高,导线就会具有天线效应。

电阻:在纯数字电路中,电阻主要是用作限流和确定固定电平。但在射频系统中,电阻对EMI 的产生也是有贡献的。寄生电容存在于电阻的两端之间,它对极高频设计有很大的破坏。

电容:当电路频率超过电容自谐振频时,电容就出现电感特性了。电容器引脚上的寄生电感将使电容器在其自身谐振频率以上时表现为电感特性而失去其原有的功能。

电感:在数字电路中,电感用于对电磁干扰的抑制。对于电感来说,其电感阻抗随着频率的增加而增加,当频率很高时,高频信号的传递就会受到影响。

2.2.2 常见的电磁干扰

PCB 设计中存在的电磁干扰主要有:

?传导干扰

传导干扰主要通过导线耦合及共模阻抗耦合来影响其它电路。例如噪音通过电源电路进入某一系统,所有使用该电源的电路就会受到它的影响。

?串音干扰

串音干扰是由电容性干扰和电磁性干扰所引起的,是一个信号线路干扰另外一邻近的信号路径。它通常发生在邻近的电路和导体上,用电路和导体的互容和

互感来表征。

?辐射干扰

辐射干扰是由于空间电磁波的辐射而引入的干扰。PCB 中的辐射干扰主要是电缆和内部走线间的共模电流辐射干扰。当电磁波照射到传输线上时,将出现耦合问题,沿线引起的分布小电压源可分解为共模(CM) 和差模( DM) 分量。

三、PCB中的电磁兼容设计

3.1 器件的选择

3.1.1 器件封装

电子元器件的封装分为有铅封装和无铅封装两种。有铅封装的元器件有寄生效应,特别是在高频范围。从EMC的观点来看,首选应当是表贴元器件。

3.1.2 电阻的选择

因为低的寄生效应,表面贴电阻是首选。有铅封装类型的电阻选择顺序由高到低的次序是炭膜电阻>金属氧化膜电阻>绕线电阻。

3.1.3 电容的选择

旁路电容

旁路电容的主要作用是对交流旁路,滤掉从敏感区域进入的干扰。旁路电容主要担当高频的旁路器件,来减少在电源部分的瞬态电路的要求。通常,铝和钽电容是旁路电容的最佳选择,它们的取值取决于PCB 上瞬态电流的需要,但是通常取值在10~470uF,假如PCB 上有许多集成电路,开关电路和PCB 上带有长导线的程序存储单元,可能需要更大的电容。

去耦电容

在有源器件开关时产生的高频开关噪声通过电源线向其他地方散播,去耦电容的主要作用是局部稳定有源器件的直流电源,减小通过板子传播的开关噪音,

将这些噪音去耦到地。理想的讲,旁路电容和去耦电容应当在电源入口的地方尽力靠近放在一起,来滤掉高频噪声,去耦电容的取值大约是旁路电容的1/100 到1/1000, 去耦电容应当尽可能的靠近IC,因为导线电阻会降低去耦电容的作用.

储能电容

储能电容可为芯片提供所需要的电流,并且将电流变化局限在较小的范围内,从而减小辐射。储能电容一般放在下列位置:PCB 板的电源端;子卡、外围设备和子电路I/O 接口和电源终端连接处;功耗损毁电路和元器件的附近;输入电压连接器的最远位置;远于直流电压输入连接器的高密元件位置;时钟产生电路和脉动敏感器件附近。

3.2 PCB板层布局与EMC

PCB板设计的开始阶段就是层的设置,层设置不合理可能产生诸多的噪声而

形成电磁干扰和自身的EMC 问题,所以合理的层布局对电磁兼容性而言是十分重要的。PCB板层由电源层、地线层和信号层组成。层的选择、层的相对位置以及电源、地平面的分割、PCB板的布线、信号质量、接口电路的处理等都对PCB 板的EMC 指标起着至关重要的作用,也直接影响到整台电子产品的电磁兼容性。

3.2.1 PCB的层数选择

根据电源、地的种类、信号线的密集程度、信号频率、特殊布线要求的信号数量、周边要素、成本价格等方面的综合因素来确定PCB 板的层数。要满足EMC 的严格指标并且考虑制造成本,适当增加地平面是PCB 的EMC 设计最好的方法之一。对电源层而言,一般通过内电层分割能满足多种电源的需要,但若需要多种电源

供电,且互相交错,则必须考虑采用两层或两层以上的电源平面。对信号层而言,除了考虑信号线的走线密集度外,从EMC 的角度,还需要考虑关键信号(如时钟、复位信号等) 的屏蔽或隔离,以此确定是否增加相应层数。单面板和双面板虽然制造简单、装配调试方便,但只适用于一般电路要求,不适用于高组装密度或复杂电路的场合。尤其是高速数字电路、数模混合电路的PCB。由于没有好的参考平面,环路面积增大而使辐射增强,平行走线也不可避免。就EMC 要求而言,如果成本允许,在PCB设计时尽量不选择单面板或双面板。

3.2.2 PCB的层排列

PCB 的层排列也是有原则的,合理排列各层对PCB的抗干扰能力十分有益。PCB 设计中层排列的一些基本原则如下。

(1) 关键电源平面与其对应的地平面相邻。由于电源、地平面存在自身的特性阻抗,电源平面的阻抗比地平面阻抗高,相邻的两平面可形成耦合电容,并与PCB 板上的退耦电容一起降低电源平面的阻抗,同时获得较宽的滤波效果。

(2) 相邻层的关键信号不能跨分割区,从而避免形成较大的信号环路,降低产生较强辐射和敏感度等问题。

(3) 高频、高速、时钟等关键信号有一相邻地平面,这样设计的信号线与地平面间的距离仅为线路板层间的距离,高频电路将选择环路面积最小的路径流动,形成最小的信号环路面积,从而减少辐射。也就是说,与地线层相邻的信号层作为优选层进行信号走线。参考面的选择也应优选地平面,虽然电源平面、地平面皆可用作参考平面,且有一定的屏蔽作用。但相对而言,电源平面具有较高的特性阻抗,与参考电平存在较大的电位差。从屏蔽角度考虑,地平面一般均作接地处理,并作为基准电平参考点,其屏蔽效果远远优于电源平面。

(4) 避免电源层平面向自由空间辐射能量,使电源平面小于地平面,一般要求电源平面向内缩进20-H(即20-H原则, H指相邻电源平面与地平面的介质厚度) 。

3.3 PCB板元器件布局与EMC

PCB 板上元器件布局不当是引发干扰的重要因素。元器件本身也是一个干扰源和敏感器,尤其是集成电路等有源器件,其固有的敏感特性和电磁特性(比如频率特性、输入/输出阻抗特性、输入端的平衡/非平衡特性、翻转时间等)对电磁兼容问题产生重要影响。因此,元器件的合理布局,不仅更容易实现原理线路的连通,而且可以保证信号的完整性,满足电磁兼容性的标准。

元器件布局首先应满足系统的机械结构进行定位,把所有严格定位的器件(如变压器、传感器、散热器、显示器、可调式电位器、按键以及接口接插件等) 放好并锁定。一些质量较大的器件不宜直接安装在PCB 上,需要用支架并安装在机壳上。但从电磁兼容性考虑,元气件的布局须遵循一些共同的原则。

3.3.1 PCB 板的空间分割

对PCB 板进行空间分割的目的是为了降低PCB 上不同类型的元器件之间互相干扰。空间分割的实施方法就是对元器件进行分组,可以根据电源电压高低、数字器件或模拟器件、高速器件或低速器件以及电流大小等特点,对电路板上的不同电气单元进行功能分组,每个功能组的元器件彼此被紧凑地放置在一起以便得到最短的线路长度和最佳的功能特性。高压、大功率器件时,与低压、小功率器件应保持一定间距,尽量分开布线。

建议首先以不同的直流电源电压来分组,因为高低电源电压器件紧挨在一起,由于电位差而产生电场辐射干扰。如果使用同种电压的元器件中仍有数字和模拟元件之分,则可以再进行分组。按电源电压、数字及模拟电路分组后可进一步按速度快慢、电流大小进行分组。

3.3.2 敏感器件的处理

某些敏感器件例如锁相环,对噪音干扰特别敏感,他们需要更高层次的隔离。解决的方法是在敏感器件周围的电源铜箔上蚀刻出马蹄形绝缘沟槽,如图所示。

图2 马蹄形绝缘沟槽示意图

该器件使用的所有信号进出都通过狭窄的马蹄形根部的开口。噪音电流必然在开口周围经过而不会接近敏感部分。使用这种方法时,确保所有其他信号都远离被隔离的部分。这种设计方法可以避免能够引起干扰的噪音信号的产生,确保所有其他信号都远离被隔离的部分。

3.3.3 元器件布局时的其他基本原则

?连接器及其引脚应根据元器件在板上的位置确定。所有连接器最好放在印制板的一侧,尽量避免从两侧引出电缆,以便减小共模电流辐射。因为PCB板上有高速数字信号时,如果产生共模辐射,电缆是很好的共模辐射天线(振子天线会比单极天线产生更大的共模干扰辐射) 。

?I/O驱动器应紧靠连接器,避免I/O信号在板上长距离走线,耦合不必要的干扰信号。当高速数字集成芯片与连接器之间没有直接的信号交换时,高速数字集成芯片应安排在远离连接器处。否则,高速数字信号有可能通过电场或磁场耦合对输入/输出环路产生差模干扰,并通过接口电缆向外辐射。如果高速器件必须与连接器相连,则应把高速器件放在连接器处,尽量缩短走线,然后在稍远处安放中速器件,最远处安放低速器件。否则,高速信号将穿过整个印制板才能到达连接器,可能对沿途的的中低速电路产生干扰。

?高速器件(频率大于10MHz或上升时间小于2ns的器件) 在印制电路板上的走线尽可能短。

?发热元件(如ROM ,RAM、功率输出器件和电源等) 远离关键集成电路,最好放在边缘或偏上方部位,以利于散热。

?电感布局时,不要并行靠在一起,因为这样会形成空芯变压器并相互感应产生干扰信号,因此他们之间的距离至少要相当于其中一个器件的高度,或者成直角排列以将其互感减到最小。

?许多电磁干扰都来自电源,集成电路的退耦电容尽量靠近IC的电源引脚,且退耦电容的引线尽量短。建议使用表贴封装电容。

3.4 PCB的布线设计

拙劣的PCB 走线对信号的传输会产生极大的影响,导致更多的电磁兼容问题,因此布线时应遵循一些普遍准则:

输入输出端的导线尽量避免相邻长距离平行,可增大线条间距或走线间插入地线来减少平行串扰。

走线宽度不要突变,不要突然拐角,拐弯处一般走圆弧或135 度角。

减小电流流通过程的导线环路面积,是因为载流回路对外的辐射与通过电流、环路面积和信号频率成正比。

减少导线长度,增加导线宽度,有利于减少导线阻抗。

为使同一层内相邻线路间的串扰和噪声耦合最小,应予线间隔离以实现布线分离。

设置分流和保护线路,对关键信号进行隔离和保护。

电源线、地线及信号线走线时,除了要遵循走线的普遍准则外,还应依据自身的功能与特点进行布线。

3.4.1 电源线

电源线尽量加粗电源线宽度以减少环路电阻,使电源线、地线的走向和数据传递的方向一致。对于具有电源层和地层的多层PCB,应减少电源线到电源层或地层的线长。尽可能使电源单独为各功能单元供电,使用公共电源的所有电路尽可能彼此靠近,相互兼容。

3.4.2 地线

克服电磁干扰,最主要的手段就是接地。公共地线应尽量布置在PCB 板的边缘,且最好形成环形或网状以减小接地电位差。接地线应尽量加粗,尽可能多保留铜箔做地线以提高屏蔽效果。数字地与模拟地分开,模拟地中低频地应尽量采用单点并联,实际布线有困难时可部分串联后再并联,高频地宜采用多点串联。对于双面板,地线布置特别讲究,通过采用单点接地法,电源和地是从电源的两端接到印制线路板上来的,电源一个接点,地一个接点。印制线路板上,要有多个返回地线,并都汇聚到回电源的那个接点上,就是所谓单点接地。所谓模拟地、数字地、大功率器件地开分,是指布线分开,而最后都汇集到这个接地点上来。与印刷线路板以外的信号相连时,通常采用屏蔽电缆。对于高频和数字信号,屏蔽电缆两端都接地。低频模拟信号用的屏蔽电缆,一端接地为好。如能将接地和屏蔽正确结合起来使用,可解决大部分干扰问题。电子设备中地线结构大致有系统地、机壳地(屏蔽地) 、数字地(逻辑地) 和模拟地等。

3.4.3 信号线

信号线要尽量短以减小干扰信号的耦合路径。先布时钟、敏感信号线,再布高速信号线,确保此类信号的过孔足够少,分布参数特性好以后,再布一般不重要的信号线。不相容信号线间要相互隔离以避免产生耦合干扰。关键信号线不能跨分割区走线,包括过孔、焊盘导致的参考平面间隙,否则会导致信号回路面积的增大,且为抑制边缘辐射效应,其距参考平面边沿距离应≥3H(H为线距离参考平面的高度)。强辐射信号线和敏感信号线要远离接口外出信号线,以避免相互间的耦合干扰,从而减小向外辐射与系统误操作。差分信号线应等长、同层且并行走线以保持阻抗一致,线间无其它走线以确保共模阻抗相等,提高其抗干扰能力。

四、结束语

PCB 的EMC设计是一项实践性非常强的技术工作,需要从功能模块分布、性能指标要求、成本承受能力等多方面进行综合考虑。若在设计之初对PCB中的EMC 进行预测分析和仿真,根据电磁兼容预测分析给出的结果,采取必要的技术措施来降低干扰,以提高PCB设计的质量。在产品设计之初,采用仿真软件如Apsim 对PCB进行电磁兼容预测分析,大体估计所设计PCB的电磁兼容性能。在设计中遵循分层对策、布局规则和走线准则,不仅能提高系统的抗干扰能力,而且还可以节约成本,降低费用。希望未来的PCB设计软件,能够更多地将一些电磁兼容性设计的规则集成到软件内部,从设计源头上就能仿真预测分析出可能存在的问题,并找出解决问题的方案。

电磁兼容习题

2012年《电磁兼容》习题 第1讲电磁兼容导论 [1] 比较电磁交互作用和电磁耦合的含义。 [2] 你希望通过这门科学到那些知识? [3] 描述一个你所见到的电磁兼容问题。 [4] 举例说明某种设备产生的电磁骚扰对其自身产生电磁干扰。 [5] 上网浏览一个电磁兼容网站,介绍其主要内容。 第2讲电磁骚扰源 [1] 分析比较5kA的2.6/50μs和10/350μs冲击电流的频谱特性。 第3讲电磁骚扰传播机理 [1] 分析雷电作用在建筑物内的电子设备的途径。 [2] 如图3.1所示的高功率负载的温度监控电路,Q1和Q2为用来放大热电耦元件的输出信号,与高功率负载同接在一组蓄电池上,该负载须经常通过开关S 开端来调整温度。请指出该电路中的骚扰源、耦合途径及敏感体。 图3.1 高功率负载的温度监控电路 [3] 在图3.2中,如果在导线2周围放置一个接地的屏蔽体,从导线2到屏蔽体的等于100pF,导线2和导线1之间的电容是2pF,导线2和地之间的电容是5pF,在导线1上有一电压为10V、频率为100kHz的交流信号。假若使用电阻RT端接导线2,请问:若电阻RT取下面的值时,导线2拾取的噪声电压是多少? a.无穷大 b.1000Ω c.50Ω

图3.2 [4] 因为功率晶体管的开关动作,在开关电源的电源输出导线和电源外壳之间会引入噪声电压,即图3.3中的V N1。这个噪声电压能以容性耦合方式进入相邻的电路2。C N是电源输出导线和电源外壳之间的等效耦合电容。 a.在该电路中,请将V N2/V N1表示成频率的函数,并绘制出该函数的曲 线(忽略图中用点线画出的电容C)。 下一步,按照图示在输出电源导线和电源外壳之间增加电容C,请回答下面的问题。 b.请问该电容是如何影响噪声耦合的? c.电源导线的屏蔽是怎样才能改善电路的噪声性能? 图3.3 [5]有两根导线,长度均为10cm,导线间距为1cm,用它们构成一个电路。将该 电路放在10G、60Hz的磁场中,请问:电路中磁场耦合产生的最大噪声电压是

电磁兼容技术实训报告

电磁兼容技术实训报告 课题:USB电缆线的EMC设计与测试班级: 姓名: 学号: 指导老师: 实训时间:2014.10.27-2014.11.01

一、电磁兼容 1、EMC概念: 电磁兼容性(Electro Magnetic Compatibility,简称EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;另一方面是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性。所谓电磁干扰是指任何能使设备或系统性能降级的电磁现象。而所谓电磁干扰是指因电磁干扰而引起的设备或系统的性能下降。 电磁干扰(Electro Magnetic Interference,简称EMI),即处在一定环境中的设备或系统,在正常运行时,不应产生超过相应标准所需要的电磁能量,相对应的测试项目有: ●电源线传导骚扰(CE); ●信号、控制线传导骚扰(CE); ●辐射骚扰(RE); ●谐波电流测量(Harmonic); ●电压波动和闪烁测量(Fluctuation and Flicker); 电磁干扰度(Electro Magnetic Susceptibility,简称EMS),即处在一定环境中的设备或系统,在正常运行时,设备或系统能承受相应标准规定范围内的电磁能量干扰,相对应的测试项目有: ●静电放电抗扰度(ESD);

●电快速瞬变脉冲群抗扰度(EFT/B); ●浪涌(SURGE); ●辐射抗扰度(RS); ●传导抗扰度(CS); ●电压跌落与中断(DIP); 2、电磁干扰的危害: 电磁干扰有可能使设备或系统的工作性能偏离预期的指标或使工作性能出现不希望的偏差,即工作性能发生了“降级”。甚至还可能使设备或系统失灵,或导致寿命缩短,或使系统效能发生不允许的永久性下降,严重时,还能摧毁设备或系统。而且还将影响人体健康。 3、电磁兼容设计的目的: 电磁兼容设计的目的是使设计的电子设备或系统在预期的电磁环境中实现电磁兼容,其要求是使电子设备或系统满足EMC标准的规定并具有两方面的能力:a.能在预期的电磁环境中正常工作,无性能降低或故障;b.对该电磁环境不是一个污染源。 二、EMC三要素 系统要发生电磁兼容性问题,必须存在三个因素,即电磁干扰源、传播路径(耦合途径)、敏感设备。 1、电磁干扰源 任何形式的自然或电能装置所发射的电磁能量,能使共享同一环境的人或其它生物受到伤害,或使其它设备、分系统或系统发生电磁危害,导致性能降级或失效。

电磁兼容报告

目录 第1章电子通信设备为什么要保证电磁兼容性 (2) 1.1 电磁干扰简介 (2) 1.2 电磁兼容性的基本概念 (4) 1.3 电磁干扰对电子通信设备的危害 (4) 第2章电子通信设备面临的电磁干扰 (8) 2.1 电子通信设备的电磁干扰来源的分类 (8) 2.2 电子通信设备的电磁干扰的主要来源 (8) 第3章针对电子通信设备面临的各种电磁干扰的解决方法研究 (11) 3.1 电磁屏蔽 (11) 3.2 滤波法降低电磁干扰 (12) 3.3 接地及搭接 (12)

3.4 瞬态骚扰的抑制 (14) 3.5 合理的进行电路设计 (16) 第1章电子通信设备为什么要保证电磁兼容性 1.1电磁干扰简介 电磁辐射干扰是指通过电磁源空间传播到敏感设备的干扰。这类干扰的能量是由干扰源辐射出来,通过介质(包括自由空间)以电磁波的特性和规律传播的。构成辐射干扰源有两个条件:一个是有产生电磁干扰的波源;另一个是能把这个电磁波能量辐射出去。电磁辐射场区一般分为近区场和远区场,电磁辐射干扰近区场表现为静电感应与电磁感应导致的干扰, 远区场则为通过辐射电磁波造成的干扰。任一载流导体周围都产生感应电磁场并向外辐射一定强度的电磁波, 相当于一段发射天线。处于电磁场中的任一导体则相当一段接收天线, 会感生一定电势。导体的这种天线效应是导致电子、电气设备相互产生电磁辐射干扰的根本原因。常见的信息辐射干扰源有发送设备、本地振荡器、非线性器件和核爆脉冲等。

随着现代科学技术的发展和人民生活水平的提高,电气及电子设备的数量及种类不断增加,从而导致空间电磁环境日益复杂。在这种复杂的电磁环境下,怎样减少设备间的电磁干扰,使每个系统能正常运转,是一个迫切需要解决的问题。这正是研究电磁兼容技术的宗旨。目前,电磁兼容已成为电子系统或设备的技术关键,为了保证电子系统的正常工作,必须进行严格的电磁兼容性设计,在系统研制、设计、工艺、生产、试验、使用等各阶段均要采用电磁兼容技术,电磁兼容设计和管理应贯穿于从产品的研制到使用的始终。 电磁兼容 (Electromagnetic Compatibility)指的是设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁干扰能力。电磁兼容技术是以解决实践中的电磁干扰而出现并发展起来的新兴学科。从广义角度来讲,电磁兼容技术要研究和解决的问题是电气、电子设备及系统以及人类或动植物在一个共同的电磁环境中的安全共存问题。它既包括电气、电子设备之间的相互干扰,也包括自然界电磁干扰(宇宙干扰、天电干扰、雷电干扰等)对电气、电子设备、人或动植物的电磁影响或电磁效应。电磁干扰的传输有传导和辐射两种形式,归纳起来,任何电磁干扰都是由三个基本要素组合而产生的,它们是电

汽车电子电磁兼容测试标准解读

汽车电子电磁兼容测试 标准解读 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

汽车电子EMC测试,正在受到越来越多的关注。其中最重要的三个标准为,CISPR 25、ISO11452-2、ISO11452-4。本文给出了测试设备、所起到的作用和推荐方案,是汽车电子工程师的必备速查手册。 一、CISPR25标准 CISPR25目前用的是2007年第三版标准,与2002年的旧版,还是有很大差别。 1、CISPR25传导骚扰测试设备 CISPR25传导骚扰测试方法分为两种。一种是电压方法:电压测量只能用于单一导线的传导发射特性,故常用于测量电源线的发射,采用人工电源网络做隔离物;另外一种是电流探头方法:测量控制/信号线的发射。 CISPR25传导骚扰测试设备 2、CISPR25辐射骚扰测试方法 1)电波暗室(ALSE)方法:辐射场强测量应在ALSE 内进行,以消除来自电气设备以及广播台站产生的额外电磁骚扰的影响。 2)TEM小室方法:辐射场强度的测量应该在屏蔽室中进行,以消除来自电气设备和广播站的附加干扰。TEM 小室的工作如同屏蔽室一样。 3)带状线法方法:带状线是开方式的波导,由一个接地平板和一个主导电体(隔板)构成,有特征阻抗。一般采用的特征阻抗值是50Ω和90Ω。 目前关于零部件/模块的辐射骚扰测量的常见方法主要是:ALSE方法、TEM小室方法、带状线法。但目前由于TEM小室受电磁环境及场地限

制较多,带状线法则还处于研究和实践中。所以基本上都是用ALSE方法来进行汽车电子的辐射骚扰测量。 CISPR25辐射骚扰测试设备 二、ISO11452-2标准 ISO11452介绍的是用各种不同的测试方法来对车载电子进行抗骚扰类的测试。所以我们将对最常用的两种测试方法进行介绍。分别是电波暗室法(ISO11452-2)和大电流注入法(ISO11452-4)。 辐射抗干扰测试方法: 校准法:使用校准夹具标定的标准电流值,系统记录下发射功率后,再将样品摆放上去开始试验,测试过程中的注入功率不变,但产生的电流可能出现变化。 闭环法:无需校准,直接测试,系统根据监测钳的数据实时改变输出功率,尽量使电流稳定在测试要求的数值。 注:这两种方法产生的结果很可能有较大差别。其效果和产品自身的阻抗特性有关。其中闭环法不常见,而基本都是用校准法进行测试。 ISO11452-2测试设备 三、ISO11452-4 Part 4:大电流注入法,Bulk currentinjection (BCI) 道路车辆-用窄带发射的电磁能量进行电子干扰。部件试验方法-第4部分,该测试目的是检验设备对【1MHz– 400MHz】频带电磁场的抗干扰性能。 ISO11452-4测试设备

第1章作业及答案

电磁场与电磁兼容习题答案与详解 第一章 1.1. 定义在直角坐标系中的一个矢量(),,A x y z ,方向从()0,2,4-指向()3,4,5-,单位为m 。求(a )矢量(),,A x y z 的表达式,(b)两点之间的距离,(c)矢量(),,A x y z 方向上的单位矢量。 解: (a) A=(3-0)a x +(-4-2) a y +(5+4) a z =3a x -6 a y +9a z (b) 126963||222=++=A (c) 126 z y x A 9a a 6- 3a |A |A a +== 1.2.给出在直角坐标系中的三个矢量A ,B 和C 如下: 23A a a a x y z =+- 2B a a a x y z =+- 3C a a a x y z =-+ 求A+B ,B C -,32A B C +-,A ,A B ?,B A ?,B C ?,C B ?,A B C ??, 解: z y x a a a 343-+=+B A z y x a a a 322-+-=-C B z y x z y x a a a a a a 98)261()233()632(23-+-=---++++-+=-+C B A 14132||222=++=A 7232=++=?=?A B B A z y x z y x a a a a a a 4711 13211---=--=?-=? B C C B 194212)471(-=+--=---?=??z y x a a a A C B A

1.3.如果23A a a a x y z =+-和2B a a a x y z =-+,求(a )B 在A 上的投影或分量的大小,(b )A 和B 之间的夹角(最小),(c )A 投影在B 上的失量,(d )与包含A 和B 的平面相垂直的单位矢量。 解: (a) 141439 41322||-=++--=?=?A A B A a B (b) )1421arccos()arccos(-=?=AB B A θ (c) B B B a a a a a 2121)(-+ -=?y x A (d) B a a a B A B A a 3 31537153||-+-=??=y x k 1.8.如果作用于一个物体的力为234F a a a x y z x z =++,求在直角坐标系中将物体沿一直线从()10,0,0P 移动到()21 ,1,2P 时所需作的功。 解: 路径C 的方程为:02=++z y x , 投影到yoz 平面的方程为y z 2= J z y x dz dy y dx x dz dy z dx x l d F z y x z y x C 12831434624322 010******** 1020 1010=++=++=++=++=????????====== 1.9.求矢量234F a a a x y z x z =++在直角坐标系中沿下列路径从()10,0,2P 到()23,2,0P 的线积分,(a )沿两点之间的直线路径;(b )路径由两段构成:第一段从()10,0,2P 到原点,第二段从原点到()23,2,0P 。 解: (a) 解法同1.8题 路径C 的方程为:0223=-+z y x , 投影到yoz 平面的方程为y z = 7 8694234324320220 23020220 30022030 =-+=++=++=++=????????======z y x dz dy y dx x dz dy z dx x l d F z y x z y x C

汽车电子电磁兼容测试标准解读

汽车电子EMC测试,正在受到越来越多的关注。其中最重要的三个标准为,CISPR 25、ISO11452-2、ISO11452-4。本文给出了测试设备、所起到的作用和推荐方案,是汽车电子工程师的必备速查手册。 一、CISPR25标准 CISPR25目前用的是2007年第三版标准,与2002年的旧版,还是有很大差别。 1、CISPR25传导骚扰测试设备 CISPR25传导骚扰测试方法分为两种。一种是电压方法:电压测量只能用于单一导线的传导发射特性,故常用于测量电源线的发射,采用人工电源网络做隔离物;另外一种是电流探头方法:测量控制/信号线的发射。 CISPR25传导骚扰测试设备 2、CISPR25辐射骚扰测试方法 1)电波暗室(ALSE)方法:辐射场强测量应在ALSE 内进行,以消除来自电气设备以及广播台站产生的额外电磁骚扰的影响。 2)TEM小室方法:辐射场强度的测量应该在屏蔽室中进行,以消除来自电气设备和广播站的附加干扰。TEM 小室的工作如同屏蔽室一样。 3)带状线法方法:带状线是开方式的波导,由一个接地平板和一个主导电体(隔板)构成,有特征阻抗。一般采用的特征阻抗值是50Ω和90Ω。 目前关于零部件/模块的辐射骚扰测量的常见方法主要是:ALSE方法、TEM小室方法、带状线法。但目前由于TEM小室受电磁环境及场地限制较多,带状线法则还处于研究和实践中。所以基本上都是用ALSE方法来进行汽车电子的辐射骚扰测量。

CISPR25辐射骚扰测试设备 二、ISO11452-2标准 ISO11452介绍的是用各种不同的测试方法来对车载电子进行抗骚扰类的测试。所以我们将对最常用的两种测试方法进行介绍。分别是电波暗室法(ISO11452-2)和大电流注入法(ISO11452-4)。 辐射抗干扰测试方法: 校准法:使用校准夹具标定的标准电流值,系统记录下发射功率后,再将样品摆放上去开始试验,测试过程中的注入功率不变,但产生的电流可能出现变化。 闭环法:无需校准,直接测试,系统根据监测钳的数据实时改变输出功率,尽量使电流稳定在测试要求的数值。 注:这两种方法产生的结果很可能有较大差别。其效果和产品自身的阻抗特性有关。其中闭环法不常见,而基本都是用校准法进行测试。

电磁兼容检测领域中-CNAS

CNAS—GL07 EMC检测领域不确定度的评估指南 中国合格评定国家认可委员会 二〇〇六年六月

电磁干扰测量中不确定度的评定指南 1目的与范围 1.1本指南是采用国际电工委员会下属国际无线电干扰特别委员会(缩写为CISPR)的标准CISPR 16-4(First edition 2002-05)编制而成的,为EMC检测中电磁干扰测量时的不确定度评定提供指南。 1.2在EMC检测中,如需考虑所使用的仪器引入的不确定度对测量结果或符合性判断结论的影响时,可以参考本指南。 1.3本指南的附录A提供了为确定各测量不确定度分量而需要的有关数据信息。附录A不是用户指南,不希望用户在进行不确定度评定时照搬照抄。 1.4本指南在文献目录中列出了部分不确定度评定的参考资料。 2引用文件 JJF1059-1998 《测量不确定度的评定与表示》 JJF1001-1998《通用计量术语及定义》 JJF1049-2003《测量仪器特性的评定》 3术语、定义和符号 本指南采用下列术语、定义和符号。 3.1术语、定义 关于不确定度的术语和定义见JJF1059-1998 《测量不确定度的评定及表示》;计量学通用名词术语和定义见JJF1001-1998 《通用计量术语及定义》。 3.2通用符号 X i:输入量 x i:X i的估计值

u(x i):x i的标准不确定度 c i:灵敏系数 y:测量结果,被测量的估计值,对所有能识别的和明显的系统影响已修正的测量结果 u c(y):y的合成标准不确定度 k:包含因子 U:y的扩展不确定度 3.3被测量 V:电压,dBμV P:骚扰功率,dB PW E:电场强度,dBμV/m 3.4输入量 V r:接收机电压读数,dBμV Lc:接收机与人工电源网络、吸收钳或天线之间的连接网络的衰减量,dB 注:“阻抗稳定网络”-在CISPR 16-4原文中称为“人工电源网络”(Artificial Mains Network),所以采用的缩写符号为AMN。 Lamn:人工电源网络的电压分压系数,dB Lac:吸收钳的插入损耗,dB AF:天线系数,dB(/m) δVsw:对接收机正弦波电压不准确的修正值,dB δVpa:对接收机脉冲幅度响应不理想的修正值,dB δVpr:对接收机脉冲重复频率响应不理想的修正值,dB δVnf:对接收机本底噪声影响的修正值,dB δM:对失配误差的修正值,dB δMD:对电源骚扰造成的误差的修正值,dB δZ:对人工电源网络阻抗不理想的修正值,dB δE:对环境条件影响的修正值,dB δ AFf:对天线系数内插误差的修正值,dB

PCB电磁兼容性设计报告样本

PCB电磁兼容性设计报告 学科专业: 测控技术与仪器 本科生: 张亚新 学号: 1002445 班号: 232121 指导教师: 宋恒力

中国地质大学( 武汉) 自动化学院 10月24号

PCB电磁兼容性设计 摘要: 随着信息化社会的发展, 电子设备已被广泛应用于各个领域。各种电了产品趋向于小型化、智能化, 电子元器件也趋向于体积更小、速度更高、集成度更大, 这也导致了她们在其周围空间产生的电磁场点评的不断增加。由此带来的电磁兼容问题也日益严重。因此, 电磁兼容问题也就成为一个电工系统能否正常工作的关键。同样, 随着电子技术的飞速发展, 印刷电路板( PCB) 的密度越来越高, 其设计的好坏对电路的干扰及抗干扰能力影响很大。因此, 对PCB进行电磁兼容性(EMC)设计是非常重要的, 保证PCB的电磁兼容性是整个系统设计的关键。本文就EMC的历史发展及其在未来电子信息时代中的应用进行分析, 介绍电磁干扰的产生机理和 原因, 并提出了相应抗干扰设计的措施。 关键词: 信息化; 电磁兼容( EMC) ; 电磁兼容性; PCB;

一: 引言 .......................................................................... 错误!未定义书签。二: 电磁干扰与电磁兼容概述. (4) 1、早期历史概述 (5) 2、EMC 技术是随着干扰问题的日趋严重而发展的 (6) 3、电磁干扰对电子计算机等系统设施的危害 (6) 4、EMC在军事领域的发展状况 (7) 三: 电磁兼容学科的发展历史 (5) 四: 中国EMC技术的发展状况 (8) 五: 抗干扰措施与电磁兼容性研究 (8) 1、电路板设计的一般规则 (9) 2、电路板及电路抗干扰措施 (9) 六: 电磁兼容学科发展趋势 (10) 七: 小结 (12) 参考文献 (13) 一、引言 电磁干扰是现代电路工业面正确一个主要问题, 为了克服干扰, 电路设计者不得不赶走干扰源, 或者是设法保护电路不受到干扰源的干扰, 其目的都是为了让电路按照预期的目标开工作——

常见电磁兼容和电性能检测检测项目

常见电磁兼容和电性能检测检测项目 广电计量杜亚俊 电磁兼容和电性能检测综述 (1) 汽车整车及零部件 (1) 汽车整车 (2) 汽车电子部件 (2) 航空机载 (3) 轨道交通 (4) 国防军工 (5) 电磁 (7) 无线通信与通信基站干扰排查 (8) 无线通信产品 (9) 其他电子设备 (12) 多国认证 (14) 产品电磁兼容设计整改服务 (16) 研发设计服务 (16) 失效分析与整改调试服务 (16) 技术培训服务 (17)

电磁兼容和电性能检测综述 广电计量在广州、武汉、北京、无锡检测基地建有电磁兼容实验室,并与各 地电磁兼容检测机构和实验室达成战略合作,为各大企业解决电磁兼容与电 磁辐射影响的各类安全问题。下设技术研究院所属的电磁兼容研究所为客户 提供电磁兼容设计、标准建立以及科研项目验收等服务。 服务类型: ●汽车整车及零部件 ●航空机载 ●轨道交通 ●电力设备 ●医疗用电子设备 ●国防军工 ●电磁 ●无线通信及其他电子设备 ●船载电子设备 汽车整车及零部件 广电计量汽车电磁兼容检测能力获日产、神龙、江淮、吉利、宇通等整车厂认可,完全满足民品汽车整车及零部件电磁兼容检测领域有关国际、国家和行业标准,以及各车厂标准,汽车电子电磁兼容检测技术能力处于行业领先水平。 审核认可: 日产认可实验室 神龙认可实验室 江铃认可实验室 广汽认可实验室 一汽轿车认可实验室

E8/E9/E11认可实验室 北汽认可实验室 众泰认可实验室 …… 汽车整车 所有乘用车、商用车、货车及挂车 ■检测项目■检测标准 整车对外电磁辐射GB14023/CISPR 12 整车对内辐射GB18655/CISPR 25 整车辐射抗干扰ISO 11451-2 整车大电流(BCI)ISO 11451-4 整车静电放电(ESD)GB/T 19951/ISO 10605 汽车电子部件 汽车电子控制装置:包括动力总成控制、底盘和车身电子控制、舒适和防盗系统等。 车载汽车电子装置:包括汽车信息系统(车载电脑)、车灯、汽车胎压监测系统、导航系统、汽车视听娱乐系统、车载通信系统、车载网络、倒车影像后视系统、车载领航员后视摄像头等。 新能源高压部件:包括高压电池包、DC/DC转换器、充电机、高压空调等。 ■检测项目■检测标准 CE传导骚扰中国标准GB系列、QC/T系列 RE辐射骚扰国际标准ISO系列 低频磁场骚扰测试欧盟标准ECER10 BCI 大电流注入美国SAE J系列 RI电波暗室法辐射抗扰度NISSAN尼桑28401NDS02 瞬态抗扰度低频磁场抗扰度BMW宝马Gs95002

汽车电磁兼容(EMC)系列标准.整理DOCX

汽车电子电磁兼容系列标准 1汽车电磁兼容标准分类 汽车电磁兼容标准分为国际标准、国家标准、地区标准和企业标准。现国际上制定电磁兼容方面的标准化组织有: 1.国际标准化组织(ISO)、国际电工委员会(IEC)、国际电工委员会无线电干扰特别委员会(CISPR)。 2.美国国家标准协会(ANSI),美国汽车工程协会(SAE),德国电气工程师协会(VDE),英国标准协会(BSI)。上述标准协会的作用是与国际标准协调,并且制定各国家自己的标准。 3.地区标准主要是欧洲ECE法规和EEC指令。 4.美国福特公司、通用公司,德国大众、宝马等公司都有自己的企业电磁兼容标准,这些企业标准比国际上通用的标准要严格很多,例如通常国际标准对于汽车抗扰度的要求通常为24V/m,而一些汽车公司则规定为100V/m—200V/m。 1.1汽车电磁兼容国际性标准ISO 1.1.1ISO11451(整车) ISO11451《道路车辆—窄带辐射电磁能量所产生的电气干扰—整车测试法》(Road vehicles–Electrical disturbances by narrowband radiated electromagnetic energy–vehicle test methods)。 该标准为抗窄带电磁辐射源产生的电磁干扰的整车测试方法。ISO11451包括 4部分。分别为: ISO11451-1《第1部分概述和定义》 ISO11451-2《第2部分车外辐射源》自由场 ISO11451-3《第3部分车内内部发射机仿真》模拟车载发射机 ISO11451-4《第4部分:大量电流注入(BCI)》BCI 1.1.2ISO11452(零部件) ISO11452《道路车辆—窄带辐射电磁能量所产生的电气干扰—零部件测试法》(Road vehicles–Electrical disturbances by narrowband radiated electromagnetic energy–Component test methods) 该标准为抗窄带电磁辐射源产生的电磁干扰零部件测试方法。ISO11452包括11部分。分别为: ISO11452-1《第1部分:概述和定义》 ISO11452-2《第2部分:自由场法》 ISO11452-3《第3部分:TEM小室法》

电磁兼容课程报告教材

电磁兼容工程应用课程报告

电磁兼容现场测试中的干扰源辨识技术研究引言 在科学发达的今天,广播、电视、通信、导航、雷达、遥测测控及计算机等迅速发展,尤其是信息、网络技术以爆炸性方式增长,电磁波利用的快速扩张,产生了不断增长的电磁污染,带来了严重的电磁干扰。各种电磁能量通过辐射和传导的途径,以电波、电场和电流的形式,影响着敏感电子设备,严重时甚至使电子设备无法正常工作。上述情况对电子设备及系统的正常工作构成了很大的威胁,因此加强电子产品的电磁兼容性设计,使之能在复杂的电磁环境中正常工作已成为当务之急。电磁兼容性(Electromagnetic Compatibility,EMC)是设备或系统在其电磁环境中,能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。它包括电磁干扰(Electromagnetic Interference,EMI)和电磁敏感度(Electromagnetic Susceptibility,EMS)两个方面。电磁兼容测试是验证电子设备电磁兼容设计的合理性以及最终评价、解决电子设备电磁兼容问题的主要手段。通过定量的测量,可以鉴别产品是否符合EMC 相关标准或者规范,找出产品在EMC方面的薄弱环节。 目前很多国家和组织都制定了相关的电磁兼容标准,只有符合相关指标要求的电子和电气产品才能进入市场。要判断某电子产品是否存在电磁兼容性问题,就需要依据相关标准对该产品进行具体的电磁兼容测试。 在目前电磁兼容测试中,针对设备或分系统级的电磁兼容测试与评价有着较为完备的电磁兼容标准或规范体系,不仅规定了测试所使用的仪器设备的具体指标要求,同时还规范了测量方案的组成和环境要求,这是其他标准或规范中所少见的。然而针对系统测试,目前还没有详细具体的标准或规范。已经了解的标准有美军标MIL-E-6051D《系统电磁兼容性要求》(已等效成国军标GJB1389《系统电磁兼容性要求》),又如美军标MIL-STD-1541A《对航天系统的电磁兼容性要求》等。在这些标准中给出了一些应该遵从的原则,但如何将这些原则用于工程,还需要一个实践的过程。 虽然许多实验证明了设备和分系统通过了规定标准的EMC 测量,那么一般情况下是能够保证它们组成的系统可以实现自兼容。但是目前系统集成度越来越高,潜在的电磁干扰大大增加,另外复杂的电子系统往往具备多种工作模式,在设备和分系统试验时很难考虑周全;且研究了整个系统的EMC 试验数据,可以成为系统对设备和分系统EMC 指标验收的根据,有利于防止设备在EMC 设计中的过设计,浪费不必要的资源。所以能够评估系统电磁兼容性能的最直接和有效的方法是对系统在正常工作环境下进行测试即电磁兼容现场测试。由于现场测试面临着电磁环境的复杂性和系统组成的多样性等束缚条件,使得现场测试存在环境干扰严重、评估困难、结果不稳定、测试数据利用率低和干扰源难确定等一系列问题。又由于良好的干扰源定位能力能够对差异信号的辨识和故障诊断

电磁兼容技术报告

任何一个电子设备、分系统、系统以至复杂的系统工程,要能达到设计的指标和正常运行,只考虑电性能的设计是不够的,还必须同步进行EMC 设计。否则,在产品定型或系统组建后再发现电磁兼容问题,将会带来许多麻烦,甚至不可挽回的损失。 EMC 学科的建立和一系列电磁兼容标准的制定,为我们从理论与实践的结合 上实现产品或系统的电磁兼容提供了指导。电磁兼容的工作应从设备或系统研 制的初期,即方案论证阶段就开始考虑,并贯穿研制过程的各个阶段。而EMC 设计则是实现设备或系统电磁兼容的关键环节。有资料表明,进行EMC 设计,可以使90%左右的干扰得以控制。 EMC 设计的最终目的是为了使我们的设备或系统能在预定的电磁环境中正 常、稳定的工作,无性能降低或无故障,并对该电磁环境中的任何事物不构成电 磁骚扰,即实现电磁兼容。 EMC 设计的目标是通过EMC 测试和认证。 EMC 设计涉及的内容很多。总括来说,主要是对系统之间及系统内部的电磁兼容性进行分析、预测和控制。从原理上讲,要研究干扰的三要素(干扰源、干扰的耦合通道和接收器)和抑制干扰的措施等。从技术上来说,主要是如何运 用滤波、接地和屏蔽三大技术。滤波是消除传导干扰(低频)的最好方法,屏蔽对高频辐射干扰的隔离比较有效。合理的接地会减小地环路的干扰电流。 电磁兼容设计的基本原则和方法,首先是根据电磁兼容的有关标准和规范, 把产品设计对EMC 提出的指标要求分解成元器件级、电路级、模块级和产品级

的指标要求,再按照各级要实现的功能要求,逐级分层次的进行设计。下面以计算机为例,谈谈EMC 设计的粗浅认识。 一、计算机系统工作的特点 数字计算机是一个含有多种元器件和许多分系统的复杂的信息技术设备(ITE) 。外来的电磁骚扰,内部元器件之间、分系统之间的相互窜扰等,对计算 机及其传送的信息所产生的干扰与破坏,严重地威胁着计算机工作的稳定性、可靠性和安全性。据统计,由于干扰引起的计算机事故占其总事故的80%以上。另外,计算机作为高速运行的数字系统,也不可避免地向外辐射电磁干扰,污染电磁环境,对人体和其它设备造成危害。所以,计算机系统既是干扰源,又是干 扰的敏感接收设备。随着信息技术的飞速发展,数字系统,特别是计算机系统的电磁兼容性问题会越来越突出。 由于计算机系统以高速运行并传送数字逻辑信号,所以,计算机系统的电磁兼容性研究有其特殊性。主要表现在: 1.计算机是以数字电路为主,数字集成电路既是干扰源又是干扰的敏感器 件,如MOS 电路、D/A 电路等; 2.计算机以低电平传送信号,在电磁环境中易受干扰,即抗扰性差; 3.数字电路工作于逻辑方式,干扰超过阈值后,其状态不会因干扰消失而 恢复(模拟电路在瞬时干扰消失后,系统工作可以恢复正常); 4.计算机以识别二进制码为基础,传送的是脉冲信号,因此,系统中分布 着高频含量丰富的谐波,易产生高频干扰; 5.计算机工作于开关和瞬时状态的电路较多,瞬时产生的能量很大,干扰

《EMC作业(复习)题》..

《电磁兼容原理与技术》复习题 一、填空题; 1.严格地说,只要把两个以上的元件置于同一环境中,工作时就会产生电磁干扰,在两个系统之间会出现系 统间的的干扰,在系统内部各设备之间也会出现设备间的干扰,称为系统内的干扰。 2.电磁兼容学是研究在有限的空间、有限的时间、有限的频谱资源条件下, 各种用电设备或系统(广义 的还包括生物体)可以共存, 并不致引起性能降级的一门学科。 3.辐射干扰通过空间传播的电磁干扰。 4.传导干扰是指通过传输线传播的电磁干扰。 5.抗扰度是指设备、装置或系统面临电磁干扰不降低运行性能的能立。 6.传导骚扰可以通过电源线、信号线、互连线和接地导体等进行耦合。 7.一个电子产品若想满足其性能指标,降低通常是降低干扰影响的唯一途径。 8.反射式滤波器是指由电感器和电容器组成的,能阻止无用信号通过,并把它们反射回信号源的滤波器。 9.吸收式滤波器是指由有耗原件构成的,它通过吸收不需要频率成分的能量(转化为热能)来达到抑制干扰 的目的。 10.当高频信号通过铁氧体时,电磁能量以热能的形式耗散掉。

11.铁氧体抑制元件选择的原则是在使用空间允许的条件下,选择尽量长、尽量厚和内孔尽量小的铁氧体抑制原件。 10.电磁屏蔽的作用原理是利用屏蔽体对电磁能流的反射、吸收和引导作用,而这些作用是与屏蔽结构 表面上和屏蔽体内感生的电荷、电流与极化现象密切相关的。 11.金属屏蔽体接地是静电场屏蔽的必要条件。 12.电屏蔽的实质是在保证良好接地的条件下, 将干扰源发生的电力线终止于由良导体制成的屏蔽体, 从 而切断了干扰源与受感器之间的电力线交连。 13.电场屏蔽是抑制噪声源和敏感设备之间由于存在电场耦合而产生的干扰。 14.磁场屏蔽是抑制噪声源和敏感设备之间由于磁场耦合所产生的干扰,铁磁材料起到磁场屏蔽作用, 其实 质是对骚扰源的磁力线进行了集中分流。 15.金属盒的高频磁场屏蔽效能与高频磁场在磁场上产生的涡流大小有关。 16.屏蔽材料的电阻越小产生的涡流越大,屏蔽效果越好,所以高频磁场屏蔽材料应该用导电性能强的良导 体。 17.在实际使用中的金属屏蔽体都要求接地 , 因为这样可以同时屏蔽高频磁场也能屏蔽电场。 18.计算和分析屏蔽效能的方法主要有解析方法、数值方法和近似方法。 19.磁屏蔽是利用由高导磁材料制成的磁屏蔽体,提供低磁阻的磁通路使得大部分磁通在磁屏蔽体上的分

电磁兼容EMC设计及测试技巧

电磁兼容EMC设计及测试技巧 摘要:针对当前严峻的电磁环境,分析了电磁干扰的来源,通过产品开发流程的分解,融入电磁兼容设计,从原理图设计、PCB设计、元器件选型、系统布线、系统接地等方面逐步分析,总结概括电磁兼容设计要点,最后,介绍了电磁兼容测试的相关内容。 当前,日益恶化的电磁环境,使我们逐渐关注设备的工作环境,日益关注电磁环境对电子设备的影响,从设计开始,融入电磁兼容设计,使电子设备更可靠的工作。 电磁兼容设计主要包含浪涌(冲击)抗扰度、振铃波浪涌抗扰度、电快速瞬变脉冲群抗扰度、电压暂降、短时中断和电压变化抗扰度、工频电源谐波抗扰度、静电抗扰度、射频电磁场辐射抗扰度、工频磁场抗扰度、脉冲磁场抗扰度、传导骚扰、辐射骚扰、射频场感应的传导抗扰度等相关设计。 电磁干扰的主要形式 电磁干扰主要是通过传导和辐射方式进入系统,影响系统工作,其他的方式还有共阻抗耦合和感应耦合。 传导:传导耦合即通过导电媒质将一个电网络上的骚扰耦合到另一个电网络上,属频率较低的部分(低于 30MHz)。在我们的产品中传导耦合的途径通常包括电源线、信号线、互连线、接地导体等。 辐射:通过空间将一个电网络上的骚扰耦合到另一个电网络上,属频率较高的部分(高于30MHz)。辐射的途径通过空间传递,在我们电路中引入和产生的辐射干扰主要是各种导线形成的天线效应。 共阻抗耦合:当两个以上不同电路的电流流过公共阻抗时出现的相互干扰。在电源线和接地导体上传导的骚扰电流,多以这种方式引入到敏感电路。 感应耦合:通过互感原理,将在一条回路里传输的电信号,感应到另一条回路对其造成干扰。分为电感应和磁感应两种。 对这几种途径产生的干扰我们应采用的相应对策:传导采取滤波(如我们设计中每个IC的片头电容就是起滤波作用),辐射干扰采用减少天线效应(如信号贴近地线走)、屏蔽和接地等措施,就能够大大提高产品的抵抗电磁干扰的能力,也可以有效的降低对外界的电磁干扰。 电磁兼容设计 对于一个新项目的研发设计过程,电磁兼容设计需要贯穿整个过程,在设计中考虑到电磁兼容方面的设计,才不致于返工,避免重复研发,可以缩短整个产品的上市时间,提高企业的效益。 一个项目从研发到投向市场需要经过需求分析、项目立项、项目概要设计、项目详细设计、样品试制、功能测试、电磁兼容测试、项目投产、投向市场等几个阶段。 在需求分析阶段,要进行产品市场分析、现场调研,挖掘对项目有用信息,整合项目发展前景,详细整理项目产品工作环境,实地考察安装位置,是否对安装有所限制空间,工作环境是否特殊,是否有腐蚀、潮湿、高温等,周围设备的工作情况,是否有恶劣的电磁环境,是否受限与其他设备,产品的研制成功能否大大提高生产效率,或者能否给人们的生活或工作环境带来很大的方便,操作使用方式能否容易被人们所

电磁兼容实验报告

实验四电感耦合对电路性能的影响电力系统中,在电网容量增大、输电电压增高的同时,以计算机和微处理器为基础的继电保护、电网控制、通信设备得到广泛采用。因此,电力系统电磁兼容问题也变得十分突出。例如,集继电保护、通信、SCADA功能于一体的变电站综合自动化设备,通常安装在变电站高压设备的附近,该设备能正常工作的先决条件就是它能够承受变电站中在正常操作或事故情况下产生的极强的电磁干扰。 此外,由于现代的高压开关常常与电子控制和保护设备集成于一体,因此,对这种强电与弱电设备组合的设备不仅需要进行高电压、大电流的试验,同时还要通过电磁兼容的试验。GIS的隔离开关操作时,可以产生频率高达数兆赫的快速暂态电压。这种快速暂态过电压不仅会危及变压器等设备的绝缘,而且会通过接地网向外传播,干扰变电站继电保护、控制设备的正常工作。随着电力系统自动化水平的提高,电磁兼容技术的重要性日益显现出来。 一、实验目的 通过运用Multisim仿真软件,了解此软件使用方法,熟悉电路中因电感耦合造成的电磁兼容性能影响。 二、实验环境:Multisim仿真软件 三、实验原理: 1.耦合 (1)耦合元件:除二端元件外,电路中还有一种元件,它们有不止一条支路,其中一条支路的带压或电流与另一条支路的电压或电流相关联,该类元件称为偶合元件。 (2)磁耦合:如果两个线圈的磁场村相互作用,就称这两个线圈具有磁耦合。(3)耦合线圈:具有磁耦合的两个或两个以上的线圈,称为耦合线圈。 (4)耦合电感:如果假定各线圈的位置是固定的,并且忽略线圈本身所具有的电阻和匝间分布电容,得到的耦合线圈的理想模型就称为耦合电感。

自感磁链:11ψ=1N 11Φ 22ψ=2N 22Φ 互感磁链:21ψ=2N 21Φ 12ψ=1N 12Φ 2.伏安关系 耦合线圈中的总磁链:1ψ=11ψ±12ψ=1L 1i ±M 2i 2ψ=22ψ±21ψ=2L 2i ±M 1i 根据法拉第电磁感定律及楞次定律:电路变化将在线圈的两端产生自感,电压U L1,U L2和互感电压U M21,U M12。 于是有: dt di L dt d L U 11111== ψ dt di L dt d L U 2 2 222 == ψ dt di M dt d M U 1 2121== ψ dt di M dt d M U 21212==ψ 两线圈的总电压U1和U2应是自感电压和互感电压的代数和。即: dt di M dt di L M U L U U 211 1211±±=±±= dt di M dt di L M U L U U 1 22 2122±±=±±= 仿真图: 图中,信号源选择sources 中的AC power ,互感线圈选择Basic Virtual 中的TS Virtual 元件 图 10-1 耦合电感 M + _ + _ * * i 1 1L 2L i 2 u 1 u 2 图 10-2 同名端

电磁兼容基本知识问题及答案(原)

电磁兼容课程作业(问答58题) 1.为什么要对产品做电磁兼容设计? 答:满足产品功能要求、减少调试时间,使产品满足电磁兼容标准的要求,使产品不会对系统中的其它设备产生电磁干扰。 2.对产品做电磁兼容设计可以从哪几个方面进行? 答:电路设计(包括器件选择)、软件设计、线路板设计、屏蔽结构、信号线/电源线滤波、电路的接地方式设计。 3.在电磁兼容领域,为什么总是用分贝(dB)的单位描述?10V是多少dBV? 答:因为要描述的幅度和频率范围都很宽,在图形上用对数坐标更容易表示,而dB就是用对数表示时的单位,10V是20dBV。 4.为什么频谱分析仪不能观测静电放电等瞬态干扰? 答:因为频谱分析仪是一种窄带扫频接收机,它在某一时刻仅接收某个频率范围内的能量。静电放电等瞬态干扰是一种脉冲干扰,其频谱范围很宽,但时间很短,这样频谱分析仪在瞬态干扰发生时观察到的仅是其总能量的一小部分,不能反映实际干扰情况。 5.在现场进行电磁干扰问题诊断时,往往需要使用近场探头和频谱分析仪,怎样用同轴电缆制作一个简易的近场探头? 答:将同轴电缆的外层(屏蔽层)剥开,使芯线暴露出来,将芯线绕成一个直径1~2厘米小环(1~3匝),焊接在外层上。 6.一台设备,原来的电磁辐射发射强度是300V/m,加上屏蔽箱后,辐射发射降为3V/m,这个机箱的屏蔽效能是多少dB? 答:这个机箱的屏蔽效能应为40dB。 7.设计屏蔽机箱时,根据哪些因素选择屏蔽材料?

答:从电磁屏蔽的角度考虑,主要要考虑所屏蔽的电场波的种类。对于电场波、平面波或频率较高的磁场波,一般金属都可以满足要求,对于低频磁场波,要使用导磁率较高的材料。 8.机箱的屏蔽效能除了受屏蔽材料的影响以外,还受什么因素的影响? 答:受两个因素的影响,一是机箱上的导电不连续点,例如孔洞、缝隙等;另一个是穿过屏蔽箱的导线,如信号电缆、电源线等。 9.屏蔽磁场辐射源时要注意什么问题? 答:由于磁场波的波阻抗很低,因此反射损耗很小,而主要靠吸收损耗达到屏蔽的目的。因此要选择导磁率较高的屏蔽材料。另外,在做结构设计时,要使屏蔽层尽量远离辐射源(以增加反射损耗),尽量避免孔洞、缝隙等靠近辐射源。 10.在设计屏蔽结构时,有一个原则是:尽量使机箱内的电缆远离缝隙和孔洞,为什么?答:由于电缆近旁总是存在磁场,而磁场很容易从孔洞泄漏(与磁场的频率无关)。 因此,当电缆距离缝隙和孔洞很近时,就会发生磁场泄漏,降低总体屏蔽效能。 11.测量人体的生物磁信息是一种新的医疗诊断方法,这种生物磁的测量必须在磁场屏蔽室中进行,这个屏蔽室必须能屏蔽从静磁场到1GHz的交变电磁场,请提出这个屏蔽室的设计方案。 1答:首先考虑屏蔽材料的选择问题,由于要屏蔽频率很低的磁场,因此要使用高导磁率的材料,比如坡莫合金。由于坡莫合金经过加工后,导磁率会降低,必须进行热处理。因此,屏蔽室要作成拼装式的,由板材拼装而成。事先将各块板材按照设计加工好,然后进行热处理,运输到现场,十分小心的进行安装。每块板材的结合处要重叠起来,以便形成连续的磁通路。这样构成的屏蔽室能够对低频磁场有较好的屏蔽效能,但缝隙会产生高频泄漏。为了弥补这个不足,在坡莫合金屏蔽室的外层用铝板焊接成第二层屏蔽,对高频电磁场起到屏蔽作用。

相关文档
最新文档