数学物理方程--- 6 特征线法

合集下载

特征线理论及应用

特征线理论及应用


得:
J J v 2 1 c (J J ) 4
J ( x3 , t ) J ( x3 , t ) v1 v2 2 c1 c2 v( x3 , t ) 2 2 1 2
( 1) c1 c2 1 v1 v2 c( x3 , t ) [ J ( x3 , t ) J ( x3 , t )] 4 2 2 2
C 与发自M点的 C 所包
C+
P
D
围的区域,而这个区域 之外的地方,都不受M点 x 的影响。这个区域称为M 点的影响区。
Q
A
M
B
例:已知初始时刻 v(x,0), c(x,0) , 求D点的v(x,t), c(x,t)
t
CD (x3, t)
C+
A (x1, 0)
M
B (x2, 0)
x
解:在D(x3 , t)点,有
F1 A2
du
A1 u dx y A1
F1 du A2 A1du F1dx A1dy A2 dx
du dy F1dy A2 du u x A1dy A2 dx A1 A2 dx dy
dx dy
上两式表明: 即沿着特征线,
沿着特征线,分母和分子均为零。
例:一阶偏微分方程
u u 2x 3x 2 0 x y
u( x, y ) 的初始条件是
u(0, y ) 5 y 10
用特征线法确定: 1)通过点(2, 4)的特征线 2)沿此特征线的相容方程 3)u (2, 4) 的值
解:(1)对照一般形式的双曲型偏微分方程
u u 2 x 3x 2 0 x y
dx 1 3 ( ) C v c J J dt 4 4 dx 3 1 ( ) C v c J J dt 4 4

三类典型的数学物理方程

三类典型的数学物理方程
内容回顾
数学物理方程的建立过程
确定所研究的物理量 用数学中的“微元法”从所研究的系统中分割出
一小部分,再根据相应的物理规律分析邻近部分 与该部分的作用(抓主要作用),这种相互作用 在一个短的时间间隔内如何影响物理量。 把这种关系用微分方程表达出来,经过化简整理, 得到数学物理方程。
杆的纵振动方程 杆上x点在t时刻 F(x,t) 的弹性应力 x 研究对象:杆上各点的纵向位移 u(x,t)
得到
uxx u 2u u
utt a2[u 2u u ]
将上面两式代入原波动方程,得到
u 0
如何处理?
考虑采用积分的方法
先对 积分 u u d 0 f ( )
再对 积分
u f ( )d f1( ) f2 () f1(x at) f2(x at)(2)
即为齐次波动方程初值问题的通解 就某一具体问题,通过定解条件(初始条件)来 确定 f1 , f2
例:长为l 的均质细杆,侧面绝热,一端放在0°的水中,
另一端按已知规律 f (t) 变化。写出边界条件
物体边界面各点在时刻t所流过的热量已知:
u n
s
质温度已知,物体内部通过其边界S与 周围介质进行热量交换:
在S上任取一小块dS,用u1表示与物体接触处的介质温度,dQ 表示dt时间内流过dS的热量,根据牛顿冷却定律,我们有
弦的端点沿垂直于x轴的方向自由滑动,并受到一个 沿位移方向作用的已知外力,则边界条件形式为
ux (0,t) 1(t), ux (a,t) 2(t)
自由端点的情形:
1.2 初始条件与边界条件
第三类边界条件 给出所研究的物理量及其沿边界外法向导数 在边界上应满足的条件。
端点处为弹性支撑端的情形 根据Hooke 定律

数学物理方程的重点

数学物理方程的重点

一.无界问题的特征线法求解求解1.一维无界弦振动方程的达朗贝尔公式(特征线法在弦振动方程的应用)求解法 1.1齐次方程两端无界弦振动方程的求解 齐次弦振动方程及初始条件:⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0,02x x u x x u x t u a u t xx tt ψϕ其方程为+∞<<-∞>=-x t u a u xx tt ,0,02,其特征方程为022=-⎪⎭⎫⎝⎛a dt dx ,2,1c at x =±所以at x +=ξ,at x -=ηηξu u u x +=,ηξu a u a u t ⨯-⨯=,ηηξηξξu u u u xx ++=2,ηηξηξξu a u a u a u tt 2222+-=)()()()(),(0042at x G at x F G F t x u u u u a u xx tt -++=+=⇒=⇒=-=-ηξξηξη由初始条件)()(')(')0,(),()()()0,(x x aG x aF x u x x G x F x u t ψϕ=-==+=来确定⎰=---xx dbb x G x G a x F x F a 0)()]0()([)]0()([ψ)0()0()(1)()(0x G x F db b a x G x F xx -+=-⎰ψ)()()(x x G x F ϕ=+)(2)0()0()(21)(0x x G x F db b a x F xx ϕψ+-+=⎰)(212)0()0()(21)(0at x x G x F db b aat x F at x x ++-+=+⎰+ϕψ)(2)0()0()(21)(0x x G x F db b a x G xx ϕψ+---=⎰ )(2)()()(21)(0at x at x G at x F db b a at x G atx x -+-----=-⎰-ϕψ)()(),(at x G at x F t x u -++=⎰+-+-++=atx atx db b a at x at x t x u )(21)]()([21),(ψϕϕ(1)此公式为达朗贝尔公式 1.2单侧无界弦振动齐次方程的求解⎪⎩⎪⎨⎧>=>==>>=-0,0),0(),()0,(),()0,(0,0,02t t u t t x x u x x u x t u a u t xx tt ψϕ先求出对应双侧无界弦振动方程⎩⎨⎧ψ=Φ=+∞<<-∞>=-)()0,(),()0,(,0,02x x u x x u x t u a u t xx tt 其中要求)(),(x x ψΦ为奇函数又已知其右侧函数表达式可以求出求出左侧表达式⎩⎨⎧<--≥=Φ0),(0),()(x x x x x ϕϕ,⎩⎨⎧<--≥=ψ0),(0),()(x x x x x ψψ 将其带入达朗贝尔公式可求出对应双侧无界弦振动方程的解⎰+-ψ+-Φ++Φ=atx atx db b a at x at x t x u )(21)]()([21),( 只要令0)(21)]()([210),(,0=Φ+Φ-Φ⇒==⎰-db b a at at t x u x atat又令0>x ,⎪⎪⎩⎪⎪⎨⎧<+---+>+-++=⎰⎰+--+-atx at x atx at x at x db b a at x at a a at x db b a at x at x t x u )(,)(21))](()([21,)(21)]()([21),(ϕϕϕϕϕϕ 此),(t x u 即为单侧无界弦振动齐次方程的解 1.3零初始条件的非齐次弦振动方程的求解⎩⎨⎧==>=-0)0,(,0)0,(0),,(2x u x u t t x f u a u t xx tt 设);,(τt x w 为下面齐次方程的解⎩⎨⎧==>=-),(),(,0),(,02ττττx f x u x u t u a u t xx tt 则⎰=td t x w t x u 0);,(),(ττ为零初始条件的非齐次弦振动方程的解(将),(t x f 作用延时效果累积为将齐次化思想)转换计时器的初始时刻将齐次方程初始时刻换为0需要τ-=t t '可得0','>⇒>=t t dt dt τ 齐次方程可以化简为⎩⎨⎧===>=-0'),,()0,(,0)0,(0',0'2''t x f x w x w t w a w t xx t t τ 使用达朗贝尔公式可以求得⎰+-+-++='')(21)]'()'([21)',(at x at x db b a at x at x t x w ψϕϕ其中),()(,0)(τψϕx f x x ==则⎰-+--=)()(),(21),(τττt a x t a x db b f a t x w ⎰⎰⎰++--==t t a x t a x td db b f a d t x w t x u 0)()(0),(21),(),(τττττ 1.4有初始条件的非齐次无界弦波动方程的求解⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0),,(2x x u x x u x t t x f u a u t xx tt ψϕ 此方程要使用叠加原理进行求解设),(),(),(t x z t x v t x u +=其中分别满足以下方程⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0,02x x v x x v x t v a v t xx tt ψϕ(1)和⎩⎨⎧==+∞<<-∞>=-0)0,(,0)0,(,0),,(2x y x y x t t x f y a y t xx tt (2) 对于方程(1),使用达朗贝尔公式可以求得:其特征方程为022=+⎪⎭⎫⎝⎛a dt dx ,2,1c at x =±所以at x +=ξ,at x -=ηηξv v v x +=,ηξv a v a v t ⨯-⨯=,ηηξηξξv v v v xx ++=2,ηηξηξξv a v a v a v tt 2222+-=)()()()(),(0042at x G at x F G F t x v v v v a v xx tt -++=+=⇒=⇒=-=-ηξξηξη由初始条件)()(')(')0,(),()()()0,(x x aG x aF x v x x G x F x v t ψϕ=-==+=来确定⎰=---xx dbb x G x G a x F x F a 0)()]0()([)]0()([ψ)0()0()(1)()(0x G x F db b a x G x F xx -+=-⎰ψ)()()(x x G x F ϕ=+)(2)0()0()(21)(0x x G x F db b a x F xx ϕψ+-+=⎰)(212)0()0()(21)(0at x x G x F db b aat x F at x x ++-+=+⎰+ϕψ)(2)0()0()(21)(0x x G x F db b a x G xx ϕψ+---=⎰)(2)()()(21)(0at x at x G at x F db b a at x G atx x -+-----=-⎰-ϕψ)()(),(at x G at x F t x v -++=⎰+-+-++=atx atx db b a at x at x t x v )(21)]()([21),(ψϕϕ对于方程2,使用齐次化原理可以求得⎩⎨⎧==>=-0)0,(,0)0,(0),,(2x y x y t t x f y a y t xx tt 设);,(τt x w 为下面齐次方程的解⎩⎨⎧==>=-),(),(,0),(,02ττττx f x y x y t y a y t xx tt 则⎰=td t x w t x y 0);,(),(ττ为零初始条件的非齐次弦振动方程的解(将),(t x f 作用延时效果累积为将齐次化思想)转换计时器的初始时刻将齐次方程初始时刻换为0需要τ-=t t '可得0','>⇒>=t t dt dt τ 齐次方程可以化简为⎩⎨⎧===>=-0'),,()0,(,0)0,(0',0'2''t x f x w x w t w a w t xx t t τ 使用达朗贝尔公式可以求得⎰+-+-++='')(21)]'()'([21)',(at x at x db b a at x at x t x w ψϕϕ其中),()(,0)(τψϕx f x x ==则⎰-+--=)()(),(21),(τττt a x t a x db b f a t x w ⎰⎰⎰++--==t t a x t a x td db b f a d t x w t x y 0)()(0),(21),(),(τττττ最后,根据叠加原理求得⎰⎰⎰++--+-++-++=+=t t a x t a x at x at x d db b f a db b a at x at x t x y t x v t x u 0)()(),(21)(21)]()([21),(),(),(ττψϕϕττ1.5.无界弦振动方程的决定区域与影响区域 决定区域:对于特定u(x,t)依赖的(x,t)的取值范围对于(x,t )的取值能影响u(x,t)的取值范围为影响区域2.只含二阶导的2阶偏微分方程的特征线法求解 2.1只含二阶导的二阶偏微分方程的初步化简⎩⎨⎧===++)(),0(),(),0(0y y u y y u Cu Bu Au x yy xy xx ψϕ其特征方程为00,0222=+-⎪⎭⎫ ⎝⎛⇒-=⇒=+==++C dx dy B dx dy A dx dy dy dx d C B A y x y x y y x x ϕϕϕϕϕϕϕϕϕ根据特征方程解的三种不同情况将其进行进一步的化简 2.2特征方程存在两个不同实根时的化简 先用公式法求出特征方程两个不同的实根A ACB B dx dy 242-±=,g A AC B B dx dy =-+=⎪⎭⎫ ⎝⎛2421,e A AC B B dx dy =--=⎪⎭⎫⎝⎛24221c gx y +=2c ex y +=可以用换元法对此偏微分方程进行化简x A AC B B y 242-+-=ξxAACB B y 242---=η将其带入=++yy xy xx Cu Bu Au=ξηu例1.化简下列方程并求解⎩⎨⎧===-+σφ)0,(,)0,(032t u t u u u u x xx tx tt3/2)/(032032222=-+⇒=-+⇒=-+x t x t x x t t xx tx tt u u u ϕϕϕϕϕϕϕϕdtdx dx dt d x t x t //0-=⇒=+=ϕϕϕϕϕ03/2)/(03)/(2)/(22=--⇒=--+dt dx dt dx dt dx dt dx,0,0,3,10,0,0,1,13)2(,)2(22121242===-=======-=+-=+=--=+±=⇒±=+±=tt xt xx t x tt tx xx t x tx t t x t x t t x c t t x dt dx ηηηηηξξξξξηξηηξηξξηξηηηξξηξξηηξηξξηξηηηξξηξξηηξηξξηξηηξηξηξξηξηξηξηξηξηξηξηξηξηξηξu u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u xt xt x x tx xx xx x x xx tt tt tt tt x x x t t t 32)3()3(2)()(96)3(3)3(1,3--=++-+-=++=+++++=+-=++---=+=+=-=+=)()(),(00)369()646()321(32ηξξηηηξηξξg f t x u u u u u u u u xx tx tt +==⇒=--+---+-+=-+2.3当特征方程存在2个相等实根A B dx dy 2)(2,1=12c x AB y =-),0(,2≠=-=B y x A By ηξ 0,0·,0,00====⇒=xx yy u C u A B 或如例1化简下列方程44=++xx tx tt u u u4/4)/(044044222=++⇒=++⇒=++x t x t x x t t xx tx tt u u u ϕϕϕϕϕϕϕϕdtdx dx dt d x t x t //0-=⇒=+=ϕϕϕϕϕ2/,04/4)/(04)/(4)/(22==+-⇒=+-+dt dx dt dx dt dx dt dx dt dx,0,10,2,1,,2========-===-=xt xx tt t x tt xt xx t x x t x ηηηηηξξξξξηξηηξηξξηξηηξηξξηηξηξξηξηηξηξξξξηξηηξηξξηξηηηξηξξξηξηηξξηξηηξξu u u u u u u u u u u u u u u u u u u u u u u u u tx tx x t t x x t x t tx xx xx x x x x xx tt tt t t t t tt 222)(22422222---=+++++=++=++++==++++=0)480()880()4244(=⇒=+-++-+⨯-+ηηηηξηξξu u u u)2()2()()()(t x g t x xf g f u f u -+-=+=⇒=ξξηξη2.4当特征方程存在一对共轭复根时二.积分变换法求解无界一维波动方程、1维热传导方程和二维Laplace 方程 1.傅立叶变换的定义与性质 1.1傅立叶变换的定义)()())((w F dx e x f x f F iwx ==⎰+∞∞-1.2傅立叶变换的位移性质)()()()]([)(c x d ee c xf dx e c x f c x f F iwcRRc x iw iwx --=-=-----⎰⎰)()]([)()()]([)(w F e x f F e c x d e c x f e c x f F iwc Riwc c x iw iwc -----==--=-⎰1.3.傅立叶变换的相似性质dcx e cx f c dcx c ecx f dx ecx f cx f F Rcx c wi Rcx cw i Riwx⎰⎰⎰---===)(11)()()]([)(1)(1)]([1c wF c du e u f c cx f F u c wR ==-⎰1.3傅立叶变换的微分性质⎰⎰⎰-+∞∞-----===RiwxRiwx iwx Riwx dex f e x f x df e dx e x f x f F )(|)()()('))('( )())(()())((0))('(w iwF x f iwF dx e x f iw dx e iw x f x f F Riwx iwx R===--=⎰⎰--⎰⎰⎰-+∞∞-----===Riwx iwx Riwx Riwx dex f e x f x df e dx e x f x f F )('|)(')(')(''))(''( )()())(()())('())(''(22w F iw x f F iw x f iwF x f F ===dx e x f iw e x f x df e dx e x f x f F iwx Rn iwx n n Riwx Riwx n n -------⎰⎰⎰+===)()()()())(()1()1()1()()()()())(()())(())((1)(w F iw x f F iw x f iwF x f F n n n n ===-1.3.傅立叶变换的乘多项式性质⎰⎰⎰---=-==R Riwx iwx iwx Rdx e x f dw di dx e x f dw d i dx e x xf x xf F ))(())((1)())(( ))(())((())(())((w F dwdi x f F dw d i dx e x f dw d ix xf F R iwx ===⎰- ⎰⎰⎰---===R Riwx iwx Riwxdx e x f dw d i dx e x xf dw d i dx ex xxf x f x F ))(())(()())((2222)())(())(())((2222222222w F dw d i dx e x f dw d i dx e x f dw d i x f x F R iwx iwx R===⎰⎰-- dx e x f x dwd idx e x f xx dx e x f x x f x F iwx n RRiwx n Riwx n n ))(()()())((11-----⎰⎰⎰=== ⎰⎰====--Rn nn n n n R iwx n n n iwx n n nnw F dw d i x f F dw d i dx e x f dw d i dx e x f dw d i x f x F ))(()))((())(())(())((1.4傅立叶变换积分性质由傅立叶变换的微分性质)())((x f dt t f dx dx=⎰∞- ⎰∞-=xdt t f iw x f F )())(()(1))((1))((w F iwx f F iw dt t f F x==⎰∞- 1.5傅立叶变换的卷积性质卷积定义式⎰-=*Rdt t x g t f x g f )()()(卷积公式1)()()(w G w F g f F =*先做卷积再变换系数不变 证明:⎰⎰⎰⎰-----=-=*R iwt t x iw Riwx R Rdx e e dt t x g t f dx dte t x g t f x g f F )()()()()())((⎰⎰⎰⎰-----=-=*RRiwu iwt Rt x iw Riwt dt du e u g e t f dt dx e t x g e t f x g f F )()()()())(()()()())(())(())(()()(w G w F t f F u g F dt u g F e t f g f F Riwt ===*⎰-卷积公式2))()((2)()(x g x f F w G w F π=*先傅立叶变换再做卷积系数要乘系数2π 1.6 主要函数的傅立叶变换)(0,00,)(指数信号⎩⎨⎧<>=-x x e x f x β iw e iw dx e dx eex f F iw x iw x iwxx +=+-===∞++-+∞+-+∞--⎰⎰βββββ1|1))((0)(0)(02)(x ex f -=2.傅立叶变换法求解一维波动方程 2.1无界齐次波动方程的求解⎪⎩⎪⎨⎧==>∈=-)3)(()0,()2)(()0,()1(0,,02x x u x x u t R x u a u txx tt ψϕ 分别对(1)、(2)、(3)式进行傅立叶变换)4(0),()()),((0),()()),((22=+⇒=-t w F aw t w u F t w F iaw t w u F tt tt)5))((())0,((x F w u F ϕ=)6))((())0,((x F w u F t ψ=)7()()()),((21iawt iawt e w C e w C t w u F -+=将(5)、(6)代入(7)式⎩⎨⎧-=+=--iawtawt t iawtiawt e awiC e w awiC t w u F e w C e w C t w u F 2121)()),(()()()),(( ⎩⎨⎧=-=+))(()()())(()()(2121x F w awiC w awiC x F w C w C ψϕ ⎪⎩⎪⎨⎧-=+=)))((1))(((21)()))((1))(((21)(21x F iaw x F w C x F iaw x F w C ψϕψϕ iawt iawt e x F iawx F e x F iaw x F t w u F --++=)))((1))(((21)))((1))(((21)),((ψϕψϕ又由傅立叶变换的位移性质))(()())((x f F e dx e c x f c x f F iwc Riwx --=-=-⎰左边的项的位移系数可以求出at c iwat iwc -=⇒=-)8))(((21))((21at x F e x F iawt +=ϕϕ iwaw F w G at x G e w G e w G F e x F iwaiawt iawt iawt 2))(()()()())(())((21ψψ=+===用傅立叶变换的积分性质进一步化简))((1))(()())((x f F iw dy y f F x f dy x f dx d xx =⇒=⎰⎰∞-∞- ))((21))((1212))(()()(⎰+∞-===+=atx dy y F a w F iw a iwa w F at x G w G ψψψ右边第一项的系数也可以用位移性质求出at c iwat iwc =⇒-=-))((21))((21at x F e x F iwt -=-ϕϕ iwaw F w H at x H e w H e x F iwaiwat iwat 2))(()()()())((21ψψ=-==--继续用傅立叶变换积分性质来化简))((1))(()())((x f F iw dy y f F x f dy x f dx d xx =⇒=⎰⎰∞-∞-))((21))((1212))(()()(⎰-∞-===-=atx dy y F a w F iw a iwa w F at x H w H ψψψ 四项全部求和 )))((21))(((21)))((21))(((21)),((⎰⎰-∞-+∞---+++=atx at x dy y F a at x F dy y F a at x F t w u F ψϕψϕ ))((21))(()(((21)),((⎰+-+-++=atx atx dy y F a at x F at x F t w u F ψϕϕ 对此式施加傅立叶逆变换 ⎰+-+-++=at a at x dy y a at x at x t x u )(21))()((21),(ψϕϕ 2.2非齐次方程的无界波动方程(不用齐次化原理)2.3半无界波动方程的求解3.傅立叶变换法求解一维热传导方程4.傅立叶变换法求解2维Laplace 方程place 变换的定义与性质place 变换求解一维波动方程place 变换求解一维热传导方程place 变换求解2维Laplace 方程二.有限边界的分离变量法求解(正弦初始条件以及二次初始条件)1.第一类边界条件和第二类边界条件第三类边界条件的特征值问题2.齐次化方程(可以用傅里叶级数展开或用齐次化原理)3.齐次化边界条件4.齐次方程,齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子5.齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子6.非齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子7.非齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子8.圆域LAPLACE 问题求解9.矩形域Laplace 方程。

一阶线性偏微分方程的特征线解法

一阶线性偏微分方程的特征线解法
2
该方程称为Poisson方程或位势方程
第18页
3. 定解条件: =初始条件+边界条件
①. 初始条件:
u t =0 = ϕ ( x, y, z ), ( x, y, z ) ∈ Ω, ut
注意:
t =0
= ψ ( x, y, z ), ( x, y, z ) ∈ Ω,
弦振动方程定解问题需要上述两个初始条件; 热传导方程定解问题只要上述第一个初始条件; 位势方程定解问题不需要初始条件。
这 里 n 为 ∂Ω 的 单 位 外 法 向 , g为 已 知 函 数 。
第20页
注意:
上述三类方程中,对物体 Ω 的边界 ∂Ω 上每一点都要 施加一个边界条件。 对于不同的问题,相应的边界条件有不同的实际意义。
第21页
叙述一个定解问题时,要标明方程和定解条件成立的范围。
例如:一维热传导方程的第一边值问题:
如果配合画图则更清楚。
T u = g1
ut − a 2u xx = f
u = g2
注意:t=T时不能施加条件!!
0
u ( x , 0) = ϕ ( x )
l
第22页
x
位势方程边值问题:
位势方程的第一边值(Dirchlet)问题:
-Δu ( x) = f ( x), x = ( x1 , L , xn ) ∈ Ω,
第14页
热传导方程的混合问题:
热传导方程的第一边值(Dirchlet)问题:
∂u − a 2 Δu ( x, y, z , t ) = f ( x, y, z , t ), ∂t ( x, y, z ) ∈ Ω, t > 0,
u ( x, y, z , 0) = ϕ ( x, y, z ),

数学物理方程--- 6 特征线法 共28页PPT资料

数学物理方程--- 6 特征线法 共28页PPT资料

数解之,得


物理又
u2t2ctc2 x3t c,则
六 章
方 程
u2 t2 (x 3 t)t (x 3 t)2
特 征
2 t2 x t 3 t2 x 2 6 x t 9 t2
线
x28t25xt

此解法关键之处是找到直线 x3t c ,偏微分方程转化为
常微分方程。直线 x3t c 称为一阶偏微分方程(1)的特征线

数学3u3(uu)ut 3ux xt

理 方
程所以
3u
3u

4
3
.

43
3
.

u

4
9

1.
9
对 两边积分,可得
第 六 章 特 征 线 法
u221g(),
99
其中,g ( ) 为一个可微函数。

u(,)221g(),
西安交通大学 数学与统计学院
例2 求解线性方法柯西问题
ut (xcost)ux0,t0,x (6)

u(x,0)11x2,x
(7) 第
学 物 理

方程(6)式的特征方程为 dx xcost 0, dt
而过点 ( , 0 )
六 章
方 的特征线就是下面问题的解

dt
第 六 章

程 称为(4)式的特征方程,其积分曲线称为(4)式的特征曲线。
特 征
注1 给出例1求解方法的一个几何解释。在该例中,使用了参数线
c,即为特征线的初始值x ( 0 ) 。当参数 c x(0) 在x 轴滑动时,法

数学物理方程- _特征线法 2014-12答案

数学物理方程-  _特征线法 2014-12答案

2t2 xt 3t2 x2 6xt 9t2
x2 8t2 5xt 此解法关键之处是找到直线 x 3t c ,偏微分方程转化为
常微分方程。直线 x 3t c 称为一阶偏微分方程(1)的特征线
uut(
3ux x t, 0 t, x, 0) x2, x
x
(1) (2)
由方程(2)
99
u(x, 0) x2

x2 2 x2 1 x2 g(x), 99

8 x2 g(x),
所以
9
u(x,t) 2 x2 1 (x 3t)x 8 (x 3t)2,
99
9
2 x2 1 x2 3 tx 8 (x2 6x 9t2 ), 9 9 99
x2 5tx 8t2.
例1 求解线性方法Cauchy问题
uut(
3ux x t, 0 t, x, 0) x2, x
x
(1) (2)
解 方程(1)的左端 ut 3ux 是 u(x,t) 的一阶偏导数的线性
组合。特征线方法的基本思想就是将其转化为 u(x,t) 关于t的全
导数。
du dt
ut
uxx
x
定义1 考虑下面一阶线性微分方程
aut bux cu f
4
其中 a 、b、c 和 f 均为自变量 x 、t 的函数。
方程
a dx b 0
5
dt
称为(4)式的特征方程,其积分曲线称为(4)式的特征曲线。
注1 给出例1求解方法的一个几何解释。在该例中,使用了参数
c,即为特征线的初始值x(0) 。当参数 c x(0) 在x 轴滑动时,
dt
的特征线就是下面问题的解
dx
x

偏微分方程的几种解法

偏微分方程的几种解法

偏微分方程的几种解法偏微分方程(Partial Differential Equations, PDEs)是数学中的一个重要分支,广泛应用于物理学、工程学、经济学等领域。

解决PDEs的问题是科学研究和工程实践中的一个关键任务。

本文将介绍几种常见的偏微分方程的解法。

一、分离变量法分离变量法是解偏微分方程最常用的方法之一。

其基本思想是将未知函数表示为一系列互相独立的分离变量的乘积,然后将方程两边同时关于这些变量积分。

这样就可以得到一系列常微分方程,然后通过求解这些常微分方程得到原偏微分方程的解。

例如,对于二维的泊松方程(Poisson Equation)∇²u = f,可以假设u(x, y) = X(x)Y(y),将其代入方程后得到两个常微分方程,然后分别求解这两个常微分方程,最后将其合并即可得到泊松方程的解。

分离变量法的优点是简单易行,适用于一些特定的偏微分方程。

但也存在一些限制,例如只适用于线性齐次方程、边界条件满足一定条件等。

二、变量替换法变量替换法是另一种常见的解偏微分方程的方法。

通过合适的变量替换,可以将原方程转化为一些形式简单的方程,从而更容易求解。

例如,对于热传导方程(Heat Equation)∂u/∂t = α∇²u,可以通过变量替换u(x, t) = v(x, t)exp(-αt)将其转化为∂v/∂t = α∇²v,然后再利用分离变量法或其他方法求解新方程。

变量替换法的优点是可以将一些复杂的偏微分方程转化为简单的形式,便于求解。

但需要根据具体问题选择合适的变量替换,有时可能会引入新的困难。

三、特征线法特征线法是解一阶偏微分方程的一种有效方法。

通过寻找方程的特征线,可以将方程转化为常微分方程,从而更容易求解。

例如,对于一维线性对流方程(Linear Convection Equation)∂u/∂t + c∂u/∂x = 0,其中c为常数,可以通过特征线法将其转化为沿着特征线的常微分方程du/dt = 0,然后求解得到解。

特征线法

特征线法

3
分解成两个一阶的方程:
∂u1 − a ∂u1 = v, ∂t ∂x ∂v ∂v
+ a = 0. ∂t ∂x
根据初值条件, 给出 u1 以 v 在 t = 0 上的初值条件
(1-1) (2-1)
u1(x, 0) = 0, v(x, 0) = ϕ(x).
(1-2) (2-2)
求得特征线, 它们分别是常微分方程 ∂x = −a, ∂t
微分算子可以分解为
∂ ∂∂ ∂
+a ∂t ∂x
−a ∂t ∂x
u1 = 0
(**)
可以把原方程
∂ ∂ ∂ ∂
+a
−a
∂t
∂x
∂t
∂x
u1(x, 0),
∂ ∂t
u1(x,
0)
=
ϕ(x),
u1 = 0,
−∞ < x < +∞, t > 0, −∞ < x < +∞, −∞ < x < +∞.
v(x, t) = ϕ(x − at).
4
再由另一个方程得
t
u1(x1(t), t) = ϕ(x1(τ ) − aτ )dτ.
0
从 x1(t) = c − at 推出
t
1 c−2at
1 x+at
u1(x, t) =
ϕ(c − 2aτ )dτ = −
0
2a
c
ϕ(ξ)dξ =
ϕ(ξ)dξ.
2a x−at
• 沿着特征线将原方程化为关于 u = u(x(t, c), t) 的常微分方程 (其中 c 为参数), 并求出 u = u0(t, c)
• 从特征线方程解出 c = ϕ(x, t), 所求的解为 u = u0(t, ϕ(x, t))
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数。
du dt
ut
uxx
x
t
在这条直线 x 3t c 上,即 x c 3t ,在这个直线上,上述
定解问题转化为
西安交通大学 数学与统计学院
du 4t c, 0 t dt
(3)
u(0) u(x(0), 0) x2 (0) c2
数解之,得


u 2t2 ct c2

物理又 x 3t c ,则
99
9
2 x2 1 x2 3 tx 8 (x2 6x 9t2 ), 9 9 99
x2 5tx 8t2.
西安交通大学 数学与统计学院
定义1 考虑下面一阶线性微分方程
aut bux cu f
4
其中 a 、b、c 和 f 均为自变量 x 、t 的函数。
数 学
方程

a dx b 0
u( uy
x,0) f ( ( x,0)
x) 1
3
g(x) f ( x)
f ( x y 3) g( x
3x2 g( x) 0 1 f
3
y)
(x)
g( x)
线 法
C
解 出f ( x) 9 x 2 C, g( x) 3 x 2 C
u( x,
y)
9
(
4
x
1
y)2
3(x
4
(x t)ux
dU
dx
dt ut ux dt ut (x t)ux





dU
U
et
t
1
cet
dt
U (0) u(x(0), 0) x(0) c
(12)
第 六 章
方程这个常微分方程初值问题的解为
U (t) t (1 c)sht

特 征 线 法
x(t) et t 1 cet
x(0) , 变化相当于 x(0) 在 x 轴上滑动。
西安交通大学 数学与统计学院
例2 求解线性方法柯西问题
ut (x cos t)ux 0,t 0, x
(6)

u(x,
0)
1 1 x2
,
x
(7) 第
学 物 理 方
解 方程(6)式的特征方程为
的特征线就是下面问题的解
dx dt
x cos t
第6章 特征线法




物 理

方 程
特 征
线

本章中心内容
特征线法求解一阶偏微分方程以及一维波动方程
西安交通大学 数学与统计学院
Method of characteristics 一种基于特征理论的求解双
数学物理曲为一人 维型们不偏所定微用常分。流方电和程子二组计维的算定似机常方出流法现等。以问它后题产,中生又得较得到早到了,了广19进泛世一 的纪步用末的。已发经展有,效在地第 六 章
西安交通大学 数学与统计学院
99
u(x,t) 2 x2 1 (x 3t)x g(x 3t), 99
由方程(2)
u(x, 0) x2
数得
学 物
x2 2 x2 1 x2 g(x),

99
第 六 章
方程即
8 x2 g(x),
特 征
所以
9
线 法
u(x,t) 2 x2 1 (x 3t)x 8 (x 3t)2,
x
(1) (2)
西安交通大学 数学与统计学院
特征线 x 3t c 是方程 dx 3 0 的解,方程
dx 3 0
dt
称为(1)的特征方程,其解就是(1)的特征线。
dt
数 沿一阶偏微分方程的特征线将方程化为常微分方程,便是特 第
学物征线法的基本思想。
理 方
对定解问题(1)(2)

uut(
3ux x t, 0 t x, 0) x2, x
8
数 最后,由特征线方程 x esint解出 xesint , 将其代入到 第

物(8)式中便得(6)式-(7)式的解为
理 方 程
u(x,
t)
1
1 x 2e2 sin t
六 章 特 征
线

西安交通大学 数学与统计学院
练习
求下列Cauchy问题的解
数 学
uut|t0(x
x
t)ux
u
x,
x
R, t
0,

dx
x
cos t
0, t
0
dt
而过点
(
,
0)
六 章
特 征 线
x(0)

解之可得 x esint。沿此特征线原定解问题(6)-(7)简化为
du dt
ut
(x cos t)ux
0, t
0
西安交通大学
数学与统计u学(院0)
u(
,
0)
1
1
2
易得该问题的解为
1
u 常数 u(0) 1 2
数 u(x,t) 1 [(x at) (x at)] 1
xat
()d 第

2
2a xat

物 理

方 程
特 征
线

西安交通大学 数学与统计学院
例1

解问
题uut(t
a2uxx x,0) sin
x,
ut ( x,0) a cos x
解 u(x, t) sin(x at) sin(x at) 1




物 理

方 程
特 征
线

西安交通大学 数学与统计学院




物 理

方 程
特 征
线

西安交通大学 数学与统计学院




物 理

方 程
特 征
线

西安交通大学 数学与统计学院
西安交通大学 数学与统计学院
(3)称为特征方程
dx dt
2
a2
0
(3)
数 做变量代换 x at
学 物 理
x at
第 六 章
方则

ut ut ut au au
特 征
utt a(ut ut ) a(ut ut )
线
a(au au ) a(au au )

a2 (u 2u u ) ux ux ux u u
2
2a 0
2
g(x) 1 (x) 1
x
(
)d
1
(
f
(0)
g (0))
2
2a 0
2
所以
u(x,t) f (x at) g(x at)
(B)
第 六

(7特 征) 线
(8法)
1 (x at) 1
xat
(
)d
1
(x
at)
1
xat
()d
2
2a 0
2
2a 0
西安交通大学 数学与统计学院
5

dt
第 六 章

程 称为(4)式的特征方程,其积分曲线称为(4)式的特征曲线。
特 征
注1 给出例1求解方法的一个几何解释。在该例中,使用了参数线
c,即为特征线的初始值x(0) 。当参数 c x(0) 在x 轴滑动时,法
(3)式的解曲线就织成了(1)式--(2)式的解曲面。
为了避免和常数c混淆,下面用变量 代替参数c。请记住:
方 特征线法也是求解偏微分方程的一种基本方法。其实质 程是沿偏微分方程的特征线积分以使方程的形式简化,从而使
特 征
其求解称为可能。它不仅适用于线性偏微分方程,而且也是 线
求解非线性方程的一种有效方法。

西安交通大学 数学与统计学院
第一节、一阶偏微分方程特征线法
一、特征线法
结合一些具体的定解问题的求解,说明特征线方法的基本思想
代入
3
ut 3ux x t

数学3u 3(u u ) ut 3ux x t

理 方
程所以
3u
3u
4
3
.
43 .
3

u
4
9
1.
9
对 两边积分,可得
第 六 章 特 征 线 法
u 22 1 g( ),
99
其中,g() 为一个可微函数。

u( ,) 2 2 1 g( ),
0
x
(1) (2)
理 这里是无界问题,可以用积分变换求解,下用特征线求解。
第 六 章

程 特征线族
特 征
dx dt
2
a2
0
线 (3) 法

dx a 0, dx a 0
dt
dt
1 a2k 2 0, k 1
1
1a
可得
t a x c1,t a x c2
x at c1, x at c2
utt a2uxx
4a2u
uxx u 2u u
西安交通大学 数学与统计学院
则(1)式变为
u 0
积分此方程,可得

u f1( )
学 物
u f1( ) g() f ( ) g()
理方其中f、g是两个任意函Leabharlann ,将变量 , 还原成x和t得程
u(x,t) f (x at) g(x at)
0
相关文档
最新文档