分数乘法知识点归纳
分数乘法知识点归纳

分数乘法知识点归纳一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98的和是多少? 2、分数乘分数是求一个数的几分之几是多少。
例如:98×43表示求98的43是多少? (二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。
2、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数×几几。
4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“÷”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量。
分数乘法知识点

(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 1、 98×5表示( )。
2、83+83+83=( )×( )=( ) 83+83+83+83=( )×( )=( )=( )3、24个32是多少? 145吨的7倍是多少吨? 2、分数乘分数是求一个数的几分之几是多少。
例如1、98×43表示的意义是( )。
2、125吨的32是多少吨? 3、一根绳子长109米,3根这样的绳子共长( )米;这根绳子的31长( )米。
(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)例如:1、72×3 53×6 214×9 103×5 2、52米=( )厘米 32时=( )分 107千克=( )克 算式:2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
例如:152×85 3914×2813 4532×2815 65×2512 2110×53 3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
例如:32×143 83×154 2625×1513 6313×3914 (三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
例如:65×2 ○65 8×117○8 54×1 ○54 43×53 ○53 (五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律: ( a + b )×c = a c + b c例如:1、53×61×5 32×41×3 94×5×18 54×97×852、(924 + 83 )× 124 ( 56 - 59 )×18 47 ×613 +37 ×6133、10063×101 677 × 78 12×613 + 613 14×137-137二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。
《分数乘法》必背概念知识点整理

第二单元《分数乘法》必背知识点一、分数乘法的意义:1。
分数与整数相乘:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2。
整数乘分数的意义:求一个数的几分之几是多少.3.分数乘分数的意义:就是求一个分数的几分之几是多少。
二、分数乘法的计算方法:1.分数乘整数的计算方法:用分数的分子和整数相乘的积作分子,分母不变。
计算时,应该先约分再计算。
计算结果要约成最简分数。
2。
分数乘分数的计算方法:分子相乘的积做分子,分母相乘的积做分母,能约分的可以先约分。
(计算结果要求是最简分数。
)3.因为整数可以看成分母是1的分数,所以分数乘分数的计算法则也适用于分数和整数相乘。
4.带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
三、乘法中乘数与积的大小关系的规律:一个数(0除外)乘小于1(真分数)(0除外)的数,积小于这个数。
一个数(0除外)乘1,积等于这个数.一个数(0除外)乘大于1(带分数)的数,积大于这个数。
四、分数混合运算的运算顺序与整数的运算顺序相同:整数加法的交换律结合律,对分数乘法同样适用。
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)整数乘法的交换律、交换律和分配律,对分数乘法同样适用。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc五、分数乘法的解决问题:1。
求一个数的几分之几是多少,用乘法。
(即已知整体和部分量相对应的分率,求部分量,用乘法)2.画线段图:①两个量的关系:画两条线段图;②部分和整体的关系:画一条线段图。
3。
找单位“1”:①在分率句中分率的前面;②在“占”、“是”、“比”、“相当于”“等于”的后面。
4。
写数量关系式的技巧:①“的”相当于“×”,“占”、“是”、“比"相当于“=”.②分率前是“的”:单位“1”的量×分率=分率对应量③求一个数的几倍:一个数×几倍④求一个数的几分之几是多少:一个数×几分之几(分值)⑤分率前面是“多或少”的意思:单位“1”的量×分率=分率对应量六、倒数:1。
第一单元《分数乘法》知识点

第一单元《分数乘法》知识点1、 分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
比如:72×3 ,表示求3个72相加是多少,或者求72的3倍是多少。
2、 一个数乘分数的意义:就是求这个数的几分之几是多少。
比如:3×72 ,表示求3的72是多少。
3、 分数乘法包括:① 分数和整数相乘:整数和分子相乘的积作分子,分母不变,能约分的要先约分。
(注意:整数和分子不能约分) 比如:103×5 ,分母10和整数5约分。
② 分数和分数相乘:用分子相乘的积作分子,用分母相乘的积作分母,能约分的要先约分。
(注意:分子只能和分母约分,分子与分子,分母与分母之间不能约分) 比如:152×85 ,分子2和分母8约分,分子5和分母15约分。
③ 分数和小数相乘:可以把小数化成分数;也可以把分数化成小数;或者直接用小数和分母进行约分。
比如:85×1.6 ,可以把1.6化成1016;也可以把85化成0.625;或者直接将分母8和小数1.6约分。
4、 分数乘法的运算顺序和整数乘法相同,先算乘除,后算加减,有括号先算括号里面的。
比如:85-83×65,先算乘法,再算减法,不能先用85减去83。
5、 整数乘法的交换律、结合律和分配律,对于分数乘法也适用。
交换律:a × b = b × a结合律:(a × b )× c = a ×(b × c )分配律:a ×(b + c )= a × b + a × c 比如:154×94+154×95,运用乘法分配律,将两边乘法中相同的分数154提到括号外面,再乘括号中的(94+95)。
6、 分数乘法应用题分为:① 连续求一个数的几分之几是多少。
②求比一个数多(或少)几分之几的数是多少。
分数乘法知识点总结

分数乘法单元总结一、分数乘法(一)1、分数乘整数的意义:是求几个同样加数(这里的加数是指分数)的和的简易运算。
2、分数乘整数的计算方法:分数和整数相乘,用分数的分子和整数相乘的积作分子,分母不变。
二、分数乘法(二)1、分数乘整数的意义 :整数乘分数的意义能够依据分数的意义来推测,也能够把这个整数看作单位“ 1”,均匀分红几份,再取此中的几份,也就是求这个数的几分之几。
2、求一个数的几分之几是多少的计算方法 :由分数的意义看出,求一个数的几分之几是多少,就是把前方这个数看坐单位“ 1”,求这个整体的几分之几是多少,依据整数乘分数的意义要用乘法计算。
也就是用这个数乘后边的几分之几,即乘这个分数 .3、已知一个数多几分之几求多多少?已知比一个数多几分之几,求多多少,用乘法计算三、分数乘法(三)1、分数乘分数的意义:是求一个数的几分之几是多少。
2、分数乘分数的计算方法:分子相乘,乘得的积作分子,分母与分母相乘的积作分母。
在计算时能约分的先约分。
最后结果要化成最简分数。
3、一个数与分数相乘,积与这个数的关系:一个数乘真分数,积小于这个数;一个数乘假分数,积等于或大于这个数。
(假如所乘额分数大于 1,积是大于这个数。
假如所乘的分数小于 1,积小于这个数。
)四、倒数1、倒数的意义:假如两个数的乘积是 1,那么我们称此中一个数是另一个数的倒数。
倒数是对两个数来说的,它们是相互依存的,一定说一个数另一个数的倒数,不可以孤立的某一个数是倒数。
2、求一个数的倒数的方法:( 1)由于互为倒数的两个数的分子、分母是调动地点的,依据这点,我们能够求一个数的倒数。
给出一个数,只需我们将其化为分数的形式再调动它的分子、分母的地点,就求出了它的倒数。
关于一个自然数( 0 除外),我们能够把它当作分母是 1 的分数,再调动分子和分母的地点,求出这个数的倒数。
( 2)1 的倒数是 1,由于 1 乘 1 得 1,切合倒数的意义。
( 3)0 没有倒数。
分数乘法知识点总结

分数乘法知识点总结(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分数乘法知识点总结分数乘法知识点总结一、分数乘法(一)分数乘法的意义1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少1/3×5表示求5个1/3的和是多少2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.(二)、分数乘法的计算法则1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。
(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
X|k|B|1.c|O|m| 4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
X|k|B|1.c|O|m| 4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
X|k|B|1.c|O|m| 4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
X|k|B|1.c|O|m| 4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
X|k|B|1.c|O|m| 4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
知识点总结分数乘法

六年级上册数学第一单元分数乘法知识点总结(一)分数乘法的意义。
1 、分数乘整数(第二个因数为整数时):分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和得简易运算。
2 2 2比如:3 ×3,表示: 3 个3 相加是多少,还表示 3 的 3 倍是多少。
2 、一个数(小数、分数、整数)乘分数(第二因数为真分数时):一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
5 5比如: 6×12 ,表示:6 的12 是多少。
2 7 2 77 ×8 ,表示:7 的8 是多少。
3、一个数(小数、分数、整数)乘分数(第二因数为大于1 的分数时):一个数乘分数的意义与整数乘法的意义也不相同,是表示这个数的几倍是多少。
5 2 5 2比如:12×13 ,表示:12 的 13 倍是多少。
(二)、分数乘法的计算法例:1、分数乘整数的运算法例是:分子与整数相乘,分母不变。
注:(1)为了计算简易能约分的可先约分再计算。
(分母和整数约分)(2)约分是用整数和下边的分母约掉最大公因数。
(计算结果一定是最简分数)2、分数乘分数的运算法例是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)假如分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
( 2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个能够约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母一定不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基天性质:分子、分母同时乘或许除以一个相同的数( 0 除外),分数的大小不变。
(三)积与因数的关系:一个数(0 除外)乘大于 1 的数,积大于这个数。
a×b=c, 当 b >1 时, c>a.一个数(0 除外)乘小于 1 的数,积小于这个数。
六年级数学上册第一单元《分数乘法》5大考点归纳

考点一分数乘整数1.分数乘整数的意义就是求几个相同分数相加的简便运算。
2.分数乘整数的计算方法:用分数的分子和整数相乘的积作分子,分母不变,计算结果要化成最简分数。
如果整数和分数有公因数,可以先约分,再计算。
3.整数乘分数就是求整数的几分之几是多少。
4.计算时,要注意约分的过程,结果要化为最简分数。
考点二分数乘分数1.分数乘分数的意义就是求这个分数的几分之几是多少。
2.分数成份属的计算方法:分子相乘的积作分子,分母相乘的积作分母,最后结果要化成最简分数。
3.分数乘分数可以先约分,再计算,这样可以使计算简便。
4.分数乘分数不用写成分子与分子相乘、分母与分母相乘的形式后再约分,可以直接将分母(分子)与另一个分数的分子(分母)进行约分。
5.分数乘整数不用写成分子和整数相乘的形式后再约分,可以直接用整数和分母进行约分。
考点三分数乘小数1.小数乘分数的计算方法。
(1)把小数转化成分数,按分数乘分数的方法进行计算;(2)把分数转化成小数,按小数乘小数的方法进行计算。
2.在计算小数乘分数时,如果小数能和分数的分母约分,可以先约分再计算,这样可以使计算简便。
考点四乘法运算定律推广到分数1.分数混合运算的运算顺序:有括号的,先算括号里面的,再算括号外面的;没有括号的,先算乘除法,再算加减法;同级运算,按从左往右的顺序计算。
2.整数乘法的交换律、结合律和分配了对于分数乘法同样适用。
运用乘法运算定律,可以使计算简便些。
3.运用乘法运算定律可以使分数乘法的计算简便。
(1)几个分数连乘时,可以运用乘法运算律或结合律碱性简算。
(2)几个分数的和与整数相乘时,如果所乘整数时这几个人分数分母的公倍数,可以运用乘法分配律进行简算。
考点五分数乘法解决问题1.连续求一个数的几分之几是多少的解题方法:用这个数(单位“1”的量)连续乘对应的分率。
解答的关键是找准每个分率对应的单位“1”。
2.已知一个数量比另一个数量多(或少)几分之几,求这个数量的解题方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数乘法知识点归纳集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-
分数乘法知识点归纳
(一)分数乘法的意义:
(二)知识点1:分数与整数相乘:
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
知识点2.整数乘分数的意义:
整数乘分数的意义求一个数的几分之几是多少。
知识点3.:分数乘分数的意义
分数乘分数的意义就是求一个分数的几分之几是多少。
(二)、分数乘法的计算方法:
知识点1.分数乘分数的计算方法:
分子相乘的积做分子,分母相乘的积做分母,能约分的可以先约分。
(计算结果要求是最简分数。
)
知识点3.分数乘整数的计算方法:
用分数的分子和整数相乘的积作分子,分母不变。
计算时,应该先约分再计算。
计算结果要约成最简分数。
因为整数可以看成分母是1的分数,所以分数乘分数的计算法则也适用于分数和整数相乘。
知识点4.含带分数的分数计算方法
带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
知识点5.分数乘小数的计算方法
分数乘小数,可把小数化成分数,统一成分数乘分数,按照分数乘分数的计算方法计算。
分数乘小数,也可把分数化成小数,统一成小数乘小数乘小数,按照小数乘小数的计算方法计算。
注意:当分数不能化成有限小数时,则最好统一成分数乘分数
(三)、乘法中乘数与积的大小关系的规律:
一个数(0除外)乘小于1(真分数)(0除外)的数,积小于这个数。
一个数(0除外)乘1,积等于这个数。
一个数(0除外)乘大于1(带分数)的数,积大于这个数。
(四)、分数混合运算的运算顺序与整数的运算顺序相同:
知识点1:整数加法的交换律结合律,对分数乘法同样适用。
加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)
加法的交换律、结合律往往混合运用:三个或三个以上的数相加可以任意的交换加数的位置,可以任意的把其中两个加数结合在一起。
知识点2整数乘法的交换律、交换律和分配律,对分数乘法同样适用。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=ac+bc
乘法交换律和结合律往往混合运用:三个或三个以上的数相乘可以任意的交换因数的位置,也可以任意的把其中两个因数结合在一起
另附:倒数:
知识点1.倒数的意义:
(1)乘积是1的两个数互为倒数。
(2)互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
也就是说如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。
倒数是对两个数来说的,并不是孤立存在的(要说清谁是谁的倒数)。
知识点2.求倒数的方法:
①求分数的倒数:交换分子分母的位置。
②求整数的倒数:把整数看作分母是1的分数,再交换分子分母的位置。
③求带分数的倒数:把带分数化为假分数,再求倒数。
④求小数的倒数:把小数化为分数,再求倒数。
知识点3:1和0的倒数
1的倒数是1;0没有倒数(0没有倒数是因为0不能作除数或者分母不能为0)。
知识点4.一个数的倒数与它本身的大小关系
1的倒数等于它本身;
比1小的数的倒数大于它本身;
比1大的数的倒数小于它本身;。