数理统计习题作业
数理统计期末练习题

数理统计期末练习题1. 在总体)4,6.7(N 中抽取容量为n 的样本,如果要求样本均值落在)6.9,6.5(内的概率不小于0.95,则n 至少为多少2.设n x x ,,1 是来自)25,(μN 的样本,问n 多大时才能使得95.0)1|(|≥<-μx P 成立 3. 由正态总体)4,100(N 抽取两个独立样本,样本均值分别为y x ,,样本容量分别15,20,试求)2.0|(|>-y x P .5.设161,,x x 是来自),(2δμN 的样本,经计算32.5,92==s x ,试求)6.0|(|<-μx P .6.设n x x ,,1 是来自)1,(μN 的样本,试确定最小的常数c,使得对任意的0≥μ,有α≤<P )|(|c x .7. 设随机变量 X~F(n,n),证明 =<P )1(X9.设21,x x 是来自),0(2σN 的样本,试求22121⎪⎪⎭⎫ ⎝⎛-+=x x x x Y 服从 分布.10.设总体为N(0,1),21,x x 为样本,试求常数k ,使得.05.0)()()(221221221=⎪⎪⎭⎫ ⎝⎛>++-+P k x x x x x x11.设n x x ,,1 是来自),(21σμN 的样本,m y y ,,1 是来自),(22σμN 的样本,c,d 是任意两个不为0的常数,证明),2(~)()(2221-+-+-=+m n t s y d x c t md n c ωμμ其中22222,2)1()1(yx y x s s m n s m s n s 与-+-+-=ω分别是两个样本方差.12.设121,,,+n n x x x x 是来自),(2σμN 的样本,11,n n i i x x n ==∑_2211(),1n n i n i s x x n ==--∑试求常数 c 使得1n nc nx x t cs +-=服从t 分布,并指出分布的自由度 。
数理统计试题及答案

数理统计试题及答案一、选择题1. 在一次试验中,事件A和事件B是互斥事件,概率分别为0.4和0.3。
则事件“A或B”发生的概率是多少?A. 0.1B. 0.2C. 0.3D. 0.7答案:D. 0.72. 一批产品的重量服从正态分布,均值为100g,标准差为5g。
若随机抽取一件产品,其重量大于105g的概率是多少?A. 0.6827B. 0.1587C. 0.3413D. 0.0228答案:B. 0.15873. 一家量化投资公司共有1000名员工,调查结果显示,有700人拥有股票,400人拥有债券,300人既拥有股票又拥有债券。
随机选择一名员工,问其既拥有股票又拥有债券的概率是多少?A. 0.3B. 0.4C. 0.2D. 0.15答案:A. 0.34. 设X和Y为两个随机变量,已知X的期望为2,方差为4;Y的期望为5,方差为9,且X与Y的协方差为6。
则X + Y的期望为多少?A. 5B. 7C. 6D. 9答案:B. 7二、计算题1. 一箱产品中有10个次品,从中随机抽取3个,求抽到1个次品的概率。
解答:总共的可能抽取组合数为C(10,3) = 120。
抽取到1个次品的组合数为C(10,1) * C(90,2) = 4005。
所以,抽到1个次品的概率为4005/120 = 33.375%。
2. 已知某城市的男性身高服从正态分布,均值为172cm,标准差为5cm;女性身高也服从正态分布,均值为160cm,标准差为4cm。
问男性身高高于女性身高的概率是多少?解答:需要计算男性身高大于女性身高的概率,可以转化为计算两个正态分布随机变量之差的概率。
设随机变量X表示男性身高,Y表示女性身高,则X - Y服从正态分布,其均值为172cm - 160cm = 12cm,方差为5cm^2 + 4cm^2 =41cm^2。
要计算男性身高高于女性身高的概率,即计算P(X - Y > 0)。
首先,标准化X - Y,得到标准正态分布的随机变量Z:Z = (X - Y - 12) / sqrt(41)所以,P(X - Y > 0) = P(Z > (0 - 12) / sqrt(41)) = P(Z > -2.464)查标准正态分布表可知,P(Z > -2.464) ≈ 0.9937所以,男性身高高于女性身高的概率约为99.37%。
《概率论与数理统计》作业习题

习题一1. 设A、B与C为三个事件,试用A、B与C表示下列各个事件:(1) 只有A出现; (2) 只有A不出现; (3) 至多一个事件出现; (4) 至少一个事件出现;(5) 恰好一个事件出现。
2. 在某系的学生中任选一人,设A={被选出的是男学生},B={•被选出的是一年级学生},C={被选出的是田径运动员}; 试回答下列各个问题:(1) 事件ABC的含义; (2) 事件ABC的含义; (3) 事件A B C的含义; (4) ABC=C的条件。
3. 可上抛一枚硬币来决定乒乓球比赛的先发球权,方法是两选手分别猜{•正面朝上} 或{反面朝上},根据上抛的结果,猜中的选手先发球,试说明此方法的公平性。
4. 上抛两枚硬币,若A={有一枚正面朝上},B={有两枚正面朝上},C={至少有一枚正面朝上},试求P(A)、P(B)与P(C)。
5. 丢掷一粒骰子,若A={1, 3, 5},B={朝上的点数不超过5},C={朝下的点数为素数},试求P(A)、P(B)与P(C)。
6. 丢掷两粒骰子,若A={朝上的点数之和恰好是9},B={朝上的点数之和超过4},试求P(A)与P(B)。
7. 口袋中有4个红球3个白球,如果(1) 从中任取一球,求取得红球的概率; •(2) 从中任取两球,求取得一个红球一个白球的概率。
8. 口袋中有4个红球3个白球,如果用取后放回的方法,每次取一个,共取两次,A={两次都取红球},B={第二次取出红球},C={先取出红球后取出白球}, D={两次取出红球、白球各一个},试求这四个事件的概率。
9. 若正方形由x轴、y轴、直线x=1和 y=1 所围成, •正方形内部的点坐标为(x, y)且A={x+y< 1/2},B={x+y > 1/2 且x< 1/2, y< 1/2},C={ y< x2},试求这三个事件的概率。
10. 某棉麦连作地区,因受气候条件的影响,棉花减产的概率为0.08,小麦减产的概率为0.06,棉麦都减产的概率为0.04,试求(1)•棉花和小麦至少有一样减产的概率, (2) 棉花和小麦至少有一样不减产的概率,棉花和小麦都不减产的概率。
(完整版)数理统计考试题及答案

1、 离散型随机变量X 的分布律为P (X=x i )=p i ,i=1.2…..,则11=∑=ni ip2、 设两个随机变量X ,Y 的联合分布函数F (x ,y ),边际分布Fx (x ),Fy (y ),则X 、Y相互独立的条件是)()(),(y F x F y x F Y X •=3、 X 1,X 2,….X 10是总体X~N (0,1)的样本,若2102221X X X +⋅⋅⋅++=ξ,则ξ的上侧分位数025.0ξ=解:因为X~N (0,1),所以2102221X X X +⋅⋅⋅++=ξ~)10(2χ,查表得025.0ξ=20.54、 设X~N (0,1),若Φ(x )=0.576,则Φ(-x )= 解:Φ(-x )=1-Φ(x )=1-0.576=0.4245、设X 1,X 2,….X n 是总体),(~2σμN X 的样本,∑=-=ni iXY 122)(1μσ,则EY=n解:∑=-=ni iXY 122)(1μσ~)(2n χ,E 2χ=n ,D 2χ=2n二、设设X 1,X 2,….X n 是总体),(~2σμN X 的样本,∑=-=6122)(51i i X X s ,试求)5665.2(22σ≤s P 。
解:因为),(~2σμN X ,所以有)5(~)(126122χσ∑=-i i X X ,则⎪⎪⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-=≤=≤∑∑==8325.12)(5665.25)()5665.2()5665.2(261226122222σσσσi ii i X X P X X P s P s P 查2χ分布表得=≤)5665.2(22σs P ⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=8325.12)(2612σi i X X P =1-α=1-0.0248=0.9752 三.设总体X 的概率密度为f(x)= (1),(01)0a x x α⎧+<<⎨⎩,其他,其中α>0,求参数α的矩估计和极大似然估计量。
数理统计习题作业

数理统计习题作业班级:学号:姓名:习题一1. 设是来自服从参数为的泊松分布的样本,试写出样本的联合分布律。
2.设2(,)N ξμσ:,其中μ已知,2σ未知,12(,,,)n ξξξL 是总体ξ的样本,问下列那些是统计量?那些不是?并简述其理由.(1) 12ξξσ++;(2) 1()ni i ξμ=-∑;(3) 12min{,,,}n ξξξL ;(4) 2123ξξξσ++; (5) 221()ni i ξμσ=-∑;(6) 221()ni i S ξμ=-∑.3.从总体2(52,6.3)N ξ:中抽取一容量为36的样本,求样本均值ξ落在50.8到53.8之间的概率.4. 假设某种类型的电阻器的阻值服从均值μ=200欧姆,标准差σ=10欧姆的正态分布,在一个电子线路中使用了25个这样的电阻。
(1) 求这25个电阻平均值落在199欧姆到202欧姆之间的概率。
(2) 求这25个电阻总阻值不超过5100欧姆的概率。
5. 设总体分布2(150,25)N ξ:,现在从中抽取25个样本,求(140147.5)P ξ<<.6. 设某城市人均年收入服从均值μ=1.5万元,标准差σ=0.5万元的正态分布。
现随机调查了100个人,求他们的年均收入在下列情况下的概率:(2) 小于1.3万元; (3) 落在区间[1.2, 1.6].7. 假设总体分布为(12,2)N ,今从中抽取样本125(,,,)ξξξL ,试问 (1) 样本均值ξ大于13的概率是多少? (2) 样本的最小值小于10的概率是多少? (3) 样本的最大值大于15的概率是多少?8.设总体2(0,0.3)N ξ:,1210(,,,)ξξξL 是从总体ξ抽取的一个样本,求1021( 1.44)i i P ξ=>∑.9.设12,,,n ξξξL 是相互独立且同分布的随机变量,且都服从2(0,)N σ,求证 (1) 22211()nii n ξχσ=∑:; (2)22211()(1)ni i n ξχσ=∑:.10.设125,,,ξξξL 是相互独立且同分布的随机变量,且都服从标准正态分布,求常数C ,服从t 分布.11.设总体2(0,)N ξσ:,12(,)ξξ为总体ξ的样本,求证212212()(1,1)()F ξξξξ+-:.12. 通过查表求(1)20.05(4)χ,20.01(6)χ,20.025(10)χ;(2) 0.01(8)t ,0.95(9)t ,0.01(50)t ;(3) 0.05(4,1)F ,0.01(5,4)F ,0.90(3,2)F .13. 通过查表求以下各题的λ值(1) 设22(6)χχ:,2()0.05P χλ>=;(2) 设(5)t t :,()0.05P t λ>=; (3) 设(5,3)F F :,()0.05P F λ>=;(4) 设(5,3)F F :,()0.05P F λ<=.习题二1. 设),,,(21n ξξξΛ为抽自二项分布),(p m b 样本,试求p 的矩估计量和极大似然估计量。
数理统计习题(汇总)

150 162 175 165
(1) 求 Y 对 X 的线性回归方程; (2) 检验回归方程的显著性; (3) 求回归系数 b 的 95%的置信区间; (4) 取 x 0 =90,求 y 0 的预测值及 95%的预测区间。 8. 为了考察影响某种化工产品转化率的因素 , 选择了三个有关因素: 反应温度 (A)、反应时 间( B)、用碱量(C),而每个因素取三种水平,列表如下: 水平 因子 温度(A) 时间(B) 用碱量(C) 1 80℃( A1 ) 90 分( B1 ) 5%( C1 ) 2 90℃( A2 ) 120 分( B2 ) 6%( C2 ) 3 90℃( A3 ) 150 分( B3 ) 7%( C3 )
X ________, E ( X ) ______, D( X ) ______ .
3. 设 X 1 , X 2 , , X n 相互独立,且 X i N (0,1).(i 1, 2, , n) 则 的________分布。
2 4. 设 X N (0,1).Y ( n). X 与 Y 独 立 ,则 随 机 变 量 T
2
9. 某厂生产一种乐器用的合金弦线,按以往的资料知其抗拉强度(单位: kg cm 2 )服从 正态分布 N (10560,802 ) ,今用新配方生产了一批弦线,欲考察这批弦线的抗拉强度是 否有提高,为此随机抽取 10 根弦线做抗拉试验,测得其抗拉强度均值为 x 10631.4 , 均方差 s 81.00 。 (检验水平 0.05 ) 。 10. 某厂生产一种保险丝,规定保险丝熔化时间的方差不能超过 400。今从一批产品中
2 2 2 sB 1024( h2 ) ,取置信水平为 0.99 ,试求:
(1)
2 1 的区间估计。 2 2
数理统计习题
一、数理统计基础知识1. 在一本书上我们随机地检查了10页,发现每页上的错误数为 4 5 6 0 3 1 4 2 1 4试计算样本均值、样本方差和样本标准差。
解 样本均值12454310n x x x x n ++⋅⋅⋅+++⋅⋅⋅+===样本方差()()()()22222111435343 3.7819n i i s x x n =⎡⎤=-=-+-+⋅⋅⋅+-=⎣⎦-∑, 样本标准差2 1.94s s ==2. 设有容量为n 的样本A ,它的样本均值为A x ,样本标准差为A s ,样本极差为A R ,样本中位数为A m 。
现对样本中每一个观测值施行如下变化y ax b =+如此得到样本B ,试写出样本B 的均值、标准差、极差和中位数。
解不妨设样本A 为{}12,,,n x x x ⋅⋅⋅,样本B 为{}12,,,n y y y ⋅⋅⋅,且i i y ax b =+,1,2,,,i n =⋅⋅⋅1212n n B A y y y ax b ax b ax by ax b n n++⋅⋅⋅+++++⋅⋅⋅++===+,222221111()()11n n Bi B i A i i s y y ax b ax b a s n n ===-=+--=--∑∑, 因而B A s a s =.()()()()()()()111B A n n n R y y ax b ax b a x x aR =-=+--=-=,1212212n B n n y m y y +⎛⎫⎪⎝⎭⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭⎧⎪⎪=⎨⎛⎫⎪+ ⎪ ⎪⎪⎝⎭⎩ 3. 设1,,n x x ⋅⋅⋅是来自()1,1U -的样本,试求()E x 和()Var x 。
解 均匀分布()1,1U -的均值和方差分别为0和13,该样本的容量为n ,因而得 ()0E x =,1()3Var x n=4.设116,,x x ⋅⋅⋅是来自(8,4)N 的样本,试求下列概率 (1)(16)(10)P x >; (2) (1)(5)P x > 解 (1)16(16)(16)11616(10)1(10)1(10)1081(())10.84130.93702P x P x P x >=-≤=-≤-=-Φ=-=(2) 161616(1)(1)58(5)((5))(1())[(1.5)]0.33082P x P x ->=>=-Φ=Φ=。
数理统计习题
抽样分布一、 填空题1.设),,,(21n X X X ⋯是取自总体X 的简单随机样本,则n X X X ,,,21⋯必须满足(1) ;(2) 。
2.设总体X 服从参数为)0(>θθ的指数分布,),,,(21n X X X ⋯是来自X 的一个样本,X 、2S 分别为样本均值和样本方差,则=)(X E ,=)(2S E 。
3.设),,,(21n X X X ⋯为来自正态总体),(2σμN 的一个随机样本,X ,2S 分别为样本均值和样本方差,则=)(X E ,=)(2S E 。
4.设),,,(21n X X X ⋯为来自区间)8,2(上的均匀分布)8,2(U 的一个随机样本,X ,2S 分别为样本均值和样本方差,则=)(X E ,=)(2S E 。
5.设总体X 服从自由度为n 的2χ分布,),,,(21n X X X ⋯是来自X 的一个样本,X ,2S 分别为样本均值和样本方差,则=)(X E ,=)(2S E 。
6.设总体X 服从参数为)0(>λλ的泊松分布,),,,(21n X X X ⋯是来自X 的一个样本,X ,2S 分别为样本均值和样本方差,则=)(X E ,=)(2S E 。
7.设),,,(21n X X X ⋯为来自参数为p n ,的二项分布的一个样本,X ,2S 分别为样本均值和样本方差,则=)(X E ,=)(2S E 。
8.设随机变量(,)XF m n ,则函数1X。
9.设),,,(21n X X X ⋯为来自总体2(,)XN μσ的样本,则样本均值X。
10.设),,,(21n X X X ⋯为来自总体2(,)X N μσ的样本,2S 是样本方差,则22)1(σS n -服从的分布是 。
11.设随机变量()X t n ,若αλ=>}{X P ,则=-<}{λX P 。
12.设),,,(21n X X X ⋯为来自总体(0,1)X N 的样本,则∑=ni i X 12服从的分布为 。
数理统计习题数理统计练习题
数理统计一、填空题1.设X1, X2,X n为母体X的一个子样,假如g( X 1 , X 2 ,X n ),则称 g ( X1 , X 2 ,X n ) 为统计量。
2.设母体X ~ N(,2 ),已知,则在求均值的区间预计时,使用的随机变量为3.设母体X听从方差为 1的正态散布,依据来自母体的容量为100 的子样,测得子样均值为 5,则X的数学希望的置信水平为95%的置信区间为。
4.假定查验的统计思想是。
小概率事件在一次试验中不会发生5.某产品过去废品率不高于5%,今抽取一个子样查验这批产品废品率能否高于5%,此问题的原假定为。
6.某地域的年降雨量X ~N ( , 2 ) ,现对其年降雨量连续进行 5 次察看,得数据为:( 单位: mm) 587 672 701640 650,则 2 的矩预计值为。
7 .设两个互相独立的子样X1, X2,,X21与 Y1,,Y5分别取自正态母体N (1,22 ) 与N (2,1),22分别是两个子样的方差,令222( a2S1, S21aS1, 2b) S2,已知12 ~2 (20),22 ~2 (4) ,则a _____, b_____ 。
8.假定随机变量X ~ t( n) ,则12听从散布。
X9.假定随机变量X ~ t(10),已知P( X2)0.05 ,则____。
10.设子样X1,X2,, X16来自标准正态散布母体 N(0,1),X 为子样均值,而,则____, 2),令Y 101611.假定子样X1, X2,, X16来自正态母体N (3X i 4 X i,则Y的i 1i 11散布12.设子样X1, X2,, X10来自标准正态散布母体N (0,1),X与S*2分别是子样均值和子样方差,令10X 2,若已知 P(Y)0.01 ,则____。
YS*213.假如?1,?2都是母体未知参数的预计量,称?1比?2有效,则知足。
14.假定子样X1, X2,, X n来自正态母体N (,2), ?2C n 1( X i 1X i )2是 2 的i 1一个无偏预计量,则 C_______ 。
数理统计习题及答案
1一批出厂半年的人参营养丸的潮解率为8%,从中抽取20丸,求恰有一丸潮解的概率。
32816.0)1()1(,20,08.0=-====-k n kk n p p C k P n p2.设X ~N (μ,σ2),试求P{ |X-μ| ≤1.96σ}=?95.0025.0975.0)96.1()96.1()96.1()96.1()96.1()96.1()96.196.1(}96.1{=-=-Φ-Φ=--Φ--+Φ=--+=+≤≤-=≤-σμσμσμσμσμσμσμσμσμF F X P X P3.已知某药品中某成份的含量在正常情况下服从正态分布,标准差σ=0.108,现测定9个样本,其含量的均数X=4.484,试估计药品中某种成份含量的总体均数μ的置信区间(α=0.05)。
3、解:置信区间为)55456.4,41344.4(9108.096.1484.42_=⨯±=±nu x σα4.某合成车间的产品在正常情况下其收率X ~N (μ,σ2),通常收率的标准差σ=5%以内就可以认为生产是稳定的,现生产9批,得收率(%)为:73.2,78.6,75.4,75.7,74.1,76.3,72.8,74.5,76.6。
问此药的生产是否稳定?(α=0.01) 4、解:H 0:σ≤5 H 1:σ>5n=9,s=1.81873,选择统计量058489.125484.26)1(222==-=σχs n令α=0.01,查临界值表得6465.1)8(201.0=χ,0902.20)8(299.0=χ比较统计量的数值和临界值,1.<1.6465,从而不能否定原假设H 0,即总体的标准差在5%以内,生产是稳定的。
5 中药研究所,用中药青兰试验其在改变兔脑血流图所起的作用,测得数据如下: 用药前 2.0 5.0 4.0 5.0 6.0 用药后3.06.04.55.58.0试用配对比较的t 检验说明青兰对兔脑血流图的作用(α=0.05)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理统计习题作业班级:学号:姓名:习题一1. 设是来自服从参数为的泊松分布的样本,试写出样本的联合分布律。
2.设2(,)N ξμσ,其中μ已知,2σ未知,12(,,,)n ξξξ是总体ξ的样本,问下列那些是统计量?那些不是?并简述其理由.(1) 12ξξσ++;(2) 1()ni i ξμ=-∑;(3) 12min{,,,}n ξξξ;(4) 2123ξξξσ++;(5) 221()ni i ξμσ=-∑;(6) 221()ni i S ξμ=-∑.3.从总体2(52,6.3)N ξ中抽取一容量为36的样本,求样本均值ξ落在50.8到53.8之间的概率.4. 假设某种类型的电阻器的阻值服从均值μ=200欧姆,标准差σ=10欧姆的正态分布,在一个电子线路中使用了25个这样的电阻。
(1) 求这25个电阻平均值落在199欧姆到202欧姆之间的概率。
(2) 求这25个电阻总阻值不超过5100欧姆的概率。
5. 设总体分布2(150,25)N ξ,现在从中抽取25个样本,求(140147.5)P ξ<<.6. 设某城市人均年收入服从均值μ=1.5万元,标准差σ=0.5万元的正态分布。
现随机调查了100个人,求他们的年均收入在下列情况下的概率:(2) 小于1.3万元; (3) 落在区间[1.2, 1.6].7. 假设总体分布为(12,2)N ,今从中抽取样本125(,,,)ξξξ,试问(1) 样本均值ξ大于13的概率是多少? (2) 样本的最小值小于10的概率是多少? (3) 样本的最大值大于15的概率是多少?8.设总体2(0,0.3)N ξ,1210(,,,)ξξξ是从总体ξ抽取的一个样本,求1021( 1.44)i i P ξ=>∑.9.设12,,,n ξξξ是相互独立且同分布的随机变量,且都服从2(0,)N σ,求证(1) 22211()nii n ξχσ=∑; (2)22211()(1)ni i n ξχσ=∑.10.设125,,,ξξξ是相互独立且同分布的随机变量,且都服从标准正态分布,求常数C ,服从t 分布.11.设总体2(0,)N ξσ,12(,)ξξ为总体ξ的样本,求证212212()(1,1)()F ξξξξ+-.12. 通过查表求(1)20.05(4)χ,20.01(6)χ,20.025(10)χ;(2) 0.01(8)t ,0.95(9)t ,0.01(50)t ;(3) 0.05(4,1)F ,0.01(5,4)F ,0.90(3,2)F .13. 通过查表求以下各题的λ值 (1) 设22(6)χχ,2()0.05P χλ>=;(2) 设(5)tt ,()0.05P t λ>=; (3) 设(5,3)F F ,()0.05P F λ>=;(4) 设(5,3)FF ,()0.05P F λ<=.习题二1. 设),,,(21n ξξξ 为抽自二项分布),(p m b 样本,试求p 的矩估计量和极大似然估计量。
2.设总体为指数分布,其概率密度函数为,0()0, 0x e x f x x λλ-⎧≥=⎨<⎩ 求参数λ的矩估计和极大似然估计量。
3.设总体为]2,[θθ上均匀分布,求参数θ的矩估计和极大似然估计量。
4.设总体为指数分布其概率密度函数为1,0()0, 0xe xf x x θθ-⎧≥⎪=⎨⎪<⎩从该总体中抽出样本),,(321ξξξ,考虑θ的如下四种估计1ˆξθ=;2)(ˆ212ξξθ+=;)2(ˆ213ξξθ+=;ξθ=4ˆ (1) 这四个估计中,哪些是θ的无偏估计量?(2) 试比较这些估计的方差,并说明那个最有效。
5.一个电子线路上电压表的读数ξ服从]1,[+θθ上的均匀分布,其中是该线路上电压的真值,但它是未知的,假设),,,(21n ξξξ 是此电压表上读数的一组样本,(1) 证明样本均值ξ不是θ的无偏估计量。
(2)求θ的矩估计,证明它是θ的无偏估计量。
6.设1ˆθ和2ˆθ都是θ的无偏估计,且211ˆσθ=D ,222ˆσθ=D ,构造一个新无偏估计 12ˆˆˆ(1)c c θθθ=+-, 10≤≤c 如果1ˆθ和2ˆθ相互独立,确定c 使得θˆD 达到最小。
7. 设总体ξ具有密度函数(1)01(,)0x x x ααϕαα⎧+<<=>⎨⎩其他求未知参数α的矩估计量与极大似然估计。
如果获得样本观察值: (0.1,0.2,0.9,0.8,0.7,0.7),分别求α的估计值。
8. 设总体ξ的概率密度为(),()0, x e x f x x θθθ--⎧≥=⎨<⎩ 试求θ的矩估计量和极大似然估计量。
9. 设总体ξ的分布列为其中5.00<<θ,若已知样本值为(3,1,3,0,3,1,2,3),求θ的矩估计值与极大似然估计值。
10. 设总体),(~2σμξN ,求k ,使得212)(ˆ∑=-=ni i k ξξσ是2σ的无偏估计估计量。
11. 设),,(321ξξξ为总体ξ的样本,2,σξμξ==D E 均存在。
试问下列统计量中哪个是μ的无偏估计量?哪个比较有效?3211525152ˆξξξμ++=;3212213161ˆξξξμ++=; 321314914371ˆξξξμ++=.12、设1ˆθ和2ˆθ是参数θ的两个独立的无偏估计量,且1ˆθ的方差是2ˆθ的方差的4倍,求21,k k ,使2211ˆˆθθk k +为θ的最小方差无偏估计量。
13.似然方程组的解都是极大似然估计值吗?试述理由。
14. 设总体具有密度函数12()1211, ()0, x ex f x x θθθθθ--⎧>⎪=⎨⎪≤⎩ 求1θ和2θ的矩估计量和极大似然估计量。
15. 设ˆθ是θ的无偏估计量,且ˆ0 D θ>求证,2ˆ θ不是2θ的无偏估计量。
16.假设总体U[,+1] ξθθ,求θ的极大似然估计量,并说明θ的极大似然估计量不唯一。
习题三1.设1225,,,ξξξ取自正态总体(,9)N μ,其中参数μ未知,x 是子样均值,如对检验问题0010:,:H H μμμμ=≠取检验的拒绝域:12250{(,,,):||}c x x x x c μ=-≥,试决定常数c ,使检验的显著性水平为0.052.设子样1225,,,ξξξ取自正态总体2(,)N μσ,20σ已知,对假设检验 0010:,:H H μμμμ=>,取临界域12n 0{(,,,):|}c x x x c ξ=>,(1)求此检验犯第一类错误概率为α时,犯第二类错误的概率β,并讨论它们之间的关系;(2)设0μ=0.05,20σ=0.004,α=0.05,n=9,求μ=0.65时不犯第二类错误的概率。
3.设某产品指标服从正态分布,它的根方差σ已知为150小时。
今由一批产品中随机抽取了26个,测得指标的平均值为1637小时,问在5%的显著性水平下,能否认为该批产品指标为1600小时?4.某电器零件的平均电阻一直保持在2.64Ω,根方差保持在0.06Ω,改变加工工艺后,测得100个零件,其平均电阻为2.62Ω,根方差不变,问新工艺对此零件的电阻有无显著差异?去显著性水平α=0.01。
5.有甲乙两个检验员,对同样的试样进行分析,各人实验分析的结果如下:试问甲乙两人的实验分析之间有无显著差异?6. 某纺织厂在正常工作条件下,平均每台布机每小时经纱断头率为0.973根,每台布机的平均断头率的根方差为0.162根,该厂作轻浆试验,将轻纱上浆率减低20%,在200台布机上进行实验,结果平均每台每小时轻纱断头次数为0.994根,根方差为0.16,问新的上浆率能否推广?取显著性水平0.05。
7.在十块土地上试种甲乙两种作物,所得产量分别为1210(,,,)x x x ,1210(,,,)y y y ,假设作物产量服从正态分布,并计算得30.97x =,21.79y =,*26.7x s =,*12.1y s =取显著性水平0.01,问是否可认为两个品种的产量没有显著性差别?8.有甲、乙两台机床,加工同样产品,从这两台机床加工的产品中随机地抽取若干产品,测得产品直径为(单位:mm):甲 20.5 ,19.8 ,19.7 ,20.4 ,20.1 ,20.0 。
19.6 ,19.9乙 19.7 ,20.8 ,20.5 ,19.8 ,19.4 ,20.6 ,19.2 。
α=。
试比较甲乙两台机床加工的精度有无显著差异?显著性水平为0.059. 随机从一批钉子中抽取16枚,测得其长度为(cm)2.14 2.10 2.13 2.15 2.13 2.12 2.13 2.102.15 2.12 2.14 2.10 2.13 2.11 2.14 2.11设钉长服从正态分布,分别对下面两个情况求出总体均值μ的90%的置信区间σ=;(2)σ未知(1)0.01cm10.包糖机某日开工包糖,抽取12包糖,称得重量为9.9 10.1 10.3 10.4 10.5 10.2 9.7 9.8 10.1 10.0 9.8 10.3 假定重量服从正态分布,试由此数据对该机器所包糖的平均重量 求置信水平为95%的区间估计。
11.随机取9发炮弹做实验,得炮口速度的方差的无偏估计*211ns =(米/秒)2,设炮口速度服从正态分布,分别求出炮口速度的标准差σ和方差2σ的置信水平为90%的置信区间。
12. 假设六个整数1,2,3,4,5,6被随机地选择,重复60次独立实验中出现1,2,3,4,5,6的次数分别为13,19,11,8,5,4。
问在5%的显著性水平下是否可以认为下列假设成立:01:(1)(2)(6)6H p p p ξξξ=======。
13.对某型号电缆进行耐压测试实验,记录43根电缆的最低击穿电压,数据列表如下:测试电压 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8击穿频数 1 1 1 2 7 8 8 4 6 4 1试对电缆耐压数据作分析检验(用概率图纸法和2χ-拟合优度检验)。
习题四1 考察温度对某一化工产品得率的影响,选了五种不同的温度,在同一温度下做了三次实验,测得其得率如下,试分析温度对得率有无显著影响。
2 .下面记录了三位操作工分别在四台不同机器上操作三天的日产量:α=下检验:试在显著性水平0.05(1)操作工之间有无显著性差异?(2)机器之间的差异是否显著?(3)操作工与机器的交互作用是否显著?3.通过原点的一元线性回归模型时怎样的?通过原点的二元线性回归模型是怎样的?分别写出结构矩阵X,正规方程组的系数矩阵X X',常数项矩阵X Y',并写出回归系数的最小二乘法估计公式。