数学建模实验报告3 线性规划与整数规划、

合集下载

数学建模线性规划和整数规划实验

数学建模线性规划和整数规划实验

1、线性规划和整数规划实验1、加工奶制品的生产计划(1)一奶制品加工厂用牛奶生产A1, A2两种奶制品,1桶牛奶可以在甲车间用12小时加工成3千克A1产品,或者在乙车间用8小时加工成4千克A2 产品.根据市场需求,生产的A1、A2产品全部能售出,且每千克A1产品获利24元,每千克A2产品获利16元.现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且甲车间的设备每天至多能加工100 千克A1产品,乙车间的设备的加工能力可以认为没有上限限制.试为该厂制订一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题: (i)若用35元可以买到1桶牛奶,是否应作这项投资?若投资,每天最多购买多少桶牛奶?(ii)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?(iii)由于市场需求变化,每千克A1产品的获利增加到30元,是否应改变生产计划?(2)进一步,为增加工厂获利,开发奶制品深加工技术.用2小时和3元加工费,可将1千克A1加工成0.8千克高级奶制品B1,也可将1千克A2加工成0.75千克高级奶制品B2,每千克B1可获44元,每千克B2可获32元.试为该厂制订一个生产销售计划,使每天获利最大,并进一步讨论以下问题:(i)若投资30元可增加供应1桶牛奶,投资3元可增加1小时劳动时间,是否应作这项投资?若每天投资150元,或赚回多少?(ii)每千克高级奶制品B1, B2的获利经常有10%的波动,对制订的生产销售计划有无影响?若每千克B1的获利下降10%,计划是否应作调整?解:由已知可得1桶牛奶,在甲车间经过十二小时加工完成可生产3千克的A1,利润为72元;在乙车间经八小时加工完成可生产四千克的A2,利润为64元。

利用lingo软件,编写如下程序:model:max=24*3*x1+16*4*x2;s.t.12*x1+8*x2≤480;x1+x2≤50;3*x1≤100;X1≥0,x2≥0end求解结果及灵敏度分析为:Objective value: 3360.000Total solver iterations: 2Variable Value Reduced CostX1 20.00000 0.000000X2 30.00000 0.000000Row Slack or Surplus Dual Price1 3360.000 1.0000002 0.000000 2.0000003 0.000000 48.000004 40.00000 0.000000Objective Coefficient RangesCurrent Allowable Allowable Variable Coefficient Increase DecreaseX1 72.00000 24.00000 8.000000X2 64.00000 8.000000 16.00000Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 480.0000 53.33333 80.000003 50.00000 10.00000 6.6666674 100.0000 INFINITY 40.00000 分析结果:1)从结果可以看出在供应甲车间20桶、乙车间30桶的条件下,获利可以达到最大3360元。

数学建模线性规划与整数规划

数学建模线性规划与整数规划

数学建模线性规划与整数规划数学建模是一门将实际问题转化为数学问题,并利用数学方法解决的学科。

线性规划和整数规划是数学建模中常用的两种模型,它们在实际问题中有着广泛的应用。

本文将重点介绍线性规划和整数规划的概念、模型形式以及求解方法。

一、线性规划(Linear Programming)线性规划是一种在约束条件下求解线性目标函数最优解的数学模型,它的基本形式可以表示为:Min(或Max):C₁X₁ + C₂X₂ + ... + CₙXₙSubject to:A₁₁X₁ + A₁₂X₂ + ... + A₁ₙXₙ ≤ b₁A₂₁X₁ + A₂₂X₂ + ... + A₂ₙXₙ ≤ b₂...Aₙ₁X₁ + Aₙ₂X₂ + ... + AₙₙXₙ ≤ bₙX₁, X₂, ... , Xₙ ≥ 0在上述模型中,C₁,C₂,...,Cₙ为目标函数的系数,Aᵢₙ为不等式约束条件的系数,bᵢ为不等式约束条件的右端常数,X₁,X₂,...,Xₙ为决策变量。

线性规划的求解可以通过单纯形法或内点法等算法实现。

通过逐步优化决策变量的取值,可以得到满足约束条件并使目标函数达到最优的解。

二、整数规划(Integer Programming)整数规划是在线性规划基础上增加了决策变量必须取整的要求,其模型形式为:Min(或Max):C₁X₁ + C₂X₂ + ... + CₙXₙSubject to:A₁₁X₁ + A₁₂X₂ + ... + A₁ₙXₙ ≤ b₁A₂₁X₁ + A₂₂X₂ + ... + A₂ₙXₙ ≤ b₂...Aₙ₁X₁ + Aₙ₂X₂ + ... + AₙₙXₙ ≤ bₙX₁, X₂, ... , Xₙ ≥ 0X₁,X₂,...,Xₙ为整数整数规划在实际问题中常用于需要求解离散决策问题的情况,如装配线平衡、旅行商问题等。

然而,由于整数规划问题的整数约束,其求解难度大大增加。

求解整数规划问题的方法主要有分支定界法、割平面法、遗传算法等。

运筹学与优化中的整数规划与线性规划对比分析

运筹学与优化中的整数规划与线性规划对比分析

运筹学与优化中的整数规划与线性规划对比分析运筹学与优化是一门研究如何利用数学方法来优化决策的学科。

在运筹学与优化领域中,整数规划和线性规划是两种常用的数学模型。

本文将对整数规划和线性规划进行比较和分析,探讨它们在应用中的异同点以及各自的优势和劣势。

首先,我们来看整数规划。

整数规划是一种求解含有整数变量的优化问题的数学方法。

在整数规划中,决策变量必须取整数值,这导致整数规划比线性规划要更加复杂。

整数规划可以用来解决很多实际问题,例如生产调度问题、资源分配问题和路线选择问题等。

整数规划的一个重要应用领域是物流运输问题。

在物流运输中,有时需要决定在某一段时间内应该购买多少辆卡车,以满足快速变化的运输需求。

这个问题可以被建模为一个整数规划问题,目标是最小化成本或最大化利润。

与整数规划相比,线性规划是一种在决策变量可以取任意实数值的情况下求解优化问题的方法。

线性规划在运筹学与优化中被广泛应用。

线性规划的求解方法相对较为简单,可以通过线性规划软件来求解。

线性规划常被用来解决资源分配问题、产品混合问题和生产计划问题等。

一个典型的线性规划问题是生产计划问题,其中目标是最大化产量或最小化生产成本,同时满足一系列约束条件,例如原料和人力资源的限制。

整数规划和线性规划在应用中有一些明显的异同点。

首先,整数规划相对于线性规划来说更加复杂,因为整数规划需要考虑决策变量取整数值的限制。

这使得整数规划的问题规模更大,求解难度更高。

其次,整数规划可以更好地描述某些实际问题,例如一些离散决策问题,而线性规划更适用于某些具有连续决策变量的问题。

此外,整数规划常常需要更长的计算时间来求解,而线性规划则可以在较短的时间内得到结果。

尽管整数规划和线性规划在应用中有一些区别,它们也有一些共同之处。

首先,整数规划和线性规划都是数学模型,通过最大化或最小化某个特定的目标函数来进行决策。

其次,整数规划和线性规划都可以通过数学方法来求解。

虽然整数规划的求解方法相对复杂一些,但仍然可以被有效地求解出来。

建模实验报告

建模实验报告

建模实验报告摘要:本实验主要针对建模方法进行研究与探索,分别采用了数学模型、统计模型和物理模型进行建模实验。

实验结果表明,不同的建模方法对于问题的解决和分析具有不同的优势和适用性,选择合适的建模方法能够有效提高问题的解决效率和精确度。

1.引言建模是指将实际问题转化为数学模型、统计模型或物理模型等形式的一种方法。

通过建模,我们可以抽象出实际问题中的关键因素和变量,进一步分析和解决问题。

本实验将重点研究数学模型、统计模型和物理模型的建模方法,并通过实验验证其有效性和适用性。

2.数学模型的建模方法数学模型是以数学的形式描述实际问题的模型。

在本实验中,我们采用了几种常见的数学建模方法,包括代数方程模型、微分方程模型和最优化模型。

2.1 代数方程模型代数方程模型是一种通过代数方程来描述问题的模型。

我们可以采用一系列代数方程来表示问题中的变量和关系,进而通过求解方程组来得到问题的解。

在实验中,我们以一个简单的线性方程组作为例子,通过代数方程模型计算方程组的解。

2.2 微分方程模型微分方程模型是一种通过微分方程来描述问题的模型。

微分方程可以描述问题中的变量和其变化率之间的关系。

在实验中,我们以一个经典的弹簧振动模型为例,通过微分方程模型求解系统的振动频率和振幅。

2.3 最优化模型最优化模型是一种通过寻找最优解来描述问题的模型。

最优化模型可以用于解决各种优化问题,如线性规划、整数规划等。

在实验中,我们以一个简单的线性规划问题为例,通过最优化模型求解问题的最优解。

3.统计模型的建模方法统计模型是一种通过统计理论和方法来描述问题的模型。

在本实验中,我们主要研究了回归分析和时间序列分析两种常见的统计建模方法。

3.1 回归分析回归分析是一种通过建立变量之间的回归关系来描述问题的模型。

在实验中,我们以一个销售数据的回归分析为例,通过建立销售额和广告投入之间的回归关系,预测未来的销售额。

3.2 时间序列分析时间序列分析是一种通过统计和数学方法来描述时间序列的模型。

求解整数规划实验报告

求解整数规划实验报告

求解整数规划实验报告1. 引言整数规划是运筹学领域的重要分支,广泛应用于实际问题中。

本实验旨在研究和探索整数规划的求解方法,并通过实验验证算法的有效性和效率。

2. 实验目的本实验的主要目的如下:1. 了解整数规划的概念和基本原理;2. 学习并掌握整数规划的求解算法;3. 探索整数规划的应用实例,并进行模型构建;4. 运用求解工具求解整数规划模型,并进行结果分析。

3. 实验过程3.1 整数规划的概念和基本原理整数规划是指决策变量为整数的线性规划问题。

与线性规划相比,整数规划在模型的约束条件中要求决策变量为整数。

3.2 整数规划的求解算法常见的整数规划求解算法有分支定界法、割平面法等。

本实验主要采用分支定界法进行求解。

分支定界法是一种基于深度优先搜索的算法,其核心思想是通过不断分割问题的可行域,将整数规划问题转化为一系列子问题,以便找到最优解。

3.3 模型构建与求解工具选择本实验选择了某航空公司飞机调度问题作为研究对象。

在该问题中,需要确定飞机的起飞和降落时间以及机组成员的配备情况,以最小化总飞行成本为目标。

采用Python作为实验的编程语言,并使用PuLP库进行整数规划模型的构建和求解。

3.4 计算实验及结果分析首先,根据问题描述构建了完整的整数规划模型,并利用PuLP库求解得到最优解。

然后,通过对比不同约束条件下的模型求解结果,分析影响结果的关键因素。

最后,对实验结果进行总结,并提出改进措施和优化建议。

4. 实验结果与分析通过对某航空公司飞机调度问题的求解,得到了最优的飞行计划和配备方案,有效降低了航空公司的飞行成本。

同时,通过对比不同约束条件下的模型求解结果,发现起飞时间和降落时间的限制对最终成本的影响较大。

因此,建议航空公司在制定飞行计划时,合理安排飞机的起飞和降落时间,以减少不必要的成本。

5. 总结与展望本实验通过对整数规划的研究和实践,深入理解了整数规划的概念、原理和求解方法。

同时,通过实验还发现了整数规划在实际问题中的应用价值,并掌握了使用PuLP库求解整数规划模型的方法。

数学中的线性规划与整数规划

数学中的线性规划与整数规划

数学中的线性规划与整数规划线性规划和整数规划是数学中两个重要的优化问题。

它们在实际生活和工业生产中有着广泛的应用。

本文将简要介绍线性规划和整数规划的概念、应用以及解决方法。

一、线性规划线性规划是一种优化问题,其目标是在给定的约束条件下,找到一个线性函数的最大值或最小值。

线性规划可以用来解决诸如资源优化分配、生产计划、物流运输等问题。

首先,我们来定义线性规划的标准形式:```最大化: c^Tx约束条件:Ax ≤ bx ≥ 0```其中,`c`是一个n维列向量,`x`是一个n维列向量表示决策变量,`A`是一个m×n维矩阵,`b`是一个m维列向量。

上述的不等式约束可以包括等式约束。

通过线性规划,我们希望找到一个满足所有约束的向量`x`,使得目标函数`c^Tx`达到最大或最小值。

解决线性规划问题的方法有多种,例如单纯形法、内点法等。

其中,单纯形法是应用广泛的一种方法。

它通过不断地移动顶点来搜索可行解的集合,直到找到最优解为止。

二、整数规划整数规划是线性规划的一种扩展形式,它要求决策变量`x`必须取整数值。

整数规划可以更准确地描述实际问题,并且在某些情况下具有更好的可解性。

例如,在生产计划问题中,决策变量可以表示生产的数量,由于生产数量必须为整数,因此整数规划更适用于此类问题。

整数规划的求解相对于线性规划更加困难。

由于整数规划问题是NP困难问题,没有多项式时间内的高效算法可以解决一般情况下的整数规划问题。

因此,为了获得近似最优解,通常需要使用一些启发式算法,如分支定界法、割平面法等。

三、线性规划与整数规划的应用线性规划和整数规划在实际生活和工业生产中有着广泛的应用。

以下列举几个常见的应用领域:1. 生产计划:通过线性规划和整数规划,可以确定产品的生产量、原材料的采购量以及生产时间表,以实现最佳的生产效益。

2. 物流运输:线性规划和整数规划可以用来优化货物的配送路线和运输方案,减少物流成本,提高配送效率。

运筹学中的线性规划与整数规划算法

运筹学中的线性规划与整数规划算法

运筹学中的线性规划与整数规划算法运筹学是一门研究如何有效地做出决策的学科,它集合了数学、计算机科学和经济学等多个学科的理论和方法。

其中,线性规划和整数规划是运筹学中最常用的一类问题求解方法。

本文将重点讨论运筹学中的线性规划和整数规划算法。

线性规划是一种通过线性数学模型来实现决策优化的方法。

在线性规划中,目标函数和约束条件都是线性关系。

目标函数表示要优化的目标,约束条件则限制了决策变量的取值范围。

线性规划的基本思想是通过调整决策变量的取值,使得目标函数达到最大或最小值。

线性规划的求解方法主要有两种:单纯形法和内点法。

单纯形法是一种通过在顶点间移动来寻找最优解的方法。

它从一个可行解开始,然后通过交替移动到相邻的顶点来逐步优化目标函数值。

而内点法则是一种通过将目标函数与约束条件转化为一组等价的非线性方程组,通过迭代方法逼近最优解的方法。

内点法相对于单纯形法而言,在求解大规模问题时速度更快。

整数规划是线性规划的一个扩展,它要求决策变量只能取整数值。

整数规划问题更接近实际问题,因为很多情况下我们只能从离散的选择中进行决策。

然而,整数规划的求解难度要远远高于线性规划。

因为整数规划问题的解空间是离散的,不再是连续的顶点,这导致了求解整数规划的困难。

为了解决整数规划问题,提出了许多算法,其中最著名的是分支定界法和割平面法。

分支定界法是一种通过将整数规划问题分解为一系列线性规划子问题来求解的方法。

它通过将整数规划问题不断分解为子问题,并利用线性规划的求解方法求解子问题。

割平面法则是一种在单纯形法的基础上引入额外的不等式约束来加强整数规划问题的求解方法。

割平面法通过将不等式约束添加到线性规划模型中,逐步缩小解空间,最终找到整数规划问题的最优解。

除了分支定界法和割平面法之外,还有一些其他的整数规划求解方法,如启发式算法和元启发式算法。

启发式算法是一种基于经验和启发知识的求解方法,它通过模拟生物进化、社会行为等过程来搜索整数规划问题的解。

数学建模实验报告范文3线性规划与整数规划

数学建模实验报告范文3线性规划与整数规划

数学建模实验报告范文3线性规划与整数规划实验名称三、线性规划与整数规划实验地点日期2022-10-28姓名班级学号成绩【实验目的及意义】[1]学习最优化技术和基本原理,了解最优化问题的分类;[2]掌握规划的建模技巧和求解方法;[3]学习灵敏度分析问题的思维方法;[4]熟悉MATLAB软件求解规划模型的基本命令;[5]通过范例学习,熟悉建立规划模型的基本要素和求解方法。

通过该实验的学习,使学生掌握最优化技术,认识面对什么样的实际问题,提出假设和建立优化模型,并且使学生学会使用MATLAB、Lingo软件进行规划模型求解的基本命令,并进行灵敏度分析。

解决现实生活中的最优化问题是本科生学习阶段中一门重要的课程,因此,本实验对学生的学习尤为重要。

【实验要求与任务】根据实验内容和步骤,完成以下实验,要求写出实验报告(符号说明—模型的建立—模型的求解(程序)—结论)A组高校资金投资问题高校现有一笔资金100万元,现有4个投资项目可供投资。

项目A:从第一年到底四年年初需要投资,并于次年年末回收本利115%。

额不超过40万元。

项目C:从第二年年初需要投资,并于第5年末才回收本利M%,但是规定最大投资总额不超过30万元。

(其中M为你学号的后三位+10)项目D:五年内每年年初可以买公债,并于当年年末归还,并可获得6%的利息。

试为该校确定投资方案,使得第5年末他拥有的资金本利总额最大。

该校在第3年有个校庆,学校准备拿出8万元来筹办,又应该如何安排投资方案,使得第5年末他拥有的资金本利总额最大。

B组题1)最短路问题,图1中弧上的数字为相邻2点之间的路程,求从1到7的最短路。

图1图2其中r1为你的学号后2位+102)最大车流量,图1中弧上的数字为相邻2点之间每小时的最大车流量。

求每小时1到7最大第-1-页共2页车流量。

3)最小费用流,30辆卡车从1到7运送物品。

图1中弧上的数字为相邻2点之间的容纳的车的数量。

另外每条路段都有不同的路费要缴纳,下图2中弧上的数字为相邻2点之间的路费。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模与实验课程实验报告
实验名称三、线性规划与整数规划实验地点日期2014-10-28
姓名班级学号成绩
【实验目的及意义】
[1] 学习最优化技术和基本原理,了解最优化问题的分类;
[2] 掌握规划的建模技巧和求解方法;
[3] 学习灵敏度分析问题的思维方法;
[4] 熟悉MATLAB软件求解规划模型的基本命令;
[5] 通过范例学习,熟悉建立规划模型的基本要素和求解方法。

通过该实验的学习,使学生掌握最优化技术,认识面对什么样的实际问题,提出假设和
建立优化模型,并且使学生学会使用MATLAB、Lingo软件进行规划模型求解的基本命令,
并进行灵敏度分析。

解决现实生活中的最优化问题是本科生学习阶段中一门重要的课程,因
此,本实验对学生的学习尤为重要。

【实验要求与任务】
根据实验内容和步骤,完成以下实验,要求写出实验报告(符号说明—模型的建立—模型
的求解(程序)—结论)
A组
高校资金投资问题
高校现有一笔资金100万元,现有4个投资项目可供投资。

项目A:从第一年到底四年年初需要投资,并于次年年末回收本利115%。

项目B:从第三年年初需要投资,并于第5年末才回收本利135%,但是规定最大投资总
额不超过40万元。

项目C:从第二年年初需要投资,并于第5年末才回收本利M%,但是规定最大投资总
额不超过30万元。

(其中M为你学号的后三位+10)
项目D:五年内每年年初可以买公债,并于当年年末归还,并可获得6%的利息。

试为该校确定投资方案,使得第5年末他拥有的资金本利总额最大。

该校在第3年有个校庆,学校准备拿出8万元来筹办,又应该如何安排投资方案,使得
第5年末他拥有的资金本利总额最大。

B组题
1)最短路问题, 图1中弧上的数字为相邻2点之间的路程,求从1到7的最短路。

图1 图 2 r为你的学号后2位+10
其中
1
2)最大车流量, 图1中弧上的数字为相邻2点之间每小时的最大车流量。

求每小时1到7最大
车流量。

3)最小费用流, 30辆卡车从1到7运送物品。

图1中弧上的数字为相邻2点之间的容纳的车的数量。

另外每条路段都有不同的路费要缴纳,下图2中弧上的数字为相邻2点之间的路费。

如何分配卡车的出发路径可以达到费用最低,物品又能全部送到。

相关文档
最新文档