高考前数学答题技巧指导

合集下载

高考考前指导数学规范答题技巧

高考考前指导数学规范答题技巧

普集高中校本教材-------------高考数学规范答题规范答题1 应对填空题要注重反思与验算考题再现:1.已知全集S={1,3,x3-x2-2x},A={1,|2x-1|},如果S A={0},则这样的实数x的集合是.学生作答:甲生:{0,-1,2} 乙生:-1,2 丙生(-1,2)规范解答{-1,2}老师忠告:(1)由于填空题不像选择题那样有一个正确答案供我们校正结果,所以填空题更容易丢分.因此,对得出的结果要注意验算与反思,验算一下结果是否符合题意,反思一下表达形式是否符合数学的格式,像乙、丙两位同学已经求得了x的值,但由于书写格式不对,造成丢分.(2)注意集合“三性”,防止“奸细”混入.例如甲同学就是没有考虑到x=0时,A={1,1}违反了元素的互异性原则,应舍去.考题再现:2.(2009·上海,2)已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是.学生作答:甲生:a<1 乙生:a≥1规范作答:a≤1老师忠告:(1)集合的“交、并、补”特别要小心的是“端点值的取舍”.常犯的错误就是对“端点值”把握不准,其实很简单,只要单独反思一下“端点值”即可.(2)一定要养成“在数轴上进行集合(数集)运算”的好习惯,借助数轴,集合的运算关系一目了然.上面甲同学丢掉了端点值,乙同学没有搞清并集的含义及画法.规范答题2 注重数学思维能力的培养考题再现:某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图1的一条折线表示;西红柿的种植 成本与上市时间的关系用图2的抛物线表示.(1)写出图1表示的市场售价与时间的函数关系式P=f (t );写出图2表示的种植成本与时间的函数关系式Q=g (t );(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注 :市场售价和种植成本的单位:元/百千克,时间单位:天) 学生作答: 解 设f(t)=kt+b,当0≤t ≤200,由图可得方程 当t >200时,所以p=f(t)=t+300设g(t)=A(t-150)2+100 把t=250,Q=150代入g(t)解得(2)设F (t )=f(t)-g(t)当0≤t ≤200时,当t=50时,F(t)取得最大值F(t)max=100 当200<t ≤300时,不合题意, 1,300,100200300-==⎩⎨⎧=+=k b b k b 解得⎩⎨⎧=+=+300300100200b k b k 3002)(,2300-=∴⎩⎨⎧=-=t x f k b ,2001=A ).3000(100)150(2001)(2≤≤+-=t t t g5.87212001)(]100)150(2001[300)(22++-=+--+-=t t t F t t t F 化简得答 当上市时间为50天时,纯收益最大;最大为100元.规范解答解 (1)由图1可得市场售价与时间的函数关系为由图2可得种植成本与时间的函数关系为(2)设t 时刻的纯收益为h(t),则由题意得h (t )=f (t )-g (t ),当0≤t ≤200时,配方整理得 所以,当t=50时,h(t)取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理得 所以,当t=300时,h(t)取得区间(200,300]上的最大值87.5.综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大. 老师忠告:(1)解题能力由解题的结果体现,但思维能力水平的高低由解题步骤体现,清晰条理的解题步骤表现了解答人的数学素养,同时它也能提高一个人的数学素养.(2)第(1)小题的解答复杂而混乱,反映了解答人思维上的混乱与慌乱进而造成错误.第(2)小题中对200<t ≤300时不合题意的说明不恰当,没有说服力,要丢分!(3)对应用题的解答,要深刻理解题意.对解决方案先做到胸有成竹,才有“下笔成章”.若有不同情况,要分别说出各种情况下的答案,再汇总确定答案. 规范答题3 注重表达式及结果的化简 考题再现:已知函数f (x )=(1)若f (x )=2,求x 的值; ⎩⎨⎧≤<-≤≤-=;300200,3002,2000,300)(t t t t t f .3000,100)150(2001)(2≤≤+-=t t t g ⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-=.300200,20251272001,2000,2175212001)(22t t t t t t t h 即,100)50(2001)(2+--=t t h ,100)350(2001)(2+--=t t h .212||x x -(2)若2tf(2t)+mf(t)≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 学生作答解 由题意得规范解答解老师忠告(1)解答数学题时,若能及时对表达式进行化简,会使运算过程变的简单且正确率高,反之冗长的表达式不仅书写麻烦,且给考生增加心理上的压力; 运算结果不注重化简更是直接丢分.(2)该生在求f(x)解析式时,当x<0时,f (x )解析式化简不彻底,使进一步解答时显得逻辑上存在漏洞.(3)对(2)化简变形的方向性不明确造成变形无法进行,反映出平时训练时对步骤的严谨性要求不够,对此类问题的通解通法掌握不好.⎪⎪⎪⎩⎪⎪⎪⎨⎧=<->-=-0,00,2120,212)(x x x x f x x x x ).12(log 21)2(,22122)()1(212+=∴=-=-∴=+x x f x x x x 即 0)1(2)2(2,022220)212()212(20)()2(2)2(2322≥+-+≥⋅-⋅+-≥-+-∴≥+---m m m m m t mf t f t t t t t t t t t t t t t ;212)(,0xx x f x -=>时当⎪⎩⎪⎨⎧≤>-=∴===-=-=<-0,00,212)(.0)(,0;022212)(,0x x x f x f x x f x x x x x xx 时当时当).21(log ,02.212,01222,2212)1(22+=∴>±==-⋅-=-x x x x x x x 解得即由条件可知),5[].5,17[)21(],2,1[).12(,012).12()12(02122122,]2,1[)2(2224222+∞-∴--∈+-∴∈+-≥∴>---≥-≥⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-∈的取值范围是即时当m t m m m t t t t tt tt t t t规范答题4 注重解题步骤“数学” 的表达考题再现 考题再现:1.(2009·北京理,18)设函数f (x )=x e kx (k ≠0). (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )的单调区间;(3)若函数f (x )在区间(-1,1)内单调递增,求k 的取值范围. 学生作答解 (1)f ′(x )=(1+kx )·e kx ,f ′(0)=1,f (0)=0.∴曲线y=f(x)在点(0,f(0))处的切线方程为y=x .(2)由f ′(x)=(1+kx)·e kx =0,得x=-1k (k ≠0).若k>0,则当x ∈(-∞,-1k )时,f(x)<0,函数f(x)单调递减;当x ∈(-1k ,+∞)时,f ′(x)>0,函数f(x)单调递增.若k<0,则当x ∈(-∞,-1k )时,f ′(x)>0,函数f(x)单调递增;当x ∈(-1k ,+∞)时,f ′(x)<0,函数f(x)单调递减.(3)若k>0,则-1k <-1,得k<1时函数f(x)在(-1,1)内单调递增.若k<0则-1k >1,得k>-1函数f(x)在(-1,1)内单调递增. 规范解答解 (1)f′(x)=(1+kx)e kx ,f′(0)=1,f(0)=0, 曲线y =f(x)在点(0,f(0))处的切线方程为y =x.(2)由f′(x)=(1+kx)e kx=0,得x =-1k (k≠0),若k>0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f′(x)<0,函数f(x)单调递减;当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f′(x)>0,函数f(x)单调递增,若k<0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f′(x)>0,函数f(x)单调递增;当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f′(x)<0,函数f(x)单调递减,综上所述:当k>0时,函数f(x)的增区间是⎝ ⎛⎭⎪⎫-1k ,+∞,减区间是⎝ ⎛⎭⎪⎫-∞,-1k ;当k<0时,函数f(x)的增区间是⎝ ⎛⎭⎪⎫-∞,-1k ,减区间是⎝ ⎛⎭⎪⎫-1k ,+∞.(3)由(2)知,若k>0,则当且仅当-1k ≤-1,即k≤1时,函数f(x)在(-1,1)内单调递增,此时0<k≤1.若k<0,则当且仅当-1k ≥1,即k≥-1时,函数f(x)在(-1,1)内单调递增,此时-1≤k<0.综上可知,函数f(x)在(-1,1)内单调递增时,k 的取值范围是[-1,0)∪(0,1]. 老师忠告(1)结论的完备性,答案的准确性是拿到满分的关键.(2)第(2)问中,并没有回答出函数的单调区间,要注意“f(x)的增区间是(a ,b)”与“f(x)在(a ,b)上是增函数”的区别.一般来说,由分类讨论得出的结论,要做汇总说明. (3)第(3)问中,一方面要注意区间的“端点值”不要漏掉,另一方面要注意与分类范围取交集. 考题再现2.已知函数f(x)=x 4-3x 2. (1)求f(x)的单调区间;(2)若与曲线y =f(x)相切的直线过原点,求该切线方程. 学生作答解 (1)f′(x)=4x 3-6x =4x ⎝⎛⎭⎪⎫x +62⎝ ⎛⎭⎪⎫x -62,由f′(x)>0,解得-62<x<0或x>62,由f′(x)<0,解得x<-62或0<x<62;故f(x)的递增区间为⎝ ⎛⎭⎪⎫-62,0,⎝ ⎛⎭⎪⎫62,+∞f(x)的递减区间为⎝⎛⎭⎪⎫-∞,-62,⎝ ⎛⎭⎪⎫0,62.(2)由题意,原点是切点,得f′(0)=0,故切线方程为y =0.规范答题解 (1)f′(x)=4x 3-6x =4x ⎝⎛⎭⎪⎫x +62⎝ ⎛⎭⎪⎫x -62,由f′(x)>0,解得-62<x<0或x>62,由f′(x)<0,解得x<-62或0<x<62;故f(x)的递增区间为⎝ ⎛⎭⎪⎫-62,0,⎝ ⎛⎭⎪⎫62,+∞,递减区间为⎝⎛⎭⎪⎫-∞,-62,⎝ ⎛⎭⎪⎫0,62.(2)若原点是切点,则f′(0)=0,得切线方程y =0.若原点不是切点,设切点 P(x 0,y 0) (x 0·y 0≠0)则k =f′(x 0)=4x 30-6x 0=y0x0=x 30-3x 0,得x 0=±1. 当x 0=1时,P(1,-2),k =-2, 切线方程为2x +y =0;当x0=-1时,P(-1,-2),k =2, 切线方程为2x -y =0.综上所述:所求切线方程为y =0或2x +y =0或2x -y =0. 老师忠告:(1)特别要注意某些数学符号的用法,如:取值范围、定义域、值域等的合并要用“∪”,而单调区间是不能用“∪”的,如函数在多个区间上都是增函数,则这几个区间用“,”隔开或用“和”字连接.(2)要注意区别“在曲线上点A(a ,b)处的切线”与“过点A(a ,b)的曲线的切线”两种说法的区别.规范答题5 审题不仔细,导致失分 考题再现:是否存在实数a,使函数y=sin2x+acos x+ 在闭区间 上的最大值为1? 若存在,求出对应的a 值;若不存在,请说明理由.学生作答:解 假设存在实数a,2385-a ⎥⎦⎤⎢⎣⎡2π,02385cos sin 2-++=a x a x y 则2185cos cos 2-++-=a x a x 21854)2(cos 22-++--=a a a x .234,234121854,221854)2(,cos 2max 22符合题意或故存在或解得时当则令=-==-==-+==-++--==a a a a a a y a t a a a t y x t规范解答:解 假设存在实数a,老师忠告:审题不仔细,导致换元时忽视了新元的取值范围,本题中自变量的取值范围限制在上,根据余弦函数的性质,新元t 的取值范围应该是[0,1],而不是R 或[-1,1].规范答题6 思维定势,乱套公式 考题再现已知函数f(x)=a ·(b -a ),其中向量a =(cos ωx,0),b =( sin ωx,1),且ω为正实数.(1)求f(x)的最大值;(2)对任意m ∈R ,函数y=f(x),x ∈[m ,m+π]的图象与直线 有且仅有一个交点,求ω的值,并求满足 的x 值. 学生作答解.10,21854)21(,10,cos ,1cos 0,2π021854)2(cos 2185cos cos 2385cos sin 222222≤≤-++--=≤≤=≤≤≤≤-++--=-++-=-++=t a a a t y t x t x x a a a x a x a x a x a x y 则令时当则,12185,0cos ,0,0,02)2(max =-===<<a y x t a a 时即则当时即当.,0,512值足条件的故这种情况下不存在满由于解得a a a <=.23,.,21320,1320,123813,1cos ,1,2,12)3(max 符合题意存在综上知值足条件的故这种情况下不存在满由于解得时即则当时即当=<==-===>>a a a a y x t a a )12π7,12π(213)(⎥⎦⎤⎢⎣⎡∈-=x x f 21=y 2||))()1(a b a a (b a -⋅=-⋅=x f 21)6π2sin(22cos 12sin 23cos 2sin 23cos 0sin cos 322--=+-=-=-+=x x x x x x x x ωωωωωωωω规范解答 解.21)(1)6π2sin(1的最大值为又x f x ∴≤-≤-ω ,23)6π4sin(,21321)6π4sin(,21)6π4sin()(,2π,π2π,)(,21)()2(=-∴-=--∴--=∴=∴=∴∴=x x x x f x f y x f ωω的周期为有且只有一个交点与直线函数.24π58π,3π23π6π4===-∴x x x 或即或3(1)3cos sin 01sin 2.2x x x ωωω⋅=+⨯=a b .21)(,1)6π2sin(1.21)6π2sin(212cos 212sin 2322cos 12sin 23cos 2sin 232的最大值为x f x x x x x x x x ∴≤-≤---=--=+-=-=ωωωωωωωω ,21)()2(的大值为函数x f ,21π),[),(有一个交点有且仅的图象与直线=+∈=y m m x x f y .12π54π,3π23π6π2π],,0[6π2,6π7,6π2,12π7,12π.23)6π2sin(,21321)6π2sin(,21)6π2sin()(.1π,2π2.π)(===-∴∈-∴⎥⎦⎤⎢⎣⎡∈∴⎥⎦⎤⎢⎣⎡∈=-∴-=--∴--=∴=∴=∴∴x x x x x x x x x x f T x f 或即或为的周期函数 ωω老师忠告本题中2ω相当于公式 中的ω,需明确其意义.思维定势,乱套公式,造成由 得ω=2,致使后面运算全部出错,仅得7分. 规范答题7 步骤不完整,导致失分 考题再现已知数列{a n }的前n 项和为S n ,点(n ,S n ) (n ∈N +)均在函数y =f (x )=3 x 2-2 x 的图象上.(1)求数列{a n }的通项公式;(2)设b n =3 a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N +都成立的最小正整数m . 学生作答.10,20)1611(21)1611(21)]161561()13171()711[(21),161561(21]5)1(6)[56(33)1()2(.56)]1(2)1(3[)23(.23.23)()N )(,()1(1122122为整数所以满足要求的最小正由故得知由所以所以的图象上均在函数因为点m m n n n n b T n n n n a a b n n n n n S S a n n S x x x f y n S n ni i n n n n n n n n n <+-+-=+--++-+-==+--=-+-==-=-----=-=-=-==∈∑=+-+ 规范解答解 (1)因为点(n ,S n ) (n ∈N +)均在函数y =f(x)=3 x 2-2 x 的图象上,所以S n =3n 2-2n. 当n ≥2时,a n =S n -S n -1=(3n 2-2n)-[3(n -1)2-2(n -1)]=6n -5. 当n =1时,a 1=S 1=3×12-2=6×1-5, 所以,a n =6n -5 (n ∈N +). (2)由(1)得知b n =3 a n a n +1=3(6n -5)[6(n +1)-5]=12⎝⎛⎭⎪⎫16n -5-16n +1, 故T n =∑n i =1b i =12[⎝ ⎛⎭⎪⎫1-17+⎝ ⎛⎭⎪⎫17-113+…+⎝ ⎛⎭⎪⎫16n -5-16n +1=12⎝⎛⎭⎪⎫1-16n +1. 因此,要求12⎝⎛⎭⎪⎫1-16n +1<m 20 (n ∈N +)成立的m , ωπ2=T π,π2=ω必须且仅须满足12≤m20,即m ≥10,所以满足要求的最小正整数m 为10. 老师忠告在第(1)问中没有注意到a n =S n -S n -1成立的条件,造成步骤的缺失,因而被扣分.在第(2)问的解答中没有写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案不能得全分,犯了“大题小作”中的“一步到位”错误. 规范答题8 书写紊乱,所言无据 考题再现设正整数数列{a n }满足:a 2=4,且对于任何n ∈N +,有2+1 a n +1<1 a n +1 a n +11n -1n +1<2+1a n.求数列{a n }的通项a n .学生作答解规范解答解 (1)由已知不等式得:2+1a n +1<n(n +1)⎝ ⎛⎭⎪⎫1a n +1 a n +1<2+1 a n .① 当n =1时,由①得:2+1 a 2<2⎝ ⎛⎭⎪⎫1a 1+1 a 2<2+1 a 1, 即2+14<2 a 1+24<2+1 a 1,解得23<a 1<87.∵a 1为正整数,∴a 1=1.当n =2时,由①得:2+1 a3<6⎝ ⎛⎭⎪⎫14+1 a3<2+14, 解得8<a 3<10.∵a 3为正整数,∴a 3=9.∴a 1=1,a 3=9.11212111113323312311112(1)()2.11111,22()2,122122,44281111. 1.2,26()2.374481091,4,9,n n n nn n n a a a a n a a a a a a a a n a a a a a a a a n +++<++<+=+<+<++<+<+<<∴==+<+<+<<∴=====当时得即当时由得(2)由a1=1,a2=4,a3=9,猜想:an=n2.下面用数学归纳法证明1°当n=1,2时,由(1)知an =n2均成立;2°假设n=k (k≥2)成立,即ak=k2,则n=k+1时,由①得2+1ak+1<k(k+1)⎝⎛⎭⎪⎫1k2+1ak+1<2+1k2⇒k3(k+1)k2-k+1<ak+1<k(k2+k-1)k-1⇒(k+1)2-k+1k2-k+1<ak+1<(k+1)2+1k-1∵k≥2时,(k2-k+1)-(k+1)=k(k-2)≥0,∴k+1k2-k+1∈(0,1],又∵k-1≥1,∴1k-1∈(0,1].又ak+1∈N+,∴(k+1)2≤ak+1≤(k+1)2.故ak+1=(k+1)2,即当n=k+1时,an=n2成立.综上,由1°,2°知,对任意n∈N+,an=n2老师忠告解题表述的总原则是:说理充分,逻辑严谨,层次清楚,表述规范.本解答从头到尾只有方程,没有必要的文字说明,而且像写作文,关键点不突出,一定会失去应得之分,还要注意解题步骤最忌像“散文”一样连着写下来,让方程、答案淹没在文字之中,应像“诗”一样分行写出,出现一个结果就另起一行单独书写,这样即使阅卷速度快,也不会因为找不到你的得分点而少给分;正确结论的获得要通过严格推理,或在猜想出结论后再利用数学归纳法加以严格证明.本解答中用不完全归纳法猜想数列的通项,犯了以偏概全的错误,缺乏思维的严谨性,扣分是必然的.规范答题9 审题马虎,题意理解有误考题再现1.甲、乙两地相距s km,汽车从甲地匀速行驶到乙地,速度不得超过c km/h,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(km/h)的平方成正比,比例系数为b;固定部分为a元.(1)把全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小, 汽车应以多大速度行驶? 学生作答 甲生解 (1)依题意,汽车从甲地匀速行驶到乙地所用的时间是 ,全程运输成本为y=a+bv 2,故所求函数为y=a+bsv,定义域为{v|0<v ≤c}.乙生解 (1)由题意可知:汽车从甲地到乙地所用时间为 ,运输成本为故函数表达式为 定义域为 (2)依题意s ,a ,b ,v 均为正数,故规范解答解 (1)依题意,汽车从甲地匀速行驶到乙地所用的时间是sv,全程运输成本为y =a s v +bv2s v =s ⎝ ⎛⎭⎪⎫a v +bv .故所求函数为y =s ⎝ ⎛⎭⎪⎫a v +bv ,定义域为{v|0<v ≤c}.因此,当v =c 时,全程运输成本最小.事实上,s ⎝ ⎛⎭⎪⎫a v +bv -s ⎝ ⎛⎭⎪⎫a c +bc=s ⎣⎢⎡⎦⎥⎤a ⎝ ⎛⎭⎪⎫1v -1c +b(v -c)=svc(c -v)(a -bcv) ∵c -v ≥0且a>bc2,∴a -bcv ≥a -bc2>0. ∴s ⎝ ⎛⎭⎪⎫a v +bv ≥s ⎝ ⎛⎭⎪⎫a c +bc (当且仅当v =c 时,等号成立). 综上所述,为使全程运输成本最小,当 ab ≤c 时,行驶速度v = ab ;当ab>c 时,行驶速度v =c. 老师忠告甲生在答题前没有认真审题,想当然的认为运输成本中的固定部分就是a ,与时间的长短没关系,事实上题目交待的很清楚,汽车每小时的运输成本中固定部分vsvs ),(2bv v a s v s bv v s a y +=•+•=v s),(bv va s y +=(].,0c 运输成本最小.全程时,等号成立,时,即时,当且仅当b a v b a v bv v a ab s bv vas =∴==≥+,2)(,,0,②.,的减函数是易证时当若全程运输成本最小时v y c v c b a b a v≤<>=∴为a 元,只是语句较长,看了后面部分又忘记了前面部分的总的要求.因此,在今后的考试中,做应用题时,一定要认真阅读两遍以上.乙生在答题时,由于审题马虎没有注意到或做题时忘记“速度不得超过c km/h”实际问题中的条件限制,使解答不够完整.应分 ≤c 时, >c 时两种情况求运输成本y 最小时汽车的行驶速度. 考题再现2.如图所示,将一矩形花坛ABCD 扩建成一个更大 的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知AB =3米,AD = 2米.(1)要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内?(2)当DN 的长为多少时,矩形花坛AMPN 的面积 最小?并求出最小值.学生作答规范解答解 (1)设DN 的长为x (x>0)米,则AN =(x +2)米∵DN AN =DCAM ,∴AM =3(x +2)x , ∴SAMPN =AN ·AM =3(x +2)2x .由SAMPN>32,得3(x +2)2x>32,又x>0,得3x2-20x +12>0,解得:0<x<23或x>6,即DN 长的取值范围是⎝ ⎛⎭⎪⎫0,23∪(6,+∞).(2)矩形花坛AMPN 的面积为 y =3(x +2)2x =3x2+12 x +12 x =3x +12 x +12≥2 3 x ·12x +12=24b a ba.24.241212321212312123)2(3)2(.326.632,012203,32)2(3,32,)2(3,)2(3,)2(,)1(22222的面积的最小值为故矩形花坛的面积为矩形花坛或长的取值范围是即或即得米则米的长为设AMPN xx x x x x x x x y AMPN x x DN x x x x x x S x x AM AN S xx AM AMDC ANDN x AN x DN AMPN AMPN =+•≥++=++=+=<>><>+-∴>+>∴+=•=∴+=∴=+=当且仅当3x =12x ,即x =2时,矩形花坛AMPN 的面积取得最小值24. 故DN 的长为2米时,矩形AMPN 的面积最小,最小值为24平方米. 老师忠告该生在答卷过程中,存在着较多不规范的问题,一是由于马虎忽略了实际应用问题中的线段的长为正数的限制条件,导致第(1)问答案错误;二是审题不仔细,第(2)问明明有两个设问,但只解答了一个;三是做题不严谨,面积y 有没有最小值,关键是“=”能不能成立,没有验证“=”成立的条件就直接得最小值为24的结论;四是数学符号运用不规范,线段的长度在代数、三角、立体几何中用线段端点的两字母表示即可,只有在解析几何中对表示线段两端的字母加上绝对值符号.规范答题10 因定理运用所需条件不全失分 考题再现如图所示,M ,N ,K 分别是正方体ABCD —A 1B 1C 1D 1的棱AB ,CD ,C 1D 1的中点.(1)求证:AN ∥平面A 1MK ; (2)求证:平面A 1B 1C ⊥平面A 1MK.学生作答证明:(1) ∵K 、N 分别为C 1D 1,CD 的中点 ∴ AN ∥A 1K ∴ AN ∥面A 1MK(2) ∵M 、K 分别为AB ,C 1D 1的中点 ∴ MK ∥BC 1 又四边形BCC 1B 1为正方形∴ BC 1⊥B 1C ∴ MK ⊥B 1C 又A 1B 1⊥面BCC 1B 1∴ A 1B 1⊥BC 1∴ MK ⊥A 1B 1 ∴ MK ⊥面A 1B 1C ∴面A 1MK ⊥面A 1B 1C 规范解答证明(1)如图所示,连接NK.在正方体ABCD —A 1B 1C 1D 1中,∵四边形AA 1D 1D ,DD 1C 1C 都为正方形, ∴AA 1∥DD 1,AA 1=DD 1,C 1D 1∥CD ,C 1D 1=CD. ∵N ,K 分别为CD ,C 1D 1的中点,∴DN ∥D 1K ,DN=D 1K , ∴四边形DD 1KN 为平行四边形.∴KN ∥DD 1,KN=DD 1, ∴AA 1∥KN ,AA 1=KN.∴四边形AA 1KN 为平行四边形.∴AN ∥A 1K.A 1K 平面A 1MK ,AN 平面A 1MK ,∴AN ∥平面A 1MK.(2)连接BC 1.在正方体ABCD —A 1B 1C 1D 1中,AB ∥C 1D 1,AB=C 1D. ∵M ,K 分别为AB ,C 1D 1的中点,∴BM ∥C 1K,BM=C 1K. ∴四边形BC 1KM 为平行四边形.∴MK ∥BC 1.在正方体ABCD —A 1B 1C 1D 1中,A 1B 1⊥平面BB 1C 1C ,BC 1平面BB 1C 1C ,∴A 1B 1⊥BC 1.∵MK ∥BC 1,∴A 1B 1⊥MK.∵四边形BB 1C 1C 为正方形,∴BC 1⊥B 1C.∴MK ⊥B 1C.∵A 1B 1平面A 1B 1C ,B 1C 平面A 1B 1C ,A 1B 1∩B 1C=B 1,∴MK ⊥平面A 1B 1C.∵MK 平面A 1MK , ∴平面A 1MK ⊥平面A 1B 1C. 老师忠告该生(1)问中AN ∥A 1K 跨度太大,缺少关键步骤,应先证四边形ANKA 1为平行四边形,(2)问中MK ∥BC 1跨度大,证MK ⊥面A 1B 1C 及面A 1MK ⊥面A 1B 1C 时,缺少运用有关定理证明垂直的条件,这种粗线条的思维是不可行的,一定要处处留心,条理清晰.规范答题11 解题过程缺少必要的文字说明 考题再现如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 是等腰直角三角形,∠BAC=90°,且AB=AA 1,D 、E 、F 分别是B 1A 、CC 1、BC 的中点.现设A 1A=2a.(1)求证:DE ∥平面ABC ; (2)求证:B 1F ⊥平面AEF ;(3)求二面角B 1—AE —F 的正切值. 学生作答(1)证明 ∵D 、E 分别为AB 1、CC 1的中点, ∴ DE ∥AC ,又DE 面ABC ,∴DE ∥面ABC. (2)证明 B(2a,0,0),C(0,2a,O),F(a,a,0),E(0,2a,a),B(2a,0,2a)B 1F ·EF=0,B 1F ·AF=0 (3)解 面AEF 的法向量为B 1F=(-a ,a ,-2a )设面AEB 1的法向量为n=(x,y,1)..,111AEF F B F ,AF EF AF F B EF F B 面又⊥∴=⋂⊥⊥∴.5,5,tan 65,cos 1,sin 61,cos )1,21,1(0·0·),2,0(),2,0,2(1112111111---∴->=<∴=><->=<∴-=•=><∴--=∴⎪⎩⎪⎨⎧==∴==的正切值为二面角又F AE B F B n F B n F B n ,FB n F B n n ,AE n AB n a a AE a a AB规范解答(1)证明 如图建立空间直角坐标系A —xyz ,则A (0,0,0),B (2a ,0,0),C (0,2a,0),A 1(0,0,2a),B 1(2a,0,2a),C 1(0,2a,2a).取AB 的中点H ,连接DH ,CH.∵E (0,2a ,a ),D (a ,0,a ),H (a ,0,0),∴CH=(a ,-2a ,0),ED=(a ,-2a ,0), ∴CH ∥DE.∵CH 平面ABC ,而DE ∥平面ABC ,∴DE ∥平面ABC.(2)证明 ∵B (2a ,0,0),C (0,2a ,0),∴F (a ,a ,0),∴B 1F=(-a ,a ,-2a ),EF=(a ,-a ,-a ),AF=(a ,a ,0),∴B 1F ·EF=(-a )·a+a ·(-a )+(-2a )·(-a )=0,B 1F ·AF=(-a )·a+a ·a+(-2a )·0=0, ∴B 1F ⊥EF ,B 1F ⊥AF.∵EF ∩AF=F ,∴B 1F ⊥平面AEF.(3)解 设平面AB 1E 的一个法向量为m=(x,y,z),∵AB 1=(2a ,0,2a ),AE=(0,2a ,a ),∴m ·AB 1=2ax+2az=0,m ·AE=2ay+az=0,由(2)知平面AEF 的一个法向量为B 1F=(-a ,a ,-2a ),设B 1F 与m 所成的角为θ.则cos θ= ∵平面AB 1E 与平面AEF 所成的二面角为锐二面角,∴二面角B 1—AE —F .∴二面角B 1—AE —F . 老师忠告该生在第(1)问审题中将条件理想化,DE 根本不是中位线,在(2)问中缺少文字说明,应交待建系,求出向量的坐标,最后把向量转化成直线,在(3) 问中没注意隐含条件,二面角B 1—AE —F 的平面角为锐角.审题时要审条件、审结论、审关系、审图形,解题过程中必要的文字说明不可少. 规范答题12 符号应用不规范,忽视隐含条件 考题再现).,21,(,21.a a a m y x --==⎪⎩⎪⎨⎧-=-=∴则a z 令z.z 2221223662a a a a a --==||11F B ||m 65在平面直角坐标系xOy 中,已知点A (-1,0)、 B (1,0),动点C 满足条件:△ABC 的周长为2+ .记动点C 的轨迹为曲线W. (1)求W 的方程;(2)经过点(0, )且斜率为k 的直线l 与曲线W 有两个不同的交点P和Q ,求k 的取值范围;(3)已知点M ( ,0),N (0,1),在(2)的条件下,是否存在常数k ,使得向量 与 共线?如果存在,求出k 的值;如果不存在,请说明理由.学生作答解 (1)设C (x,y ), ∵AC+BC+AB=2+ , AB=2 ∴AC+BC= >2,∴由定义知,动点C 的轨迹是以A 、B 为焦点,长轴长为 的椭圆.∴a= ,c=1, ∴b 2=a 2-c 2=1, ∴W 的方程为 (2)设直线l 的方程为y=kx+ ,代入椭圆方程,得 整理得 ①因为直线l 与椭圆有两个不同的交点P 和Q 等价于 解得k<- 或k>∴满足条件的k 的取值范围为k< - 或 k>(3)设P (x 1,y 1),Q(x 2,y 2)则 =(x 1+x 2,y 1+y 2)由①得x 1+x 2=- ,因为M ( ,0),N (0,1),所以 ,所以 与 共线等价于x 1+x 2= (y 1+y 2)解得k= 所以不存在常数k ,使得向量 与 共线 规范解答解(1)设C (x ,y ),∵|AC|+|BC|+|AB|=2+ ,|AB|=2,∴|AC|+|BC|= >2,∴由定义知,动点C 的轨迹是以A 、B 为焦点,长轴长为 的椭圆除去与x 轴的两个交点. ∴a= ,c=1.∴b 2=a 2-c 2=1.∴W 的方程为 +y 2=1(y ≠0).(2)设直线l 的方程为y=kx+ ,代入椭圆方程,得 +(kx+ )2=1.2222OQ OP +MN 22222221222=+y x21)2(222=++kx x 0122)21(22=+++kx x k 024)21(48222>-=+-=∆k k k 22222222OQ OP +22124kk+2)1,2(-=MN OQ OP +MN 2-22OQ OP +MN 222222222x 222x 2整理,得 ① 因为直线l 与椭圆有两个不同的交点P 和Q 等价于解得k< - 或k> .∴满足条件的k 的取值范围为(-∞, - )∪( , +∞).(3)设P (x 1,y 1),Q (x 2,y 2),则 =(x 1+x 2,y 1+y 2),由①得x 1+x 2=- , ②又y 1+y 2=k(x 1+x 2)+ , ③因为M ( ,0),N (0,1),所以 =(- ,1).所以 与 共线等价于 x 1+x 2=- (y 1+y 2).将②③代入上式,解得k= .所以不存在常数k ,使得向量 与 共线. 老师忠告在(1)中线段的长度要遵循解析几何的规定加上绝对值符号,由于△ABC的三点不能共线,故动点C 的轨迹与x 轴的两个交点要去除.题目做完后,一定要经过认真的检查和分析,防止不必要的疏漏和错误.在(3)中由于未能在卷面上体现出y 1+y 2而造成步骤不完整,这种失分令人痛惜. 规范答题14 因解答使用结论降低试题难度而丢分 考题再现设抛物线y2=2px (p>0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明:直线AC 经过原点O. 学生作答证明 记A(x 1,y 1)、B(x 2,y 2),则y 1y 2=-p 2,因为BC//x 轴,且点C 在准线x= 上,所以点C 的坐标为 规范解答0122)21(22=+++kx x k 024)21(48222>-=+-=∆k k k 22222222OQ OP +22124k k +222MN MN MN OQ OP +OQ OP +22222p -2(,)2py -.,221112O AC OA k x y y p p y k CO 经过原点所以直线的斜率也是直线即的斜率为故直线==-=(,0),2p证明 如图所示,因为抛物线y 2=2px (p>0)的焦点为F ,由于直线AB 不可能与x 轴平行,所以经过点F 的直线AB 的方程可设为x=my+ 代入抛物线方程得y 2-2pmy-p 2=0.若记A(x 1,y 1)、B(x 2,y 2), 则y 1、y 2是该方程的两个根,所以y 1y 2=-p 2.因为BC ∥x 轴,且点C 在准线x= 上,所以点C 的坐标为 故直线CO 的斜率为即k 也是直线OA 的斜率,所以直线AC 经过原点O. 老师忠告解答高考解答题的理论根据应该是教材中的定义、定理、公理和公式,对于课本习题、例题的结论,是要通过证明才能直接使用,否则将被“定性”为解题不完整而被扣分.此考生直接运用课本中的引申结论“y 1y 2=-p 2”而跳过拟考查的知识点、能力点而可能被扣2到4分.由于使用“升华结论”达不到考查能力、考查过程的目的,因此不能以题解题,不能直接运用教材以外的东西,以免被扣分..2p2p -2(,).2py -21112,2y y p k p y x ===-优秀学习资料欢迎下载。

高考的数学答题技巧(推荐8篇)

高考的数学答题技巧(推荐8篇)

高考的数学答题技巧〔推荐8篇〕篇1:数学高考答题技巧另外,在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约考虑时间。

以下总结高考数学五大解题思想,帮助同学们更好地提分。

1.函数与方程思想函数思想是指运用运动变化的观点,分析^p 和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析^p 问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。

同学们在解题时可利用转化思想进展函数与方程间的互相转化。

2.数形结合思想中学数学研究的对象可分为两大局部,一局部是数,一局部是形,但数与形是有联络的,这个联络称之为数形结合或形数结合。

它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

3.特殊与一般的思想用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。

不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。

4.极限思想解题步骤极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法那么得出结果或利用图形的极限位置直接计算结果。

5.分类讨论思想同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进展下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。

引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法那么、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。

考试前一晚的数学偷分小技巧

考试前一晚的数学偷分小技巧

高中数学对于很多高考生来说,是一门极易拉分的学科,也是最容易提高分数的一门学科,那么对于数学成绩一般的学生,要怎么实现成绩的快速提高呢?下面小编就来分享几个学霸都在用的提分小技巧,希望对大家数学的考试有所帮助。

1、时间分配高考数学就是在120分钟内抢150分的问题,合理的时间分配与安排,对分数的提升会有很大帮助,可以把时间分成4个30分钟,第一个30分钟搞定选择填空(允许留下2道选择+2道填空),第二个30分钟做完大题(允许留下1道大题+2道题目的第二问),第三个30分钟再回头攻克刚刚留下的题目(这个时间可以保持在30-45分钟),最后30分钟或者15分钟检查。

2、养成检查的好习惯做完题目再进行检查和验算,可以有效地提高我们的答题正确性,但是绝大部分同学都没有养成这个习惯。

相对而言学霸基本都会进行检查和验算,尤其是简单的问题,可能会因为粗心导致细节性的小错误,做题后检查也是为了避免做题的时候,出现错误而自己不知道,这也是最后的一个保障。

3、提高效率不等于提高速度高考最重要的是准确率,提高的应该是做题效率,而不是一味的提升做题速度,所以虽然时间很重要,但是不能因为节省时间就在审题和答题上扣时间,这样只会在审题的时候不够仔细,导致我们粗心大意,在细节上出现一些错误,须知细节决定成败,所以我们答题要先确保准确率,再来想着如何提高速度。

4、不畏难不放弃数学遇到难题是正常的,不要抱着一个题不放,遇到不会的难题我们可以先跳过,去做其他简单熟悉的题目,把难题留到最后,这样时间更充足。

数学评分是按步骤评分的,如果这个题目完全不会,可以把你会的先写上去,就算不会,写上一些相关的公式也是能给分的。

5、紧抓基础分高考中的数学基础题型基本能占到70%-80%,所以只要我们基础够稳固,基本上都能保持不低的分数,所以我们要盯紧占分最大的基础题型,多去练题,从基础题型做起,慢慢提高题型的难度,这样我们面对高考就更有把握了。

总结来说,高考最后拼的不是谁把最后一道大题的最后一问解出来了,而是谁把自己该得的分得到手了,每个人都是不同的个体,关键是先把自己会做的、能做的,保证不失分,然后再去拼搏自己不会的或者暂时没有思路的题目,这也是为什么提倡同学们在做题的时候合理的分配好时间,先把简单的题目做完,保证得分率,后面能得分就是赚的,真不得分也不可惜,希望每个同学在高考的道路上一马平川金榜题名。

高考数学答题技巧总结

高考数学答题技巧总结

高考数学答题技巧总结高考数学对于很多考生来说是一场挑战,掌握一些有效的答题技巧可以帮助我们在考试中更加从容应对,提高答题的准确性和效率。

以下是为大家总结的一些高考数学答题技巧。

一、考前准备1、知识梳理在临近高考的复习阶段,要对数学的各个知识点进行系统的梳理,建立清晰的知识框架。

重点复习常考的知识点和自己掌握不够扎实的部分,通过做一些综合性的练习题来加深对知识的理解和运用。

2、错题回顾整理和回顾之前做过的错题,分析出错的原因,总结解题的思路和方法。

通过反复研究错题,可以避免在高考中犯同样的错误。

3、模拟考试按照高考的时间和要求进行模拟考试,熟悉考试的节奏和氛围,锻炼自己在规定时间内完成试卷的能力。

同时,通过模拟考试还可以发现自己在答题过程中存在的问题,及时进行调整和改进。

二、答题策略1、认真审题拿到试卷后,不要急于答题,先仔细阅读题目,理解题意。

注意题目中的关键词、条件和限制,明确题目所考查的知识点和要求。

对于复杂的题目,可以多读几遍,将题目中的信息进行梳理和分析,避免因为粗心大意而误解题意。

2、先易后难答题时,要遵循先易后难的原则。

先完成自己有把握的题目,这样可以增强自信心,提高答题的效率。

遇到难题不要慌张,可以先跳过,等完成其他题目后再回头思考。

有时候,在做后面的题目时可能会突然想到前面难题的解题思路。

3、答题规范书写要工整,步骤要清晰。

在解答计算题和证明题时,要按照规定的格式和步骤进行书写,避免因为书写不规范而扣分。

同时,要注意单位和符号的使用,保持答题的准确性。

4、合理分配时间高考数学考试时间有限,要合理分配时间。

一般来说,选择题和填空题的答题时间不宜过长,要控制在 40 分钟左右,留出足够的时间来解答后面的大题。

对于每一道大题,也要根据其分值和难度合理安排时间,确保能够在规定时间内完成试卷。

三、选择题答题技巧1、直接法直接从题目的条件出发,运用所学的定义、定理、公式等进行计算和推理,得出答案。

高考数学答题技巧方法及易错知识点

高考数学答题技巧方法及易错知识点

高考数学答题技巧方法及易错知识点高考即将来临,数学想得高分,要讲究方法技巧,不能盲目,今天小编在这给大家整理了一些高考数学答题的技巧及方法_高考数学易错的知识点,我们一起来看看吧!高考数学答题的技巧及方法1.调整好状态,控制好自我(1)保持清醒。

数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

(2)按时到位。

今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。

建议同学们提前15-20分钟到达考场。

2.通览试卷,树立自信刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。

答题时,见到简单题,要细心,莫忘乎所以。

面对偏难的题,要耐心,不能急。

3.提高解选择题的速度、填空题的准确度数学选择题是知识灵活运用,解题要求是只要结果、不要过程。

因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。

选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。

由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。

填空题也是只要结果、不要过程,因此要力求“完整、严密”。

4.审题要慢,做题要快,下手要准题目本身就是破_这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。

找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。

答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。

5.保质保量拿下中下等题目中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。

谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。

6.要牢记分段得分的原则,规范答题会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。

高中数学答题技巧100个绝招知识点大全

高中数学答题技巧100个绝招知识点大全

高中数学答题技巧100个绝招知识点大全高中数学答题技巧100个绝招知识点高考前注意事项高考复习方法高中数学答题技巧100个绝招知识点1.三个“基本”:基本的概念要清楚,基本的规律要熟悉,基本的方法要熟练。

2.做完题目后一定要认真总结,做到举一反三,这样,以后遇到同一类的问题是就不会花费太多的时间和精力了。

3.一定要全面了解数学概念,不能以偏概全。

4.学习概念的最终目的是能运用概念来解决具体问题,因此,要主动运用所学的数学概念来分析,解决有关的数学问题。

5.要掌握各种题型的解题方法,在练习中有意识的地去总结,慢慢地培养适合自己的分析习惯。

6.要主动提高综合分析问题的能力,借助文字阅读去分析理解。

7.在学习中,要有意识地注意知识的迁移,培养解决问题的能力。

8.要将所学知识贯穿在一起形成系统,我们可以运用类比联系法。

9.将各章节中的内容互相联系,不同章节之间互相类比,真正将前后知识融会贯通,连为一体,这样能帮助我们系统深刻地理解知识体系和内容。

10.在数学学习中可以利用口诀将相近的概念或规律进行比较,搞清楚它们的相同点,区别和联系,从而加深理解和记忆。

弄清数学知识间的相互联系,透彻理解概念,知道其推导过程,使知识条理化,系统化。

11.学习数学,不仅要关注题型,更要关注典型题型。

12.对于数学学科中的某些原理,定理,公式,不仅要记住它的结论,而且要了解这个结论是如何得出的。

13.学习数学,要熟记并正确地叙述概念和规律性内容。

14.在学习中要注意理解,开拓思路,变抽象为具体,逐渐培养自己学习数学的兴趣。

15.适当地对概念进行分类,可以使所学的内容化繁为简,重点突出,脉络分明,便于进行分析,比较,综合,概念。

16.数学学习最忌讳的就是对所学的知识模糊不清,各知识点混淆在一起,为了避免这一状况,同学们要学会写“知识结构小结”。

17.学会对题型题目的拆分和组合,学会从多角度,多方面来分析和解决典型题目,从中概括出基本题型和基本规律方法。

高考数学有哪些应试技巧

高考数学有哪些应试技巧

高考数学有哪些应试技巧高考数学有哪些应试技巧_高频考点学好数学的关键是方法的掌握,数学不仅是一门科学,而且是一种普遍适用的技术。

它是科学的大门和钥匙,学数学是令自己变的理性的一个很重要的措施,数学本身也有自身的乐趣。

下面是小编为大家整理的高考数学有哪些应试技巧,希望能帮助到大家!高考数学应试技巧1、拓实基础,强化通性通法高考对基础知识的考查既全面又突出重点。

抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。

2、认真阅读考试说明,减少无用功在平时练习或进行模拟考试时,高中英语,要注意培养考试心境,养成良好的习惯。

首先认真对考试说明进行领会,并要按要求去做,对照说明后的题例,体会说明对知识点是如何考查的,了解说明对每个知识的要求,千万不要对知识的要求进行拔高训练。

3、抓住重点内容,注重能力培养高中数学主体内容是支撑整个高中数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年必考且重点考的。

象关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来处理,要一个一个专题去落实,要通过对这些专题的复习向其他知识点辐射。

4、关心教育动态,注意题型变化由于新增内容是当前社会生活和生产中应用比较广泛的内容,而与大学接轨内容则是进入大学后必须具备的知识,因此它们都是高考必考的内容,因此一定要把诸如概率与统计、导数及其应用、推理与证明、算法初步与框图的基本要求有目的的进行复习与训练。

一定要用新的教学理念进行高三数学教学与复习,5、细心审题、耐心答题,规范准确,减少失误计算能力、逻辑推理能力是考试大纲中明确规定的两种培养的能力。

可以说是学好数学的两种最基本能力,在数学试卷中的考查无处不在。

并且在每年的阅卷中因为这两种能力不好而造成的失分占有相当的比例。

快高考了数学一点不会怎么办高考数学答题技巧

快高考了数学一点不会怎么办高考数学答题技巧

快高考了数学一点不会怎么办高考数学
答题技巧
很多高三学生在数学这科依然存在着很多的问题,比如说快高考了数学一点不会怎么办?在本文中为大家整理了相关内容,一起来看看吧!
快高考了数学一点不会怎么办1、数学的话如果你想很快进步的话,就找找近四年的高考卷,看看考哪些的类型大题,哪些知识只考填空题选择题,哪些考大题,然后一道道攻克,一般前三道大题都可以直接攻下。

2、每道题,除了数学基础知识和公式外,其实还有一种解体思路在,出题变化一般也是要你变化解题思路,这也是靠积累的,比如你做一道三角函数的题,如果你一直做的题目都是大概那种思路,但是你突然做到一种不一样问法的,这时就需要你把这道题记下来,这些步骤都是急不来的,慢慢积累,坚持下去。

高考数学作答技巧1、数学考试开始后先做选择填空等题目,这些题在草稿纸上计算,可以迅速解答,不用在乎卷面,且这些题目考的都是简单的知识点运用;
2、确保计算题的前两题正确无误,前两题的分值较高且难度适中,在计算题中算是送分的题,一定要仔细认真作答,结算结果一定要认真演算;
3、即便遇到自己不会的数学题目,也要将题目中可能考到的知识点和公式列在答题纸上,这样虽然拿不到全分,却也可以得到一些分数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学答题技巧
1.难题不要怕,会多少写多少。

数学评卷的主观性很少,评分细则都是细分到每一分,就算不会做,写几个公式也能拿分。

2.“做快”≠“做对”。

数学应先将准确性放在第一位,不能一味地去追求速度或技巧。

狠抓基础题,先小题后大题,确保一次性成功。

3.数学没有倒扣分,不确定大题不要涂掉。

考试结束前几分钟,切记不要草率地把怀疑做错的大题的解答过程从答卷上涂掉,此时如果还有题目没有做,那么直接把你的分析过程写在答卷上。

4.数学:“522原则”做送分题。

坚持“522原则”。

把眼睛多盯在选择题的前5个,填空题的前2到3个,解答题的前2个。

这些题都是送分的题,不会很难。

不管大题小题先抢会做的题,再做有一定解题思路的题,然后拼感觉困难的题,最后再抠实在不会的题。

这样可以保证在有限的时间里多拿分。

5.抓紧时间。

不为小题纠缠不休。

选择题每个题平均控制在一分半钟以内。

数学冲刺建议:第一,注重基础。

我们知道数学试卷中对基础知识和基本方法的考查占80%的比重,我们只有一丝不苟地巩固基础,才能突破难题战胜新题。

第二,注重计算。

大家平时的计算中很多题目失分的原因,并不在于方法而是计算出了问题,所以我们平时做题时,要注意根据问题的条件,寻找合理简洁的运算途径,提高自己的运算求解能力。

第三,重点、热点题型要反复练。

这样当考试出现同类型题时,你就知道用什么方法,用哪些知识,有什么步骤,从而做到轻车熟路、信手拈来。

第四,要重视平时的每一次考试。

大家要把平时的考试当做高考,严格限时完成,并且在速度的体验中提高自己的正确率,同时要提高自己应试的心理素质,保证在任何状态下都心态平和,保证考试正常发挥。

相关文档
最新文档