双曲线的几何性质教案(精)
双曲线的简单几何性质(教案)(精)

双曲线的简单几何性质山丹一中周相年教学目标:(1 知识目标能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程等,熟练掌握双曲线的几何性质 .(2能力目标通过类比椭圆的简单几何性质的方法来研究双曲线的简单几何性质, 在老师的指导下让学生积极讨论、归纳,培养学生的观察、研究能力,增强学生的自信心 .(3 情感目标通过提问、讨论、合作、探究等主动参与教学的活动,培养学生自尊、自强、自信、自主等良好的心理潜能和主人翁意识、集体主义精神 . 教学重点:双曲线的几何性质 .教学难点:双曲线的渐近线 .教学方法:启发诱导、练讲结合教学用具 :多媒体教学过程:一、复习回顾,问题引入:问题 1:双曲线的定义及其标准方程?问题 2:椭圆的简单几何性质有哪些?我们是如何研究的?双曲线是否也有类似性质?又该怎样研究?二、合作交流,探究性质: 类比椭圆的几何性质的研究方法,我们根据双曲线的标准方程 0, 0(12222>>=-b a by a x 研究它的几何性质 1. 范围:双曲线在不等式x ≥ a 与x ≤-a 所表示的区域内 .2. 对称性:双曲线关于每个坐标轴和原点都对称, 这时, 坐标轴是双曲线的对称轴, 原点是双曲线的对称中心, 双曲线的对称中心叫双曲线中心 .3.顶点:(1 双曲线和它的对称轴有两个交点 A1(-a,0 、 A2(a,0,它们叫做双曲线的顶点 .(2 线段 A1A2叫双曲线的实轴, 它的长等于 2a,a 叫做双曲线的实半轴长; 线段B1B2叫双曲线的虚轴,它的长等于 2b, b叫做双曲线的虚半轴长 .(3实轴与虚轴等长的双曲线叫等轴双曲线,其方程为: 练一练:1. 若点 P (2, 4在双曲线上,下列是双曲线上的点有(1 P (-2, 4 (2 P (-4, 2 (3 P(-2, -4 (4 P (2, -42. 求适合下列条件的双曲线的标准方程:0(22≠=-m m y x(1焦点在 x 轴上,实轴长是 10,虚轴长是 8,则方程是(2焦点在 y 轴上,焦距是 10,虚轴长是 8,则方程是 :4. 渐近线(1概念:双曲线 0, 0(12222>>=-b a by a x 的各支向外延伸时,与这两条直线逐渐接近!故把这两条直线叫做双曲线的渐近线!(2双曲线 12222=-by a x 的渐近线方程为:x a b y ±= ,即 0=±b y a x (3等轴双曲线的渐近线方程为:x y ±=.(4 利用双曲线的渐近线, 可以帮助我们较准确地画出双曲线的草图 . 具体做法是:画出双曲线的渐近线, 先确定双曲线顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限内从渐近线的下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线 .5. 离心率:(1定义:双曲线的焦距与实轴长的比 e=ac ,叫双曲线的离心率 .(2范围:由 c>a>0可得 e>1.思考:离心率可以刻画椭圆的扁平程度,双曲线的离心率刻画双曲线的什么几何特征?(3含义 :离心率是表示双曲线开口大小的一个量 , 离心率越大开口越大 . 思考:你能到处双曲线 0, 0(12222>>=-b a b x a y 的性质吗? 三、学以致用,巩固双基:例 1 求双曲线 9y 2-16x 2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程 .练习 1 求双曲线 9y 2-16x 2=-144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程 .思考 1:请你写出一个以为渐近线的双曲线方程 .思考 2:你能写出所有以为渐近线的双曲线方程吗 ?练习 2 求渐近线为 x y 34±=,且过点 4, 3(的双曲线的标准方程 .四、小结反思,总结提高:1. 双曲线 0, 0(12222>>=-b a b x a y 的简单几何性质:范围,对称性,顶点,离心率,渐进线2. 比较双曲线的几何性质与椭圆的几何性质的异同五、作业布置 :必做:作业案 1-10 选做:作业案 11-12x y 34±=x y 34±=六、教学反思渐近线是双曲线的特有性质,也是教学的难点,但课程标准要求相对较低,不要求严格证明,为了突破难点,通过问题引导学生从已有认知水平出发,来发现双曲线的渐近线,然后充分利用多媒体展示,帮助学生进一步直观理解渐近线“渐近”的含义。
双曲线的几何性质教案

吕 叔 湘 中 学 教 师 备 课 纸高 二 年级 数学 学科 时间 编号( )教学过程设计【授课】 一、复习双曲线的定义及标准方程.〖基础知识〗二、双曲线的几何性质 由双曲线的标准方程12222=-by ax (a >b >0)来研究双曲线的几何性质:1.范围:2.对称性:3.顶点:双曲线和对称轴的交点叫做双曲线的顶点. 在双曲线12222=-by ax 的方程里,对称轴是,x y 轴,所以令0=y 得a x ±=,因此双曲线和x 轴有两个交点)0,()0,(2a A a A -,他们是双曲线12222=-bya x的顶点.令0=x ,没有实根,因此双曲线和y 轴没有交点。
⑴注意:双曲线的顶点只有两个,这是与椭圆不同的(椭圆有四个顶点),双曲线的顶点分别是实轴的两个端点。
⑵实轴:________________________________________________________虚轴:________________________________________________________ 在作图时,我们常常把虚轴的两个端点画上(为要确定渐进线),但要注意他们并非是双曲线的顶点.4.离心率定义:ac e =∈(1,+∞)称为双曲线的离心率。
由于c e a==故e 越大,双曲线__________;e 越小,双曲线的_________。
5.渐近线:注意到开课之初所画的矩形,矩形确定了两条对角线,这两条直线即称为双曲线的渐近线。
从图上看,双曲线12222=-by ax 的各支向外延伸时,与这两条直线逐渐接近.思考:从哪个量上反映“无限接近但永不相交”?——距离。
只要证明什么?——距离趋向于0.求法:求已知双曲线的渐近线方程:令右端的1为0,解出的直线方程即为双曲线的渐近线方程.6.等轴双曲线:⑴定义:实轴和虚轴等长的双曲线叫做等轴双曲线。
定义式:a b =⑵等轴双曲线的性质:①渐近线方程为:x y ±= ;②渐近线互相垂直。
高中数学双曲线几何性质教案

高中数学双曲线几何性质教案
一、教学目标:
1. 了解双曲线的定义和基本性质;
2. 能够根据给定条件解决双曲线相关问题;
3. 掌握双曲线的方程和图像特点。
二、教学内容:
1. 双曲线的定义和基本性质;
2. 双曲线的方程和图像特点;
3. 双曲线的焦点、准轴、渐近线等相关概念。
三、教学重点:
1. 理解双曲线的几何性质;
2. 掌握双曲线的方程和图像特点。
四、教学难点:
1. 理解双曲线方程中参数对图像的影响;
2. 能够灵活运用双曲线的性质解决问题。
五、教学方法:
1. 讲解结合示例;
2. 提问互动,引导学生思考;
3. 小组讨论,合作解题。
六、教学过程:
一、导入
1. 欢迎学生,引入双曲线的定义和概念;
2. 让学生回顾椭圆和抛物线的性质,引申到双曲线。
二、讲解
1. 介绍双曲线的定义和一般方程;
2. 讲解双曲线的图像特点和性质;
3. 详细解释双曲线的焦点、准轴、渐近线等重要概念。
三、练习
1. 带学生做几道双曲线方程求解问题;
2. 引导学生分组合作,解决双曲线相关实际问题。
四、巩固
1. 总结双曲线的性质和特点;
2. 提醒学生复习重点内容,做好准备。
七、作业布置
1. 布置相关习题,巩固所学知识;
2. 提供实际问题,让学生应用双曲线知识解答。
八、评价与反思
1. 对学生的学习情况进行评价;
2. 总结教学过程,反思教学方法,提出改进意见。
以上是本节课的教学内容,希望同学们能认真学习,掌握双曲线的性质和应用,成为数学的高手!。
双曲线的几何性质教案

双曲线的几何性质教案【教案】一、教学目标:1.了解双曲线的定义及基本特点;2.学习双曲线的标准方程;3.掌握双曲线的几何性质。
二、教学重点:1.学习双曲线的标准方程;2.掌握双曲线的几何性质。
三、教学内容:1.双曲线的定义及基本特点:双曲线是平面上一类特殊的曲线,与椭圆和抛物线相似,它们都是二次曲线。
双曲线的特点是曲线上的每一点到两个固定点(称为焦点)的距离之差等于一个常数(称为离心率)的绝对值。
双曲线有两条分支,两个焦点分别位于两条分支的焦点处。
两条分支无限延伸,且永不相交。
2.双曲线的标准方程:标准方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 或$\frac{y^2}{b^2}-\frac{x^2}{a^2}=1$。
其中,a为双曲线横轴方向的半轴长,b为双曲线纵轴方向的半轴长。
3.双曲线的几何性质:(1) 对称性:双曲线关于x轴、y轴对称,关于原点对称;(2) 焦点性质:曲线上任意一点到两个焦点的距离之差等于离心率的绝对值;(3) 焦点到顶点的距离等于半轴长a;(4) 曲线和渐近线的关系:当$x\to+\infty$或$x\to-\infty$时,曲线趋于渐近线$y=\pm\frac{b}{a}x$;(5) 端点位置:双曲线与横轴和纵轴的交点分别称为端点,位于横轴上的端点坐标为$(\pm a, 0)$,位于纵轴上的端点坐标为$(0, \pm b)$;(6) 曲线的拐点:双曲线没有拐点。
四、教学过程:1.引入双曲线的概念,通过图像展示和对比椭圆、抛物线等曲线的差异,激发学生的兴趣。
2.介绍双曲线的定义及基本特点:说明双曲线与焦点、离心率的关系,引导学生思考对称性、焦点性质等几何特征。
3.讲解双曲线的标准方程:通过代入具体的数值,给予学生实际的例子,帮助他们理解标准方程的含义。
4.分析双曲线的几何性质:依次介绍对称性、焦点性质、焦点到顶点的距离、曲线和渐近线的关系、端点位置以及曲线的拐点等重要几何性质。
双曲线的简单几何性质教学设计(同课异构公开课)

双曲线的几何性质 教学设计一、教学目标 授课:1、理解双曲线的几何性质(顶点坐标、实、虚轴长,渐近线方程和离心率)。
2﹑能够根据双曲线的几何性质得出相应的双曲线方程。
3、学会画图,探究与双曲线有关的范围(最值)问题过程与方法培养学生的观察能力,想象能力,数形结合和研究问题能力,以及类比的学习方法。
二、教学重点、难点教学重点:双曲线的几何性质(离心率和渐近线等)教学难点:数形结合,动手画图与双曲线有关的范围(最值)问题三、教学准备学生熟练掌握椭圆的定义﹑标准方程及几何性质,了解双曲线的定义﹑标准方程,认识椭圆和双曲线的内在联系,并掌握几何画板的一般操作步骤。
教师制作PPT 课件和易于学生发现和掌握规律的几何画板实验平台。
四、教学过程4.1 复习回顾,引入课题复习1、双曲线的定义及标准方程122PF PF a -=,22221x y a b -=或22221y x a b-= 4.2 活动探究,认识性质1、范围、对称性、顶点、离心率的探究结合椭圆的性质,让学生类比得出双曲线的相关性质,并结合方程加以验证并说出与椭圆的不同。
从而对双曲线的几何性质有一整体认识。
4、给出等轴双曲线的定义并让学生求出实轴长、虚轴长、焦点坐标、顶点坐标、离心率及渐近线方程。
4.3 应用举例,加深理解(1)例、求双曲线22143xy -=的实轴长、虚轴长、焦点坐标、顶点坐标、离心率及渐近线方程。
通过此例,使学生巩固双曲线的几何性质。
(2)考点聚焦,重点讲授双曲线的离心率、渐近线以及与双曲线有关的范围(最值)问题进行理解、探究与突破。
【例1】(2021 年全国甲卷) 已知 12,F F 是双曲线C 的两个焦点, P 为 C 上一点, 且 12160,F PF PF ︒∠==23PF , 则C 的离心率为( ).A.B. C. D. 规律方法:【例2】. (一题多解)焦点为(6,0),且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( ) A .1241222=-y x B .1241222=-x y C .1122422=-x y D .1122422=-y x规律方法:【例3】已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点, A ,则当点P 的位置变化时,△P AF 周长的最小值为____________. 规律方法:4.4 归纳总结,认识升华在学生总结的基础上,再总结归纳,将学生画图的能力,和研究问题能力,以及类比的学习方法进行巩固与加深。
双曲线的简单几何性质精品教案

2.2.2 双曲线的简单几何性质学习目标 1.了解双曲线的简单几何性质(范围、对称性、顶点、实轴长和虚轴长等).2.理解离心率的定义、取值范围和渐近线方程.3.掌握标准方程中 a ,b ,c ,e 间的关系.4.能用双曲线的简单几何性质解决一些简单问题.知识点一 双曲线的简单几何性质思考 类比椭圆的几何性质,结合图象,你能得到双曲线x 2a 2-y 2b 2=1(a >0,b >0)的哪些几何性质?答案 范围、对称性、顶点、离心率、渐近线.x ≥a 或x ≤-a y ≥a 或y ≤-a 知识点二 双曲线的离心率思考1 如何求双曲线的渐近线方程?答案 将方程x 2a 2-y 2b 2=1(a >0,b >0)右边的“1”换成“0”,如图,即由x 2a 2-y 2b 2=0得x a ±yb =0,作直线x a ±y b =0,在双曲线x 2a 2-y 2b2=1的各支向外延伸时,与两直线无限接近,把这两条直线叫做双曲线的渐近线.思考2 椭圆中,椭圆的离心率可以刻画椭圆的扁平程度,在双曲线中,双曲线的“张口”大小是图象的一个重要特征,怎样描述双曲线的“张口”大小呢?答案 双曲线x 2a 2-y 2b 2=1的各支向外延伸无限接近渐近线,所以双曲线的“张口”大小取决于b a 的值,设e =c a ,则ba =c 2-a 2a=e 2-1. 当e 的值逐渐增大时,ba的值增大,双曲线的“张口”逐渐增大.双曲线的半焦距c 与实半轴长a 的比值e 叫做双曲线的离心率,其取值范围是(1,+∞).e 越大,双曲线的张口越大. 知识点三 双曲线的相关概念(1)双曲线的对称中心叫做双曲线的中心.(2)实轴和虚轴等长的双曲线叫做等轴双曲线,它的渐近线是y =±x .类型一 双曲线的简单几何性质例1 求与椭圆x 2144+y 2169=1有共同焦点,且过点(0,2)的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.解 椭圆x 2144+y 2169=1的焦点是(0,-5),(0,5),焦点在y 轴上,于是可设双曲线的方程是y 2a 2-x 2b 2=1(a >0,b >0).又双曲线过点(0,2),所以c =5,a =2, 所以b 2=c 2-a 2=25-4=21. 所以双曲线的标准方程为y 24-x 221=1.所以双曲线的实轴长为4,焦距为10,离心率e =c a =52,渐近线方程是y =±22121x .反思与感悟 根据双曲线方程研究其性质的基本思路(1)将双曲线的方程转化为标准方程.(2)确定双曲线的焦点位置,弄清方程中的a ,b 所对应的值,再利用c 2=a 2+b 2得到c 的值. (3)根据确定的a ,b ,c 的值求双曲线的实轴长、虚轴长、焦距、焦点坐标、离心率及渐近线方程等.跟踪训练1 求双曲线9y 2-16x 2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.解 把方程9y 2-16x 2=144化为标准方程y 242-x 232=1.由此可知,实半轴长a =4,虚半轴长b =3;c =a 2+b 2=42+32=5,焦点坐标是(0,-5),(0,5); 离心率e =c a =54;渐近线方程为y =±43x .类型二 由双曲线的几何性质求标准方程例2 求中心在原点,对称轴为坐标轴,且满足下列条件的双曲线方程: (1)双曲线过点(3,92),离心率e =103; (2)过点P (2,-1),渐近线方程是y =±3x . 解 (1)e 2=109,得c 2a 2=109,设a 2=9k (k >0),则c 2=10k ,b 2=c 2-a 2=k .于是,设所求双曲线方程为x 29k -y 2k =1①或y 29k -x 2k =1.②把(3,92)代入①,得k =-161,与k >0矛盾,无解; 把(3,92)代入②,得k =9, 故所求双曲线方程为y 281-x 29=1.(2)由渐近线方程3x ±y =0,可设所求双曲线方程为x 219-y 2=λ(λ≠0),(*)将点P (2,-1)代入(*),得λ=35, ∴所求双曲线方程为x 2359-y 235=1.反思与感悟 由双曲线的几何性质求双曲线的标准方程,一般用待定系数法.当双曲线的焦点不明确时,方程可能有两种形式,此时应注意分类讨论,为了避免讨论,也可设双曲线方程为mx 2-ny 2=1 (mn >0),从而直接求得.若已知双曲线的渐近线方程为y =±bax ,还可以将方程设为x 2a 2-y 2b2=λ(λ≠0),避免讨论焦点的位置.跟踪训练2 已知圆M :x 2+(y -5)2=9,双曲线G 与椭圆C :x 250+y 225=1有相同的焦点,它的两条渐近线恰好与圆M 相切,求双曲线G 的方程. 解 椭圆C :x 250+y 225=1的两焦点为F 1(-5,0),F 2(5,0),故双曲线的中心在原点,焦点在x 轴上,且c =5.设双曲线G 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则G 的渐近线方程为y =±ba x ,即bx ±ay =0,且a 2+b 2=25.∵圆M 的圆心为(0,5),半径为r =3. ∴|5a |a 2+b 2=3⇒a =3,b =4. ∴双曲线G 的方程为x 29-y 216=1.类型三 直线与双曲线的位置关系例3 已知直线y =kx -1与双曲线x 2-y 2=4. (1)若直线与双曲线没有公共点,求k 的取值范围; (2)若直线与双曲线只有一个公共点,求k 的取值范围.解 由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=4,得(1-k 2)x 2+2kx -5=0.①(1)直线与双曲线没有公共点,则①式方程无解.∴⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+20(1-k 2)<0,解得k >52或k <-52, 则k 的取值范围为k >52或k <-52. (2)直线与双曲线只有一个公共点,则①式方程只有一解. 当1-k 2=0,即k =±1时,①式方程只有一解; 当1-k 2≠0时,应满足Δ=4k 2+20(1-k 2)=0, 解得k =±52,故k 的值为±1或±52.反思与感悟 (1)直线与双曲线的公共点就是以直线的方程与双曲线的方程联立所构成方程组的解为坐标的点,因此对直线与双曲线的位置关系的讨论,常常转化为对由它们的方程构成的方程组解的情况的讨论.(2)直线与椭圆的位置关系是由它们交点的个数决定的,而直线与双曲线的位置关系不能由其交点的个数决定.(3)弦长公式:直线y =kx +b 与双曲线相交所得的弦长与椭圆的相同:d =1+k 2|x 1-x 2|=1+1k2|y 1-y 2|. 跟踪训练3 经过点M (2,2)作直线l 交双曲线x 2-y 24=1于A ,B 两点,且M 为AB 中点.(1)求直线l 的方程; (2)求线段AB 的长.解 (1)设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21-y 214=1①,x 22-y224=1②,①-②得(x 1-x 2)(x 1+x 2)-(y 1-y 2)(y 1+y 2)4=0.又x 1+x 2=4,y 1+y 2=4,∴y 1-y 2x 1-x 2=4=k . ∴直线l 的方程为y -2=4(x -2), 即4x -y -6=0.(2)由⎩⎪⎨⎪⎧4x -y -6=0,x 2-y 24=1,得3x 2-12x +10=0,∴x 1+x 2=4,x 1x 2=103.∴|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2=21023.1.双曲线2x 2-y 2=8的实轴长是( ) A.2 B.2 2 C.4 D.4 2 答案 C解析 双曲线的标准方程为x 24-y 28=1,故实轴长为4.2.设双曲线x 2a +y 29=1的渐近线方程为3x ±2y =0,则a 的值为( )A.-4B.-3C.2D.1 答案 A解析 ∵方程表示双曲线,∴a <0,标准方程为y 29-x 2-a =1,∴渐近线方程为y =±3-ax , ∴3-a =32,解得a =-4. 3.已知双曲线x 2a 2-y 25=1(a >0)的右焦点为(3,0),则双曲线的离心率等于( )A.3414B.324C.32D.43答案 C解析 由题意知a 2+5=9, 解得a =2,e =c a =32.4.等轴双曲线的一个焦点是F 1(-6,0),则其标准方程为( ) A.x 29-y 29=1 B.y 29-x 29=1 C.y 218-x 218=1 D.x 218-y 218=1 答案 D解析 ∵等轴双曲线的焦点为(-6,0),∴c =6, ∴2a 2=36,a 2=18.∴双曲线的标准方程为x 218-y 218=1.5.若双曲线x 24-y 2m =1的渐近线方程为y =±32x ,则双曲线的焦点坐标是____________.答案 (±7,0)解析 由渐近线方程为y =±m 2x =±32x , 得m =3,c =7,且焦点在x 轴上.6.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为________________. 答案 y =±22x解析 由条件知2b =2,2c =23, ∴b =1,c =3,a 2=c 2-b 2=2,∴双曲线方程为x 22-y 2=1,因此其渐近线方程为y =±22x .1.渐近线是双曲线特有的性质,两方程联系密切,把双曲线的标准方程x 2a 2-y 2b 2=1(a >0,b >0)右边的常数1换为0,就是渐近线方程.反之由渐近线方程ax ±by =0变为a 2x 2-b 2y 2=λ,再结合其他条件求得λ就可得双曲线方程.2.准确画出几何图形是解决解析几何问题的第一突破口.对圆锥曲线来说,渐近线是双曲线特有的性质.利用双曲线的渐近线来画双曲线特别方便,而且较为精确,只要作出双曲线的两个顶点和两条渐近线,就能画出它的近似图形.3.直线与双曲线的位置关系,可以通过由直线方程与双曲线方程得到的方程来判断,首先看二次项系数是否为零,如果不为零,再利用Δ来判断直线与双曲线的关系.4.弦长问题可以利用弦长公式,中点弦问题可使用点差法.一、选择题1.过双曲线x 2―y 2=4的右焦点且平行于虚轴的弦长是( ) A.1 B.2 C.3 D.4 答案 D解析 设弦与双曲线交点为A ,B (A 点在B 点上方),由AB ⊥x 轴且过右焦点,可得A ,B 两点横坐标为22,代入双曲线方程得A (22,2),B (22,-2),故|AB |=4. 2.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A.y =±14xB.y =±13xC.y =±12xD.y =±x答案 C解析 因为e =c a =52,所以c 2a 2=54,又因为c 2=a 2+b 2,所以a 2+b 2a 2=54,得b 2a 2=14,所以渐近线方程为y =±12x .3.若直线x =a 与双曲线x 24-y 2=1有两个交点,则a 的值可以是( )A.4B.2C.1D.-2 答案 A解析 ∵双曲线x 24-y 2=1中,x ≥2或x ≤-2,∴若x =a 与双曲线有两个交点,则a >2或a <-2,故只有A 选项符合题意.4.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别是F 1、F 2,过F 1作倾斜角为30°的直线,交双曲线右支于M 点,若MF 2垂直于x 轴,则双曲线的离心率为( ) A. 6 B. 3 C. 2 D.33答案 B解析 如图,在Rt △MF 1F 2中,∠MF 1F 2=30°. 又|F 1F 2|=2c , ∴|MF 1|=2c cos 30°=433c , |MF 2|=2c ·tan 30°=233c . ∴2a =|MF 1|-|MF 2|=233c .∴e =ca= 3. 5.如图,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,过点F 1作倾斜角为30°的直线l ,l 与双曲线的右支交于点P ,若线段PF 1的中点M 落在y 轴上,则双曲线的渐近线方程为( )A.y =±xB.y =±3xC.y =±2xD.y =±2x答案 C解析 设F 1(-c,0),M (0,y 0),因为M 为PF 1中点,且PF 1倾斜角为30°,则P ⎝⎛⎭⎫c ,233c ,将其代入双曲线方程得c 2a 2-43c 2b2=1,又有c 2=a 2+b 2,整理得3⎝⎛⎭⎫b a 4-4⎝⎛⎭⎫b a 2-4=0,解得⎝⎛⎭⎫b a 2=2或⎝⎛⎭⎫b a 2=-23(舍去). 故所求渐近线方程为y =±2x .6.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y 225=1 答案 A解析 令y =0,可得x =-5,即焦点坐标为(-5,0), ∴c =5,∵双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,∴ba =2, ∵c 2=a 2+b 2, ∴a 2=5,b 2=20,∴双曲线的方程为x 25-y 220=1.二、填空题7.已知双曲线C :x 24-y 2m =1的开口比等轴双曲线的开口更开阔,则实数m 的取值范围是____________. 答案 (4,+∞)解析 ∵等轴双曲线的离心率为2,且双曲线C 的开口比等轴双曲线更开阔, ∴双曲线C :x 24-y 2m =1的离心率e >2,即4+m 4>2.∴m >4.8.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是____________.答案 (-12,0)解析 双曲线方程可变为x 24-y 2-k =1,则a 2=4,b 2=-k ,c 2=4-k ,e =ca =4-k 2,又∵e ∈(1,2),则1<4-k2<2,解得-12<k <0. 9.过点(0,1)作直线l 与双曲线4x 2―ay 2=1相交于P ,Q 两点,且∠POQ =π2(O 为坐标原点),则a 的取值范围是______________. 答案 0<a ≤3解析 由⎩⎪⎨⎪⎧y =kx +1,4x 2-ay 2=1,得:(4-ak 2)x 2-2akx -a -1=0,得⎩⎪⎨⎪⎧Δ=(-2ak )2+4(a +1)(4-ak 2)>0, ①x 1x 2=-a -14-ak 2,y 1y 2=4-k 24-ak 2,由∠POQ =π2,得OP ⊥OQ ⇒x 1x 2+y 1y 2=0,则-a -14-ak 2+4-k 24-ak 2=0,② 由①②得0<a ≤3. 三、解答题10.根据下列条件,求双曲线的标准方程.(1)与双曲线x 29-y 216=1有共同的渐近线,且过点(-3,23);(2)顶点间距离为6,渐近线方程为y =±32x .解 (1)设所求双曲线方程为x 29-y 216=λ(λ≠0),将点(-3,23)代入得λ=14,所以双曲线方程为x 29-y 216=14,即4x 29-y 24=1.(2)设渐近线方程为y =±32x 的双曲线方程为x 24-y 29=λ. 当λ>0时,2a =24λ=6⇒λ=94.当λ<0时,a 2=-9λ,∴2a =2-9λ=6⇒λ=-1. ∴双曲线的标准方程为x 29-y 2814=1或y 29-x 24=111.已知双曲线x 2-y 22=1,过P (1,1)能否作一条直线l ,与双曲线交于A ,B 两点,且点P 是线段AB 的中点?若能,求出l 的方程;若不能,请说明理由. 解 设l 与双曲线交于A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21-y 212=1,x 22-y222=1,两式相减得(x 1+x 2)(x 1-x 2)-(y 1+y 2)(y 1-y 2)2=0,即(x 1+x 2)-y 1+y 22·y 1-y 2x 1-x 2=0, 又直线过P (1,1)且为线段AB 中点,所以x 1+x 2=2,y 1+y 2=2,所以k AB =2,所以l 方程为y =2x -1,由⎩⎪⎨⎪⎧y =2x -1,2x 2-y 2=2,消去y ,得2x 2-4x +3=0, 因为Δ=16-4×2×3<0,故直线l 与双曲线没有交点,即直线l 不存在.12.已知直线l :x +y =1与双曲线C :x 2a 2-y 2=1(a >0). (1)若a =12,求l 与C 相交所得的弦长. (2)若l 与C 有两个不同的交点,求双曲线C 的离心率e 的取值范围.解 (1)当a =12时,双曲线C 的方程为4x 2-y 2=1, 联立⎩⎪⎨⎪⎧x +y =1,4x 2-y 2=1,消去y ,得3x 2+2x -2=0. 设两个交点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-23,x 1x 2=-23, 于是|AB |=(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+(x 1-x 2)2 =2·(x 1+x 2)2-4x 1x 2=2×289=2143. (2)将y =-x +1代入双曲线x 2a2-y 2=1中得(1-a 2)x 2+2a 2x -2a 2=0, 所以⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0,解得0<a <2且a ≠1. 又双曲线的离心率e =1+a 2a =1a 2+1, 所以e >62且e ≠2, 即离心率e 的取值范围是⎝⎛⎭⎫62,2∪(2,+∞). 13.若原点O 和点F (-2,0)分别为双曲线x 2a2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,求OP →·FP →的取值范围.解 由双曲线方程x 2a 2-y 2=1(a >0)知b =1, 又F (-2,0),∴c =2.∴a 2+1=c 2=4,∴a 2=3,∴双曲线方程为x 23-y 2=1. 设双曲线右支上点P (x ,y ),且x ≥ 3. OP →·FP →=(x ,y )·(x +2,y )=x 2+2x +y 2=43x 2+2x -1=43⎝⎛⎭⎫x +342-74. ∵x ≥3,∴当x =3时,上式有最小值3+2 3. 故OP →·FP →的取值范围为[3+23,+∞).。
2.3.2双曲线的简单几何性质教学设计(优秀教案)

双曲线的简单几何性质教案一、学习目标知识目标: 了解双曲线的简单几何性质,如范围、对称性、顶点、渐近线、离心率。
能力目标: 通过观察、类比、转化、概括等探究,提高学生运用方程研究双曲线的性质的能力. 情感目标: 使学生在合作探究活动中体验成功, 激发学习热情,感受事物之间处处存在联系.二、学习重点、难点1. 教学重点:双曲线的范围、对称性、顶点、渐近线、离心率等几何性质;2. 教学难点:双曲线的渐近线.三、学习过程:(一)复习式导入:在椭圆部分,我们曾经从图形和标准方程两个角度来研究椭圆的几何性质。
那么,你认为应该研究双曲线22221(0,0)x y a b a b-=>>的哪些性质呢?范围、对称性、顶点、离心率等.这就是我们今天要共同学习的内容:双曲线的简单几何性质 (二)新课:我们先来研究一下焦点坐标在x 轴上的双曲线的简单几何性质。
1双曲线22221(0,0)x y a b a b-=>>的简单几何性质(1)范围从图形看,x 的取值范围是什么? 师生: 从标准方程能否得出这个结论呢? y 的范围呢?R y ∈(2)对称性从图形看,双曲线关于什么对称性? 生:关于x 轴、y 轴和原点都是对称的那么,类比椭圆几何性质的推导,从标准方程如何得出这个结论呢?提示:用y -代替原方程中的y ,若方程不变,则该曲线……关于x 轴对称。
同理,若用x -代替原方程中的x ,若方程不变,则该曲线关于y 轴对称。
若用y x --,分别代替原方程中的y x ,,若方程不变,则该曲线关于原点对称。
所以,双曲线是关于x 轴、y 轴和原点都是对称的。
x 轴、y 轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。
(3)顶点椭圆的顶点有几个?(4个)它是如何定义的?(椭圆与对称轴的交点)类比椭圆顶点的定义,我们把双曲线与对称轴的交点,叫做双曲线的顶点。
由图形可以看到,双曲a x a x -≤≥或012222≥-=ax b y 2222,1a x ax≥≥∴即ax a x -≤≥∴或线22221(0,0)x y a b a b-=>>的顶点有几个?顶点坐标是?(,0)a ± 虽然对比椭圆,双曲线只有两个顶点,但我们仍然把(0,)b ±标在图形上。
双曲线的几何性质教案

双曲线的几何性质教案教案标题:双曲线的几何性质教案目标:1. 了解双曲线的定义和基本性质。
2. 掌握双曲线的几何性质,包括焦点、准线、渐近线等。
3. 能够应用所学知识解决与双曲线相关的几何问题。
教案步骤:引入活动:1. 引导学生回顾并复习椭圆和抛物线的几何性质,引出双曲线的概念。
2. 引导学生思考双曲线与椭圆、抛物线的异同之处。
知识讲解:3. 介绍双曲线的定义,以及与椭圆和抛物线的区别。
4. 解释双曲线的标准方程,并讲解如何根据方程确定双曲线的形状和位置。
性质探究:5. 讲解双曲线的焦点和准线的定义,以及它们与双曲线方程中的参数的关系。
6. 引导学生通过计算实例,理解焦点和准线对双曲线形状的影响。
应用实践:7. 引导学生通过实例,探究双曲线的渐近线的性质和方程。
8. 给学生一些实际问题,要求他们应用所学知识解决问题,如:给定双曲线的焦点和准线,求双曲线的方程。
巩固练习:9. 提供一些练习题,让学生巩固所学知识。
总结回顾:10. 总结双曲线的几何性质,强调重点和难点。
11. 鼓励学生提问和解答疑惑。
教学辅助:- 演示板或投影仪,用于展示双曲线的图形和方程。
- 教科书或教学PPT,用于讲解和示范。
- 计算器,用于计算实例。
教学评估:- 在课堂上观察学生的参与度和理解情况。
- 布置作业,检查学生对双曲线几何性质的掌握程度。
- 进行小组或个人演示,让学生展示他们对双曲线的理解和应用能力。
教案扩展:- 引导学生进一步探究双曲线的其他性质,如离心率、直线的切线等。
- 引导学生应用双曲线的性质解决更复杂的几何问题,如求解交点、证明性质等。
注意事项:- 确保讲解清晰,语言简明扼要,避免过于抽象或复杂的表达。
- 鼓励学生思考和提问,激发他们的兴趣和参与度。
- 根据学生的实际情况和学习进度,适当调整教学内容和步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双曲线的简单几何性质教案课题:双曲线的简单几何性质
教学类型:新知课
教学目标:
①知识与技能
理解并掌握双曲线的几何性质, 能根据性质解决一些基本问题培养学生分析,归纳,推理的能力。
②过程与方法
与椭圆的性质类比中获得双曲线的性质,进一步体会数形结合的思想,掌握利用方程研究曲线性质的方法
③情感态度与价值观
通过本节课的学习使学生进一步体会曲线与方程的对应关系, 感受圆锥曲线在解决问题中的应用
教学方法:本节课主要通过数形结合,类比椭圆的几何性质,运用现代化教学手段,通过观察,分析,归纳出双曲线的几何性质,在教学过程中可采取设疑提问,重点讲解,归纳总结,引导学生积极思考,鼓励学生合作交流。
教学重难点:
重点:双曲线的几何性质及其运用
难点 : 双曲线渐近线,离心率的讲解
教具:多媒体
教学过程:
⑴复习提问导入新课:
首先带领学生复习椭圆的几何性质,它有哪些几何性质?(应为范围,对称性,顶点,焦点 ,离心率,准线是如何探讨的呢?(通过椭圆的标准方程探讨。
让全班同学口答,并及时给以表扬。
接下来让那个同学回忆双曲线的标准方程是什么?请一名同学回答。
(应为:中心在原点,焦点在 x 轴上的双曲线的标准方程为 x ²/a ²-y ²/b ²=1; 中心在原点,焦点在 y 轴上的双曲线的标准方程为 y ²/a ²-x ²/b ²=1 。
回忆完旧知后,我会给出一首歌曲《悲伤的双曲线》 (大概一分钟左右 ,引起学生兴趣,渴望知道双曲线的性质,这样顺利进入探究新知环节中。
⑵引导探索,学习新知
1, 引导学生完成黑板上关于椭圆与双曲线性质的表格(让学生回答,教师引导,启发,订正并写在黑板上 ,通过类比联想可以得到双曲线的范围,对称性和顶点。
2, 导出渐近线(性质 4
在学习椭圆时,以原点为中心, 2a,2b 为邻变的矩形,对于估计椭圆的形状, 画出椭圆的简图有很大帮助, 试问对双曲线, 仍然以 2a,2b 为邻边做一矩形, 那么双曲线和这个矩形有什么关系呢?这个矩型对于估计和画出双曲线有什么指导意义呢? (不要求学生回答, 只引起学生类比联想。
接着在提出问题:当 a,b 为已知时,这个矩形的两条对角线所在的直线的方程是什么?(请一名同学回答。
接下来按照幻灯片显示来详细解决。
最后向学生说明我们研究渐近线是为了较
准确地画出双曲线的草图。
3. 顺其自然介绍离心率
由于正确的认识了渐近线的概念, 对于离心率的直观意义也就容易掌握了,为此介绍双曲线的离心率其的影响。
最后应明确的指出:双曲线的几何性质与坐标系的选择无关, 即不随坐标系的
改变而改变。
4, 在讲解完所有新课之后,带领学生在总体回顾双曲线的性质。
⑶加强训练,巩固强化
给出例 1,帮助学生分析:可用待定系数法,直接求出 a,b,c
学生独立思考后,教师分析,解答,教师板书。
⑷归纳小结,
用表格的形式让学生清楚的看到双曲线的性质。
布置作业
课本 p56页练习 A
课后设疑
焦点在 y 轴上的双曲线的性质自己探索
教学反思:有待课堂教学检验之后。