研究生医学统计学考点总结
医学统计学知识点汇总(精华)

医学统计学知识点汇总(精华)一.概论1,医学统计学:运用概率论和数理统计学的原理和方法,研究医学领域中随机现象有关数据的搜集、整理、分析和推断,进而阐明其客观规律性的一门应用科学。
2,医学统计学的主要内容:1)统计研究设计调查研究设计和实验研究设计2)医学统计学的基本原理和方法研究设计和数据处理中的基本统计理论和方法。
A:资料的搜集与整理 B:常用统计描述,集中趋势和离散趋势,相对数,相关系数,回归系数,统计表,统计图 C:统计推断,如参数估计和假设检验。
3)医学多元统计方法多元线性回归和逐步回归分析、判别分析、聚类分析、主成分分析、因子分析、logistic回归与Cox回归分析。
3,统计工作步骤:1)设计明确研究目的和研究假说,确定观察对象与观察单位,样本含量和抽样方法,拟定研究方案,预期分析指标,误差控制措施,进度与费用。
2)搜集材料A,搜集材料的原则及时、准确、完整B,统计资料的来源医学领域的统计资料的来源主要有三个方面。
一是统计报表,二是经常性工作记录,三是专题调查或专题实验。
C,资料贮存3)整理资料 a检查核对b设计分组c拟定整理表d归表4)分析资料统计分析包括统计描述和统计推断4,同质(homogeneity):指被研究指标的影响因素相同。
变异(variation):同质基础上的各观察单位间的差异。
变量(variable):收集资料过程中,根据研究目的确定同质观察单位,再对每个观察单位的某项特征进行测量或观察,这种特征称为变量变量值:变量的观察结果或测量值。
变量类型变量值表现实例资料类型数值变量离散型定量测量值,有计量单位产前检查次数计量资料连续型身高分类变量无序二分类对立的两类属性性别(男女)计数资料多分类不相容的多类属性血型(A,B,O,AB)有序多分类类间有程度差异的属性受教育程度(小学,中学,高中,大学…)等级资料5,总体(population)根据研究目的所确定的同质研究对象中所有观察单位某变量值的集合。
医学统计学重点总结

(1) 单个样本均数 H0:μ=μ0t= ν=n-1 (小样本)
(已知样本——均数) H1:μ≠μ0
α=u= 或u= (大样本)(2)配对:H0:μ=μ0
H1:μ≠μ0t= ν=对子数-1
α=
(3) 两独立样本均数H0:μ=μ0t= ν=n1+n2-2
(4)(已知样本——样本) H1:μ≠μ0
9.对任何参数μ和σ的正态分布,都可以通过一个简单的变量变换成标准正态分布,即μ=X-μ
σ
9
标准正态分布
正态分布
面积或概率
-1~1
μ σ
%
~
μ σ
%
·
μ σ
%
10.医学参考值范围(reference value range)传统上称作正常值范围,指正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。习惯上是包含95%的参照总体的范围。
实际工作中标准差 σ往往未知,因而通常用样本标准差S代替σ,求得样本均数 准误估计值S ,计算公式为 S = (当n→无穷,S→σ,S →0)
3 95%的可信区间的计算:x (μ,σ ) 1) σ已知,可信区间= σ
2)σ未知,n为小样本: t 3)σ未知,n为大样本:
T变换
μ变换
N (0,1)
3、t分布曲线的形态变化与自由度v=n-1有关。
2.四格表专用公式(
3对于四格表资料,通常规定为:(1)当n≥40且所有的T ≥ 5时,用检验的基本公式或四格表的专用公式;(2)当n ≥ 40 但有1≤T<5时,用四格表资料的校正公式;(3)当n<40,或T<1时,用四格表资料的Fisher确切 概率法。
4 行×列表资料的χ 检验: 自由度:ν=(行数-1)(列数-1)
医学统计学考试重点整理

一、基本概念1.总体与样本总体:所有同质观察单位某种观察值(即变量值)的全体样本:是总体中抽取部分观察单位的观察值的集合2.普查与抽样调查普查:就是全面调查,即调查目标总体中全部观察对象抽样调查:是一种非全面调查,即从总体中抽取一定数量的观察单位组成样本,对样本进行调查3.参数与统计量参数:总体的某些数值特征统计量:根据样本算得的某些数值特征4.Ⅰ型与Ⅱ型错误假设检验的结论真实情况拒绝H0不拒绝H0H0正确Ⅰ型错误(ɑ)推断正确(1−ɑ)H0不正确推断正确(1−β) Ⅱ型错误(β)Ⅰ型错误(ɑ错误):H0为真时却被拒绝,弃真错误Ⅱ型错误(β错误): H0为假时却被接受,取伪错误5.随机化原则与安慰剂对照随机化原则:是将研究对象随机分配到实验组和对照组,使每个研究对象都有同等机会被分配到各组中去,以平衡两组中已知和未知的混杂因素,从而提高两组的可比性,避免造成偏倚。
(意义:①是提高组间均衡性的重要设计方法;②避免有意扩大或缩小组间差别导致的偏倚;③各种统计学方法均建立在随机化基础上)安慰剂对照:是一种常用的对照方法。
安慰剂又称伪药物,是一种无药理作用的制剂,不含试验药物的有效成分,但其感观如剂型、大小、颜色、质量、气味及口味等都与试验药物一样,不能被受试对象和研究者所识别。
(安慰剂对照主要用于临床试验,其目的在于控制研究者和受试对象的心理因素导致的偏倚,并提高依从性。
安慰剂对照还可以控制疾病自然进程的影响,显示试验药物的效应)6.误差与标准误(区分率与均数)㈠均数抽样误差:由个体变异产生的、随机抽样引起的样本统计量与总体参数间的差异。
标准误:是指样本均数的标准差,反映抽样误差大小的定量指标,其公式表示为S x =S/√n㈡样本率率的抽样误差:样本率p和总体率π的差异率的标准误:样本率的标准差,公式为σp=√π(1-π)/n7。
方差分析方差分析:又称F检验,是通过对数据变异按设计类型的不同,分解成两个或多个样本均数所代表总体均数是否有差别的一种统计学方法。
研究生医学统计学考点总结

研究生医学统计学考点总结
1.数据概括与描述性统计学:
-数据的类型和测量尺度
-描述性统计学指标,如均值、中位数、标准差和百分位数
-数据的分布,如正态分布、偏态和峰态
-相关性和协方差
-统计图表的绘制与解读,如直方图、散点图和箱线图
2.概率与统计推断:
-概率的基本概念:概率的定义、加法和乘法规则、条件概率和贝叶斯定理
-随机变量与概率分布:离散型和连续性变量、二项分布、正态分布等
-参数估计:点估计和区间估计,如均值和比例的估计
-统计推断:假设检验、P值和置信区间,如两个均值的比较和方差分析
-非参数方法:秩和检验、列联表分析和生存分析
3.实验设计与样本量计算:
-随机对照试验的基本原理与设计
-防治和疫苗试验的设计
-回顾性研究的设计与分析
-配对设计和席德曼秩和检验
-样本量计算与效能分析
4.线性回归与多元统计:
-简单线性回归与多元线性回归的基本概念与应用
-模型诊断与改进:残差分析、多重共线性和非线性关系
-变量选择与交互作用
-逻辑回归模型与生存回归模型
除了以上的主要考点,也有一些其他辅助性质的内容:
-数据的收集与质量控制
-缺失数据的处理方法
-数据转换与处理
-系统评价与荟萃分析的基本原理与方法
总结起来,研究生医学统计学的考点涉及到数据的概括与描述、概率与统计推断、实验设计与样本量计算、线性回归与多元统计等多个方面。
通过学习这些知识,研究生能够更好地理解和运用统计学方法来支持医学研究的设计、分析和解读。
医学统计学知识点汇总

医学统计学总结绪论1、随机现象:在同一条件下进行试验,一次试验结果不能确定,而在一定数量的重复试验之后呈现统计规律的现象。
2、同质:统计学中对研究指标影响较大的,可以控制的主要因素。
3、变异:同质基础上各观察单位某变量值的差异。
数值变量:变量值是定量的,由此而构成的资料称为数值变量资料或计量资料,其数值是连续性的,称之为连续型变量。
变量无序分类变量:所分类别或属性之间无顺序和程度上的差异分类变量:定性变量有序分类变量:有顺序和程度上的差异4、总体:根据研究目的确定的同质研究对象中所有观察单位某变量值的集合。
可以分为有限总体和无限总体。
5、样本:是按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。
样本代表性的前提:同质总体,足够的观察单位数,随机抽样。
统计学中,描述样本特征的指标称为统计量,描述总体特征的指标称为参数。
6、概率:描述随机事件发生的可能性大小的一个度量。
若P(A)=1,则称A为必然事件;若P(A)=0,则称A为不可能事件;随机事件A的概率为0<P<1.小概率事件:若随机事件A的概率P≤α,则称随机事件A为小概率事件,其统计学意义为:小概率事件在一次随机试验中认为是不可能发生的。
统计描述1、频数分布有两个重要的特征:集中趋势和离散程度。
频数分布有对称分布和偏态分布之分。
后者是指频数分布不对称,集中趋势偏向一侧,如偏向数值小的一侧为正偏态分布,如偏向数值大的一侧为负偏态分布。
2、常用的集中趋势的描述指标有:均数,几何均数,中位数等。
均数:适用于正态或近似正态的分布的数值变量资料。
样本均数用x表示,总体均数用μ表示。
几何均数:适用于等比级数资料和对数呈正态分布的资料。
注意观察值中不能有零,一组观察值中不能同时有正值和负值。
中位数:适用于偏态分布资料以及频数分布的一端或两端无确切数据的资料。
3、常用的离散程度的描述指标有:全距,四分位数间距,方差,标准差,变异系数。
全距:任何资料,一组中最大值与最小值的差。
医学统计学重点

医学统计学重点说明:本重点仅供参考:不能包括所有选择题考题,名词和简答可信度高,计算题熟练运算过程;同时自己要清楚各种检验方法的基本思想,重点程度与星号数量相关)一、名词解释1、★★★医学统计学:用概率论和数理统计方法研究医学事件的群体特征的一门方法。
2、★总体:根据研究目的确定的同质的研究对象的全体(集合)。
3、样本:从总体中随机抽取的部分研究对象。
4、随机:总体中每个个体有同等的机会进入样本。
5、系统误差:指数据搜集和测量过程中由于仪器不准确、标准不规范等原因,造成观察结果呈倾向性的偏大或偏小,这种误差称为系统误差。
6、随机误差:由于一些非人为的偶然因素使得结果或大或小,是不确定、不可预知的。
7、★★抽样误差:由于抽样原因造成的样本指标与总体指标之间的差,或者是样本指标与样本指标之间的差。
8、准确度(accuracy)或真实性(validity):观察值与真值的接近程度,受系统误差的影响(9、可靠度(reliabiliy)——也称精密度(precision)或重复性(repeatability):重复观察时观察值与其均值的接近程度,受随机误差的影响。
10、★★★小概率事件:一般常将p ≤ 0.05或p ≤ 0.01称为小概率事件,表示某事件发生的可能性很小。
通俗讲一次抽样是不可能发生的事件。
11、★★正态分布定:又称高斯分布,是一条中间高,两头低,左右完全对称地下降,但永远不与横轴相交的钟形曲线。
12、★★医学参考值范围:指绝大多数正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。
最常用的是95%参考值范围。
13、★★标准误:用于反映均数抽样误差大小的指标,也叫样本均数的标准差,它反映了样本均数之间的离散程度。
14、★95%的可信区间:如果从同一总体中重复抽取100个独立样本,将可能有95个可信区间包括总体均数,有5个可信区间未包括总体均数。
二、填空题1、★医学统计学工作基本步骤:统计设计;收集资料.;整理资料;分析资料2、★统计分析包括:统计描述、统计推断3、频数分布的两个重要特征:集中趋势和离散趋势4、正态分布的两个参数:均数;标准差。
医学统计学重点重点知识总结

医学统计学重点选择1.几何均数:平均血清抗体滴度(如P9例2.4)2.正态分布:横轴为μ(界值、面积)2.5% I1.962.5%单侧双侧90%: 1.6495%: 1.64 1.9699%: 2.583.P值与α的关系,α是人为规定的,它们之间没有关系;P值f,Qt(X)4.方差分析自由度V的计算,V总=nT;V组间=组数(k)-1;V组间=V总-V组间5.理论秩和(n(n+1)∕2),实际秩和(通过平均秩次算)6.可信区间的正确应用:总体参数有95%的可能落在该区间内(X);有95%的总体参数在该区间内(X);该区间包含95%的总体参数(X);该区间有95%的可能包含总体参数。
(X);这个区间的可信度为95%(√);总体参数只有一个,要么在区间内,要么不在7.相关系数与回归系数:相关系数为0,两个变量之间没有相关关系(X);回归系数t,相关系数t(X);(要做假设检验)二、名解1.参考值范围:根据正常人的数据估计绝大多数的正常人所在的范围2.区间估计(可信区间):按一定的概率或可信度(bα)用一个区间估计总体参数所在范围。
这个范围称作可信度为1-a的可信区间,又称置信区间。
3.P值:拒绝HO时所冒的风险(或“作出拒绝HO而接受H1”结论时冒了P风险)4.a(第一类错误):HO真实时被拒绝(或HO真实时,拒绝H0,接受H1)5.β(第二类错误):HO不真实时不拒绝(或HO不真实时,不拒绝HO)1-β检验效能:对真实的H1做肯定结论之概率6.秩次:是指全部观察值按某种顺序排列的位序;7.秩和:同组秩次之和8.剩余标准差:扣除了X的影响后,Y方面的变异;引进回归方程后,Y方面的变异。
三、简答1.假设检验与可信区间的联系与区别分辨多个样本是否分别属于不同的总体,并对总体作出适当的结论。
分辨一个样本是否属于某特定总体等。
区间估计(可信区间):按一定的概率或可信度(1-a)用一个区间估计总体参数所在范围。
(完整版)医学统计学重点总结

1.简述总体和样本的定义,并且举例说明。
总体是研究目的确定的所有同质观察单位的全体。
样品是从研究总体中抽取部分有代表性的观察单位。
2.简述参数和统计量的定义,并且举例说明。
描述总体特征的指标称为参数,描述样本特征的指标称为统计量。
3.变量的类型有哪几种?举例说明各种类型变量有什么特点。
①定量数据:计量资料;定量的观测值是定量的,其特点是能够用数值的大小衡量其水平的高低。
②定性数据:计数资料;变量的观测值是定性的,表现为互不相容的类别或属性。
③有序数据:半定量数据/等级资料;变量的观测值是定性的,但各类别(属性)有程度或顺序上的差异。
4.请举例说明一种类型的变量如何变换为另一种类型的变量。
定量数据>有序数据>定性数据--------------->5.请简述什么是小概率事件?概率是描述事件发生可能性大小的度量,P 0.05事件称为小概率事件。
≤6.举例说明什么是配对设计。
配对设计是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。
①同源配对:同一受试对象或同一标本的两个部分,随机分配接受两种不同处理;②异源配对:为消除混杂因素的影响,将两个同质受试对象配对分别接受两种处理。
7.非参数假设检验适合什么类型数据进行分析?①总体分布类型未知或非正态分布数据;②定量或半定量数据;③数据两端无确定的数值。
8.简述P 25 P 50 P 75的统计学意义。
(条件:明显偏态且不能转化为正态或近似对称;一端或两端无确定数值;分布情况未知)用来描述资料的观测值序列在某百分位置的水平,四分位数间距可以作为说明个体差异的指标(说明个体在不同位置的变异情况)。
9.直条图、直方图、圆饼图的使用条件是什么?直条图:各自独立的统计指标的数值大小和他们之间的对比;直方图:连续变量频数分布情况;圆饼图:全体中各部分所占的比例。
10.统计分析包括哪两个方面的内容?为什么要进行统计推断?统计描述和统计分析;统计描述用来描述及总结一组数据的重要特征,其目的是使实验或观察得到的数据表达清楚并便于分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=Xmax-Xmin 选定适当的组段数后估计组距:组段数的选取以能反映资料的分布特征为宜,
一般取 8 ~ 12 组 列出组段:组段的含义:包括组段的下限而不含组段的上限 。如:3.2~ 等价
于 [3.2,3.5)。 划记归组获得频数 求频率,完成频数表 :相应的频数除以总数即为频率,各组段的频率总和为 1
不同分类的互相转化 数值变量→无序分类变量 数值变量→有序分类变量 有序分类变量→无序分类变量
信息量只有减少,不可增加
统计描述指标,呈现方式可分为两种 统计图:直观,但精确度稍差 统计报表:能尽量详细,精确,但不够直观
统计推断:从样本信息外推到总体,以最终获得对所感兴趣问题的解答 参数估计:样本→所在总体特征
值的极差。
2
X 2
N
XX 2
s2 n1
X 2
N
X X 2
s n1
方差及标准差:
变异系数(coefficient of variation, CV):
为标准差和均数的比值,排除了平均水平的影响,并取消了单位。因此变异系
数常用于: 比较度量衡单位不同的两组或多组资料的变异度 比较均数相差悬殊的两组或多组资料的变异度
或者 100%。
2.频数分布所提供的信息 频数分布图用以表示数据的分布规律。 观察有无可疑值。 考察分布的类型。 对称分布 非对称分布(偏态分布) • 左偏态(负偏态) :指分布的长尾在峰的左侧。
• 右偏态(正偏态) :指分布的长尾在峰的右侧。 考察分布的特征
集中位置 (Central Tendency):描述指标有平均数(算术均数 (Mean)、几何均数(Geometric Mean) 、中位数(Median)、百分位数 (Percentile) )。
医学统计学
基本概念:
1.医学统计学 Statistics:医学统计学是以医学理论为指导,应用概率论与数理统 计的有关原理和方法,研究医学资料的搜集、整理、分析和推断的一门科学。 2.同质和异质:具有相同性质的事物称为同质(homogeneous)。否则称为异质的 或者间杂的(heterogeneous)。不同质的个体不能笼统地混在一起分析,同质和异 质是相对的概念。 3.变异:同质事物之间的差别称为变异(variation),亦称个体变异。变异的两个方 面:
离散趋势 (Tendency of Dispersion):描述指标有极差(Range)、四 分位数间距(interquartile range) 、方差(Variance) 、标准差(Standard Deviation) 、变异系数( coefficient of variation ) 。
3.平均数应用的注意事项: 同质的资料计算平均数才有意义。 均数适用于:单峰对称分布的资料。 几何均数适用于:对数变换后单峰对称的资料。等比资料、滴度资料、对 数正态分布资料。计算几何均数时: 变量值中不能有 0 同一组变量值不能同时存在正、负值,若变量值全为负值,可先将 负号除去,算出结果后再冠以负号 中位数:理论上可用于任何分布资料,常用于描述偏态资料,开口资料, 有不确定值的资料的集中位置。但当资料适合计算均数或几何均数时,不
宜用中位数。
中位数和百分位数在样本含量较少时不稳定,越靠两端越不稳定;
中位数在抗极端值的影响方面,比均数具有较好的稳定性,但不如均数精
确。
不同质的资料应考虑分别计算平均数。 百分位数:样本含量较少时不宜计算靠近两端的百分位数。 平均数要与变异指标结合使用。
4.变异度指标:
四分位数间距(inter-quartile range):QU - QL = P75 - P25,即中间一半观察
个体与个体间的差别 同一个体重复测量值间的差别 结果是随机的,不可预测的; 一种或多种不可控因素(已知的或未知的)作用下的综合表现; 个体变异是普遍存在的; 个体变异是有规律的; 没有个体变异,就没有统计学。 4.总体和样本: 总体(population):根据研究目的所确定的同质观察单位的全体;分为有限总体 和无限总体。 个体(individual):是构成总体的最基本观察单位。 样本(sample):是从总体中按照一定的目的随机抽取的一部分具有代表性的个 体集合。 样本含量(sample size):样本中包含的个体个数。 5.参数和统计量: 总体参数(parameter):描述某总体特征的指标,简称参数,一般用希腊字 母表示,如: 、 、 π 。 统计量(statistic):描述某样本特征的指标,一般用拉丁X字母表示, 如: 、s、p 。 在总体被确定之后,总体参数就是一个常数,是不会变化的,不管你是否 确切知其大小;而统计量是几乎总是随着样本而变的。
6.随机(random):是指机会均等,目的是保证样本对总体的代表性、可靠性。 7.概率和频率: 频率( relative frequency ):在 n 次随机试验中,事件 A 发生了 m 次,则比值 m/n 称为事件 A 在这 n 次试验中出现的频率。 概率(probability):是随机事件发生可能性大小的一个度量,是一种参数,常用 P 表示,0≤P ≤1。 8.小概率事件和小概率原理: 小概率事件:医学研究中,将概率小于等于 0.05 或 0.01 的事件称为小概率事件。 小概率原理:小概率事件并不表示不可能发生,但在某一次试验中,是不会发 生的。 9.变量的分类:
按照取值的特性:
数值变量 numerical Variable 定量变量:既有顺序的意义,又有 间隔的意义,可以认为是连续的;往往有单位;取值间的差异是可 以度量的。
分类变量 categorical Variable 定性变量:取值是是分散、定性的, 表现为互不相容的类别和属性。 • 无序分类 unordered categorics: 无顺序,无间隔,仅有分类 – 二项分类 – 多项分类 • 有序分类 ordered categorics 等级变量:仅有 顺序,无单位;取值间的 差异是不可度量的