高中数学知识点题库 125数列

合集下载

高中数学数列知识点

高中数学数列知识点

高中数学数列知识点数列知识点1. 定义:数列是由一系列有规律的数按照一定的顺序排列得到的序列。

2. 常用符号:- 数列:$a_1, a_2, a_3, \cdots, a_n$ 或 $\{a_n\}$;- 首项:$a_1$;- 公差:$d$;- 通项公式:$a_n = a_1 + (n-1)d$;- 前$n$项和:$S_n = \frac{n}{2}(a_1+a_n)$。

3. 等差数列(Arithmetic Progression,简称AP)- 定义:在一个数列中,如果任意两个相邻的数之差都相等,那么这个数列就是等差数列。

这个公差就是等差数列的一个重要特点。

- 常见问题:已知等差数列的首项和公差,求第$n$项和前$n$项和。

- 重要结论: $a_n = a_{n-1} + d$,$S_n = \frac{n}{2}(a_1+a_n)$。

4. 等比数列(Geometric Progression,简称GP)- 定义:在一个数列中,如果任意两个相邻的数之比都相等,那么这个数列就是等比数列。

这个公比就是等比数列的一个重要特点。

- 常见问题:已知等比数列的首项和公比,求第$n$项和前$n$项和。

- 重要结论:$a_n = a_1q^{n-1}$,$S_n = \frac{a_1(1-q^n)}{1-q}$。

5. 等差-等比数列(Arithmetic-Geometric Progression,简称AGP)- 定义:一个数列既是等差数列又是等比数列,那么这个数列就是等差-等比数列。

- 常见问题:已知等差-等比数列的首项、公差、公比,求第$n$项和前$n$项和。

6. 数列的性质- 单调性:设$a_n$是一个数列,如果对于任意的$n\in N^*$,$a_n\geq a_{n-1}$,那么这个数列就是递增的;如果对于任意的$n\in N^*$,$a_n\leq a_{n-1}$,那么这个数列就是递减的。

- 有界性:如果一个数列递增且有上界,那么这个数列就是有界递增数列;如果一个数列递减且有下界,那么这个数列就是有界递减数列。

高中数学专题练习《数列、导数知识点》含详细解析

高中数学专题练习《数列、导数知识点》含详细解析

数列、导数知识点一、等差数列1.概念:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,即a n+1-a n =d(n∈N *,d 为常数).2.等差中项:由三个数a,A,b 组成的等差数列可以看成是最简单的等差数列.这时,A 叫做a 与b 的等差中项,且2A=a+b.3.通项公式:等差数列{a n }的首项为a 1,公差为d,则其通项公式为a n =a 1+(n-1)d.4.前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d(n∈N *).5.性质:(1)通项公式的推广:a n =a m +(n-m)d(m,n∈N *).(2)若m+n=p+q(m,n,p,q∈N *),则有a m +a n =a p +a q .(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(4)数列{a n }是等差数列⇔S n =An 2+Bn(A,B 为常数).(5)在等差数列{a n }中,若a 1>0,d<0,则S n 存在最大值;若a 1<0,d>0,则S n 存在最小值.二、等比数列1.概念:如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,即a n a n -1=q(n≥2,n∈N *,q 为非零常数).2.等比中项:如果在a 与b 中间插入一个数G,使a,G,b 成等比数列,那么G 叫做a 与b 的等比中项.此时,G 2=ab.3.通项公式:等比数列{a n }的首项为a 1,公比为q,则其通项公式为a n =a 1q n-1.4.前n 项和公式:S n ={na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q,q ≠1.5.性质:(1)通项公式的推广:a n=a m q n-m(m,n∈N*).(2)若k+l=m+n(k,l,m,n∈N*),则有a k·a l=a m·a n.(3)当q≠-1或q=-1且n为奇数时,S n,S2n-S n,S3n-S2n,…仍成等比数列,其公比为q n.三、求一元函数的导数1.基本初等函数的导数公式基本初等函数导函数f(x)=c(c为常数) f'(x)=0f(x)=xα(α∈Q,且α≠0)f'(x)=αxα-1f(x)=sin x f'(x)=cos xf(x)=cos x f'(x)=-sin xf(x)=a x(a>0,且a≠1)f'(x)=a x ln af(x)=e x f'(x)=e xf(x)=log a x(a>0,且a≠1)f'(x)=1xlnaf(x)=ln x f'(x)=1x2.导数的四则运算法则已知两个函数f(x),g(x)的导数分别为f'(x),g'(x).若f'(x),g'(x)存在,则有:(1)[f(x)±g(x)]'=f'(x)±g'(x);(2)[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x);(3)[f(x)g(x)]'=f'(x)g(x)-f(x)g'(x)[g(x)]2(g(x)≠0).3.简单复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y'x =y'u ·u'x .四、导数在研究函数中的应用 1.函数的单调性与导数一般地,函数f(x)的单调性与导函数f'(x)的正负之间具有如下的关系: 在某个区间(a,b)上,如果f'(x)>0,那么函数y=f(x)在区间(a,b)上单调递增; 在某个区间(a,b)上,如果f'(x)<0,那么函数y=f(x)在区间(a,b)上单调递减. 2.函数的极值与导数条件 f'(x 0)=0x 0附近的左侧f'(x)>0,右侧f'(x)<0x 0附近的左侧f'(x)<0,右侧f'(x)>0图象极值 f(x 0)为极大值 f(x 0)为极小值 极值点 x 0为极大值点x 0为极小值点3.函数的最大(小)值与导数(1)如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值, f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值, f(b)为函数的最小值.(3)求函数y=f(x)在区间[a,b]上的最大值与最小值的步骤如下:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a), f(b)比较,其中最大的一个是最大值,最小的一个是最小值.。

高中数学 数列专题

高中数学 数列专题

高中数学-数列专题第1讲数列的概念及其表示 (1)第2讲等差数列及前n项和 (16)第3讲等比数列及前n项和 (31)第4讲数列求和、数列的综合应用 (46)第1讲数列的概念及其表示考点一数列的概念及其表示方法知识点1数列的定义(1)按照一定顺序排列的一列数叫做数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为这个数列的第一项,也叫首项.(2)数列与函数的关系从函数观点看,数列可以看成:以正整数集N*或N*的有限子集{1,2,3,…,n}为定义域的函数a n=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.2数列的表示方法3数列的分类注意点数列图象是一些孤立的点数列作为一种特殊的函数,由于它的定义域为正整数集N*或它的有限子集,所以它的图象是一系列孤立的点.入门测1.思维辨析(1)数列{a n}和集合{a1,a2,a3,…,a n}表达的意义相同.()(2)所有数列的第n项都能使用公式表达.()(3)根据数列的前几项归纳出数列的通项公式可能不止一个.()(4)数列:1,0,1,0,1,0,…,通项公式只能是a n=1+(-1)n+12.()答案(1)×(2)×(3)√(4)×2.数列13,18,115,124,…的一个通项公式为()A.a n=12n+1B.a n=1n+2C.a n=1n(n+2)D.a n=12n-1答案 C解析观察知a n=1(n+1)2-1=1n(n+2).3.若数列{a n}中,a1=3,a n+a n-1=4(n≥2),则a2015的值为()A.1 B.2C.3 D.4答案 C解析因为a1=3,a n+a n-1=4(n≥2),所以a1=3,a2=1,a3=3,a4=1,…,显然当n是奇数时,a n=3,所以a2015=3.解题法[考法综述]利用归纳法求数列的通项公式,或给出递推关系式求数列中的项,并研究数列的简单性质.命题法数列的概念和表示方法及单调性的判断典例(1)已知数列{a n}的通项公式为a n=n2-2λn(n∈N*),则“λ<1”是“数列{a n}为递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)写出下面各数列的一个通项公式:①3,5,7,9,…; ②1,3,6,10,15,…;③-1,32,-13,34,-15,36,…;④3,33,333,3333,….[解析] (1)若数列{a n }为递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N *都成立,于是有3>2λ,λ<32.由λ<1可得λ<32,但反过来,由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件,故选A.(2)①各项减去1后为正偶数,所以a n =2n +1. ②将数列改写为1×22,2×32,3×42,4×52,5×62,…因而有a n =n (n +1)2,也可逐差法a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,…,a n -a n -1=n ,各式累加得a n =n (n +1)2.③奇数项为负,偶数项为正,故通项公式中含因子(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1, 所以a n =(-1)n·2+(-1)nn.④将数列各项改写为93,993,9993,99993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n -1).[答案] (1)A (2)见解析【解题法】 归纳法求通项公式及数列单调性的判断(1)求数列的通项公式实际上是寻找数列的第n 项与序号n 之间的关系,常用技巧有:①借助于(-1)n 或(-1)n +1来解决项的符号问题.②项为分数的数列,可进行恰当的变形,寻找分子、分母各自的规律以及分子、分母间的关系.③对较复杂的数列的通项公式的探求,可采用添项、还原、分割等方法,转化为熟知的数列,如等差数列、等比数列等来解决.④根据图形特征写出数列的通项公式,首先,要观察图形,寻找相邻的两个图形之间的变化;其次,要把这些变化同图形的序号联系起来,发现其中的规律;最后,归纳猜想出通项公式.(2)数列单调性的判断方法①作差比较法:a n +1-a n >0⇔数列{a n }是单调递增数列;a n +1-a n <0⇔数列{a n }是单调递减数列;a n +1-a n =0⇔数列{a n }是常数列.②作商比较法:当a n >0时,则a n +1a n >1⇔数列{a n }是单调递增数列;a n +1a n<1⇔数列{a n }是单调递减数列;a n +1a n=1⇔数列{a n }是常数列. 当a n <0时,则a n +1a n >1⇔数列{a n }是单调递减数列;a n +1a n <1⇔数列{a n }是单调递增数列;a n +1a n=1⇔数列{a n }是常数列.③结合相应函数的图象直观判断数列的单调性.对点练1.设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则( ) A .d <0 B .d >0 C .a 1d <0 D .a 1d >0答案 C解析 ∵数列{2a 1a n }为递减数列,∴2 a 1a n >2 a 1a n +1,n ∈N *,∴a 1a n >a 1a n +1,∴a 1(a n +1-a n )<0.∵{a n }为公差为d 的等差数列,∴a 1d <0.故选C.2.下列可以作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A .a n =1B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪sin n π2D .a n =(-1)n -1+32答案 C解析 A 项显然不成立;n =1时,a 1=-1+12=0,故B 项不正确;n =2时,a 2=(-1)2-1+32=1,故D 项不正确.由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,…,故选C. 3.下列关于星星的图案构成一个数列,该数列的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n (n +2)2答案 C解析 解法一:令n =1,2,3,4,验证选项知选C.解法二:a 1=1,a 2=a 1+2,a 3=a 2+3,a 4=a 3+4,…,a n =a n -1+n . ∴(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)=n +(n -1)+…+3+2.因此a n =1+2+3+…+n =n (n +1)2.考点二 数列的通项公式知识点1 a n 与S n 的关系若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2).2 已知递推关系式求通项一般用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.注意点 已知S n 求a n 时应注意的问题(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1中需n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合“a n 式”,则需统一“合写”. (3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合“a n 式”,则数列的通项公式应分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2).入门测1.思维辨析(1)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) (2)在数列{a n }中,对于任意正整数m ,n ,a m +n =a mn +1,若a 1=1,则a 2=2.( ) (3)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.( )答案 (1)√ (2)√ (3)√ 2.数列{a n }中,a 1=1,a n =1a n -1+1,则a 4等于( )A.53B.43 C .1 D.23答案 A解析 由a 1=1,a n =1a n -1+1得,a 2=1a 1+1=2,a 3=1a 2+1=12+1=32,a 4=1a 3+1=23+1=53.故选A.3.在正项数列{a n }中,若a 1=1,且对所有n ∈N *满足na n +1-(n +1)a n =0,则a 2015=( ) A .1011 B .1012 C .2014 D .2015答案 D解析 由a 1=1,na n +1-(n +1)a n =0可得a n +1a n =n +1n ,得到a 2a 1=21,a 3a 2=32,a 4a 3=43,…,a n +1a n=n +1n ,上述式子两边分别相乘得a 2a 1×a 3a 2×a 4a 3×…×a n +1a n =a n +1=21×32×43×…×n +1n =n +1,故a n =n ,所以a 2015=2015,故选D.解题法[考法综述] 高考以考查a n 与S n 的关系为主要目标以求通项公式a n 为问题形式,特别是给出递推公式如何构造数列求通项公式作为一个重难点和命题热点.命题法 由S n 求a n 或由递推关系式求a n典例 (1)若数列{a n }的前n 项和S n =2n 2+3n ,则此数列的通项公式为a n =________. (2)已知数列{a n }的前n 项和为S n 满足a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,求S n .[解析] (1)当n =1时, a 1=S 1=2×12+3×1=5;当n ≥2时,a n =S n -S n -1=(2n 2+3n )-[2(n -1)2+3(n -1)]=4n +1.当n =1时,4×1+1=5=a 1,∴a n =4n +1.(2)∵当n ≥2,n ∈N *时,a n =S n -S n -1, ∴S n -S n -1+2S n S n -1=0,即1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是公差为2的等差数列,又S 1=a 1=12,∴1S 1=2,∴1S n =2+(n -1)·2=2n , ∴S n =12n.[答案] (1)4n +1 (2)见解析 【解题法】 求通项公式的方法 (1)由S n 求a n 的步骤 ①先利用a 1=S 1求出a 1.②用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n的表达式.③对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.(2)由递推公式求通项公式的常见类型与方法①形如a n +1=a n +f (n ),常用累加法.即利用恒等式a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)求通项公式.②形如a n +1=a n f (n ),常用累乘法,即利用恒等式a n =a 1·a 2a 1·a 3a 2·…·a na n -1求通项公式.③形如a n +1=ba n +d (其中b ,d 为常数,b ≠0,1)的数列,常用构造法.其基本思路是:构造a n +1+x =b (a n +x )⎝⎛⎭⎫其中x =db -1,则{a n +x }是公比为b 的等比数列,利用它即可求出a n .④形如a n +1=pa n qa n +r (p ,q ,r 是常数)的数列,将其变形为1a n +1=r p ·1a n +qp .若p =r ,则⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为q p ,可用公式求通项;若p ≠r ,则采用③的办法来求.⑤形如a n +2=pa n +1+qa n (p ,q 是常数,且p +q =1)的数列,构造等比数列.将其变形为a n +2-a n +1=(-q )·(a n +1-a n ),则{a n -a n -1}(n ≥2,n ∈N *)是等比数列,且公比为-q ,可以求得a n-a n -1=f (n ),然后用累加法求得通项.⑥形如a 1+2a 2+3a 3+…+na n =f (n )的式子, 由a 1+2a 2+3a 3+…+na n =f (n ),①得a 1+2a 2+3a 3+…+(n -1)a n -1=f (n -1),② 再由①-②可得a n .对点练1.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.答案2011解析 由a 1=1,且a n +1-a n =n +1(n ∈N *)得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2, 则1a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,故数列⎩⎨⎧⎭⎬⎫1a n 前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111=2⎝⎛⎭⎫1-111=2011. 2.已知数列{a n }满足a 1=1,a n +1=3a n +2,则数列{a n }的通项公式为________. 答案 a n =2·3n -1-1解析 ∵a n +1=3a n +2,∴a n +1+1=3(a n +1). ∴a n +1+1a n +1=3,∴数列{a n +1}是等比数列,公比q =3.又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1.3.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式为________.答案 a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2解析 当n =1时,a 1=S 1=-1; 当n ≥2时,a n =S n -S n -1=2n -1,∴a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.4.S n 为数列{a n }的前n 项和,已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和.解 (1)由a 2n +2a n =4S n +3,可知a 2n +1+2a n +1=4S n +1+3. 可得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即 2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由于a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知 b n =1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则 T n =b 1+b 2+…+b n =12⎣⎡⎦⎤⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n +1-12n +3 =n3(2n +3).5.已知数列{a n }的前n 项和S n =-12n 2+kn ,k ∈N *,且S n 的最大值为8.试确定常数k ,并求数列{a n }的通项公式.解 因为S n =-12n 2+kn =-12(n -k )2+12k 2,其中k 是常数,且k ∈N *,所以当n =k 时,S n取最大值12k 2,故12k 2=8,k 2=16,因此k =4,从而S n =-12n 2+4n .当n =1时,a 1=S 1=-12+4=72;当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫-12n 2+4n -⎣⎡⎦⎤-12(n -1)2+4(n -1)=92-n .当n=1时,92-1=72=a1,所以a n=92-n.微型专题数列中的创新题型创新考向以数列为背景的新定义问题是高考命题创新型试题的一个热点,考查频次较高.命题形式:常见的有新定义、新规则等.创新例题把1,3,6,10,15,21,…这些数叫做三角形数,这是因为以这些数目的点可以排成一个正三角形(如图).则第7个三角形数是()A.27 B.28C.29 D.30答案 B解析由图可知,第7个三角形数是1+2+3+4+5+6+7=28.创新练习1.将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2014项与5的差,即a2014-5=()A.2018×2012 B.2020×2013C.1009×2012 D.1010×2013答案 D解析观察图中的“梯形数”可得:a2-a1=4,a3-a2=5,a4-a3=6…a2014-a2013=2016,累加得:a2014-a1=4+5+6+…+2016=2013×20202=2013×1010,即a2014-5=2013×1010.2.在一个数列中,如果∀n∈N*,都有a n a n+1a n+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{a n}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+a3+…+a12=________.答案28解析依题意得数列{a n}是周期为3的数列,且a1=1,a2=2,a3=4,因此a1+a2+a3+…+a12=4(a1+a2+a3)=4×(1+2+4)=28.3.对于E={a1,a2,...,a100}的子集X={a i1,a i2,...,a ik},定义X的“特征数列”为x1,x2,...,x100,其中x i1=x i2=...=x ik=1,其余项均为0,例如:子集{a2,a3}的“特征数列”为0,1,1,0,0, 0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于________.(2)若E的子集P的“特征数列”为p1,p2,…,p100满足p1=1,p i+p i+1=1,1≤i≤99.E的子集Q的“特征数列”为q1,q2,…,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为________.答案(1)2(2)17解析(1)据“特征数列”定义知子集{a1,a3,a5}的特征数列为1,0,1,0,1,0,…,0,故其前三项和为2.(2)由定义知p1=1,p2=0,p3=1,p4=0…故集合P={a1,a3,a5,…,a99}={a i|i=2k+1,k∈N且k≤49},又q1=1,q2=q3=0,q4=1,q5=q6=0,q7=1,…,∴集合Q={a1,a4,a7,a10…}={a i|i=3k+1,k∈N且k≤33}.若a k∈P∩Q,则k=2k1+1=3k2+1,k1,k2∈N,k1≤49,k2≤33.即2k1=3k2,不妨设6k3=2k1=3k2,所以k1=3k3,k2=2k3,0≤3k3≤49,0≤2k3≤33,k3∈N,得k3∈{0,1,2,3,…,16},k =6k3+1,共有17个,P∩Q中元素个数为17.创新指导1.准确转化:解决数列新定义问题时,一定要读懂新定义的本质含义,将题目所给定义转化成题目要求的形式,切忌同已有概念或定义相混淆.2.方法选取:对于数列新定义问题,搞清定义是关键,仔细认真地从前几项(特殊处、简单处)体会题意,从而找到恰当的解决方法.已知数列{a n}中,a n=n2-kn(n∈N*),且{a n}单调递增,则k的取值范围是________.[错解][错因分析]在解答的过程中虽然注意了数列的定义域为正整数集,但是不能用二次函数对称轴法来判断数列的单调性.因为数列的图象不是连续的,而是离散的点.[正解]由题意得a n+1-a n=2n+1-k,又{a n}单调递增,故2n+1-k>0恒成立,即k<2n +1(n∈N*)恒成立,解得k<3.[答案]k<3[心得体会]课时练基础组1.数列{a n}的通项a n=nn2+90,则数列{a n}中的最大值是()A.310 B.19C.119 D.1060答案 C解析因为a n=1n+90n,运用基本不等式得,1n+90n≤1290,由于n∈N*,不难发现当n=9或10时,a n=119最大,故选C.2.数列{a n}的前n项积为n2,那么当n≥2时,{a n}的通项公式为() A.a n=2n-1 B.a n=n2C.a n=(n+1)2n2D.a n=n2(n-1)2答案 D解析设数列{a n}的前n项积为T n,则T n=n2,当n≥2时,a n=T nT n-1=n2 (n-1)2.3.已知数列{a n}的前n项和S n满足:S n+S m=S n+m,且a1=1,那么a10等于() A.1 B.9C.10 D.55答案 A解析∵S n+S m=S n+m,a1=1,∴S1=1.可令m=1,得S n+1=S n+1,∴S n+1-S n=1.即当n≥1时,a n+1=1,∴a10=1.4.已知数列{a n}的前n项和为S n,且S n=2a n-1(n∈N*),则a5等于()A.-16 B.16C.31 D.32答案 B解析当n=1时,S1=2a1-1,∴a1=1.当n ≥2时,S n -1=2a n -1-1, ∴a n =2a n -2a n -1, ∴a n =2a n -1.∴{a n }是等比数列且a 1=1,q =2, 故a 5=a 1×q 4=24=16.5.已知数列{a n }满足a 0=1,a n =a 0+a 1+…+a n -1(n ≥1),则当n ≥1时,a n 等于( ) A .2n B.12n (n +1) C .2n -1 D .2n -1答案 C解析 由题设可知a 1=a 0=1,a 2=a 0+a 1=2. 代入四个选项检验可知a n =2n -1.故选C.6. 已知数列{a n }的通项公式为a n =(n +2)⎝⎛⎭⎫78n,则当a n 取得最大值时,n 等于( ) A .5 B .6 C .5或6 D .7答案 C解析 由题意知⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1,∴⎩⎨⎧(n +2)⎝⎛⎭⎫78n≥(n +1)⎝⎛⎭⎫78n -1,(n +2)⎝⎛⎭⎫78n≥(n +3)⎝⎛⎭⎫78n +1.∴⎩⎪⎨⎪⎧n ≤6,n ≥5.∴n =5或6. 7.在数列{a n }中,a 1=1,a n +1-a n =2n +1,则数列的通项a n =________. 答案 n 2解析 ∵a n +1-a n =2n +1.∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=(2n -1)+(2n -3)+…+5+3+1=n 2(n ≥2).当n =1时,也适用a n =n 2.8.已知数列{a n }的首项a 1=2,其前n 项和为S n .若S n +1=2S n +1,则a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,3·2n -2,n ≥2解析 由S n +1=2S n +1,则有S n =2S n -1+1(n ≥2),两式相减得a n +1=2a n ,又S 2=a 1+a 2=2a 1+1,a 2=3,所以数列{a n }从第二项开始成等比数列,∴a n =⎩⎪⎨⎪⎧2,n =1,3·2n -2,n ≥2.9.已知数列{a n }中,a 1=1,a 2=2,设S n 为数列{a n }的前n 项和,对于任意的n >1,n ∈N *,S n +1+S n -1=2(S n +1)都成立,则S 10=________.答案 91解析 ∵⎩⎪⎨⎪⎧S n +1+S n -1=2S n +2,S n +2+S n =2S n +1+2,两式相减得a n +2+a n =2a n +1(n ≥2),∴数列{a n }从第二项开始为等差数列,当n =2时,S 3+S 1=2S 2+2,∴a 3=a 2+2=4,∴S 10=1+2+4+6+…+18=1+9(2+18)2=91. 10. 如图所示的图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n 个图形中小正方形的个数是________.答案n (n +1)2解析 由已知,有a 1=1,a 2=3,a 3=6,a 4=10, ∴a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n , 各式相加,得a n -a 1=2+3+…+n , 即a n =1+2+…+n =n (n +1)2,故第n 个图形中小正方形的个数是n (n +1)2. 11.已知数列{a n }满足:a 1=1,2n -1a n =a n -1(n ∈N *,n ≥2). (1)求数列{a n }的通项公式;(2)这个数列从第几项开始及以后各项均小于11000? 解 (1)n ≥2时,a n a n -1=⎝⎛⎭⎫12n -1, 故a n =a n a n -1·…·a 3a 2·a 2a 1·a 1=⎝⎛⎭⎫12n -1·⎝⎛⎭⎫12n -2·…·⎝⎛⎭⎫122·⎝⎛⎭⎫121 =⎝⎛⎭⎫121+2+…+(n -1)=⎝⎛⎭⎫12(n -1)n 2,当n =1时,a 1=⎝⎛⎭⎫120=1,即n =1时也成立. ∴a n =⎝⎛⎭⎫12(n -1)n 2.(2)∵y =(n -1)n 在[1,+∞)上单调递增, ∴y =⎝⎛⎭⎫12(n -1)n 2在[1,+∞)上单调递减. 当n ≥5时,(n -1)n 2≥10,a n =⎝⎛⎭⎫12(n -1)n 2 ≤11024. ∴从第5项开始及以后各项均小于11000. 12.已知数列{a n }满足a n +1=⎩⎨⎧2a n ,0<a n≤12,2a n-1,12<a n<1,且a 1=67,求a 2015.解 ∵a 1=67∈⎝⎛⎭⎫12,1,∴a 2=2a 1-1=57. ∵a 2∈⎝⎛⎭⎫12,1,∴a 3=2a 2-1=37. ∵a 3∈⎝⎛⎭⎫0,12,∴a 4=2a 3=67=a 1, ∴{a n }是周期数列,T =3,∴a 2015=a 3×671+2=a 2=57.能力组13.已知数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则数列{a n }的通项公式为( )A .a n =2n +1B .a n =⎩⎪⎨⎪⎧14(n =1)2n +1(n ≥2)C .a n =2nD .a n =2n +2答案 B解析 由题意可知,数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则12a 1+122a 2+123a 3+…+12n -1a n -1 =2(n -1)+5,n >1,两式相减可得:a n2n =2n +5-2(n -1)-5=2,∴a n =2n +1,n >1,n ∈N *. 当n =1时,a 12=7,∴a 1=14,综上可知,数列{a n }的通项公式为:a n =⎩⎪⎨⎪⎧14(n =1),2n +1(n ≥2).故选B.14.在如图所示的数阵中,第9行的第2个数为________.答案 66解析 每行的第二个数构成一个数列{a n },由题意知a 2=3,a 3=6,a 4=11,a 5=18,则a 3-a 2=3,a 4-a 3=5,a 5-a 4=7,…,a n -a n -1=2(n -1)-1=2n -3,各式两边同时相加,得 a n -a 2=(2n -3+3)×(n -2)2=n 2-2n ,即a n =n 2-2n +a 2=n 2-2n +3(n ≥2),故a 9=92-2×9+3=66. 15.已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解 (1)a 1=2,a n =S n -S n -1=2n -1(n ≥2).∴b n=⎩⎨⎧23(n =1)1n (n ≥2).(2)∵c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, ∴{c n }是递减数列.16.已知数列{a n }中,a 1=12,a n +1=3a na n +3.(1)求a n ;(2)设数列{b n }的前n 项和为S n ,且b n ·n (3-4a n )a n =1,求证:12≤S n <1.解 (1)由已知得a n ≠0则由a n +1=3a n a n +3,得1a n +1=a n +33a n ,即1a n +1-1a n =13,而1a 1=2,∴⎩⎨⎧⎭⎬⎫1a n 是以2为首项,以13为公差的等差数列.∴1a n =2+13(n -1)=n +53,∴a n =3n +5. (2)证明:∵b n ·n (3-4a n )a n =1,由(1)知a n =3n +5,∴b n =a n n (3-4a n )=1n (n +1)=1n -1n +1,∴S n =b 1+b 2+…+b n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1=1-1n +1, 又∵n ≥1,∴n +1≥2,∴0<1n +1≤12. ∴12≤S n <1. 第2讲 等差数列及前n 项和 考点一 等差数列的概念及运算知识点1 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,定义的表达式为a n +1-a n =d ,d 为常数.2 等差中项如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b2. 3 等差数列的通项公式及其变形通项公式:a n =a 1+(n -1)d ,其中a 1是首项,d 是公差.通项公式的变形:a n =a m +(n -m )d ,m ,n ∈N *.4 等差数列的前n 项和 等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . 5 等差数列的单调性当d >0时,数列{a n }为递增数列; 当d <0时,数列{a n }为递减数列; 当d =0时,数列{a n }为常数列.注意点 定义法证明等差数列时的注意事项(1)证明等差数列时,切忌只通过计算数列的a 2-a 1,a 3-a 2,a 4-a 3等有限的几个项的差后,发现它们都等于同一个常数,就断言数列{a n }为等差数列.(2)用定义法证明等差数列时,常采用a n +1-a n =d ,若采用a n -a n -1=d ,则n ≥2,否则n =1时无意义.入门测1.思维辨析(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (5)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案 (1)× (2)√ (3)√ (4)× (5)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于( ) A .1 B.53 C .2 D .3答案 C 解析 因为S 3=(a 1+a 3)×32=6,而a 3=4.所以a 1=0,所以d =a 3-a 12=2. 3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14答案 C解析 ∵S 3=3(a 1+a 3)2=3a 2=12,∴a 2=4.∵a 1=2,∴d =a 2-a 1=4-2=2. ∴a 6=a 1+5d =12.故选C.[考法综述] 等差数列的定义,通项公式及前n 项和公式是高考中常考内容,用定义判断或证明等差数列,由n ,a n ,S n ,a 1,d 五个量之间的关系考查基本运算能力.命题法1 等差数列的基本运算典例1 等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50. (1)求通项a n ; (2)若S n =242,求n .[解] (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50.解得a 1=12,d =2.所以a n =2n +10; (2)由S n =na 1+n (n -1)2d ,S n =242, 得方程12n +n (n -1)2×2=242, 解得n =11或n =-22(舍去).【解题法】 等差数列计算中的两个技巧(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.命题法2 等差数列的判定与证明典例2 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.[解] (1)证明:∵a n +2=2a n +1-a n +2, ∴b n +1-b n =a n +2-a n +1-(a n +1-a n ) =2a n +1-a n +2-2a n +1+a n =2.∴{b n }是以1为首项,2为公差的等差数列. (2)由(1)得b n =1+2(n -1),即a n +1-a n =2n -1, ∴a 2-a 1=1,a 3-a 2=3,a 4-a 3=5, …,a n -a n -1=2n -3,累加法可得 a n -a 1=1+3+5+…+(2n -3)=(n -1)2, ∴a n =n 2-2n +2.【解题法】 等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立. (3)通项公式法:验证a n =pn +q . (4)前n 项和公式法:验证S n =An 2+Bn .1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6答案 B解析 设数列{a n }的公差为d ,由a 4=a 2+2d ,a 2=4,a 4=2,得2=4+2d ,d =-1,∴a 6=a 4+2d =0.故选B.2.已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( ) A .a 1d >0,dS 4>0 B .a 1d <0,dS 4<0 C .a 1d >0,dS 4<0 D .a 1d <0,dS 4>0 答案 B解析 由a 24=a 3a 8,得(a 1+2d )(a 1+7d )=(a 1+3d )2,整理得d (5d +3a 1)=0,又d ≠0,∴a 1=-53d ,则a 1d =-53d 2<0,又∵S 4=4a 1+6d =-23d ,∴dS 4=-23d 2<0,故选B.3.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.答案 -12解析 由已知得S 1=a 1,S 2=a 1+a 2=2a 1-1,S 4=4a 1+4×32×(-1)=4a 1-6,而S 1,S 2,S 4成等比数列,所以(2a 1-1)2=a 1(4a 1-6),整理得2a 1+1=0,解得a 1=-12.4.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解 (1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1. 两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4. 故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.考点二 等差数列的性质及应用知识点等差数列及其前n 项和的性质已知{a n }为等差数列,d 为公差,S n 为该数列的前n 项和.(1)有穷等差数列中与首末两项等距离的两项的和相等,即a 1+a n =a 2+a n -1=a 3+a n -2=…=a k +a n -k +1=….(2)等差数列{a n }中,当m +n =p +q 时,a m +a n =a p +a q (m ,n ,p ,q ∈N *). 特别地,若m +n =2p ,则2a p =a m +a n (m ,n ,p ∈N *).(3)相隔等距离的项组成的数列是等差数列,即a k ,a k +m ,a k +2m ,…仍是等差数列,公差为md (k ,m ∈N *).(4)S n ,S 2n -S n ,S 3n -S 2n ,…也成等差数列,公差为n 2d .(5)⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }的公差的12.(6)在等差数列{a n }中,①若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a na n +1.②若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=nn -1.(7)若数列{a n }与{b n }均为等差数列,且前n 项和分别是S n 和T n ,则S 2m -1T 2m -1=a mb m. (8)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.注意点 前n 项和性质的理解等差数列{a n }中,设前n 项和为S n ,则S n ,S 2n ,S 3n 的关系为2(S 2n -S n )=S n +(S 3n -S 2n )不要理解为2S 2n =S n +S 3n .入门测1.思维辨析(1)等差数列{a n }中,有a 1+a 7=a 2+a 6.( )(2)若已知四个数成等差数列,则这四个数可设为a -2d ,a -d ,a +d ,a +2d .( ) (3)若三个数成等差数列,则这三个数可设为:a -d ,a ,a +d .( )(4)求等差数列的前n 项和的最值时,只需将它的前n 项和进行配方,即得顶点为其最值处.( )答案 (1)√ (2)× (3)√ (4)×2.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( ) A .12 B .18 C .22 D .44答案 C解析 由题可知S 11=11(a 1+a 11)2=11(a 2+a 10)2=11×42=22,故选C.3.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=90,则a 10-13a 14的值为( )A .12B .14C .16D .18答案 A解析 由题意知5a 8=90,a 8=18,a 10-13a 14=a 1+9d -13(a 1+13d )=23a 8=12,选A 项.[考法综述] 等差数列的性质是高考中的常考内容,灵活应用由概念推导出的重要性质,在解题过程中可以达到避繁就简的目的.命题法1 等差数列性质的应用典例1 等差数列{a n }中,如果a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( )A .297B .144C .99D .66[解析] 由a 1+a 4+a 7=39,得3a 4=39,a 4=13. 由a 3+a 6+a 9=27,得3a 6=27,a 6=9. 所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=9×(13+9)2=9×11=99,故选C. [答案] C【解题法】 应用等差数列性质应注意(1)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a mn -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.(2)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q ( m ,n ,p ,q ∈N *).一般地,a m+a n ≠a m +n ,必须是两项相加,当然也可以是a m -n +a m +n =2a m .因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件.命题法2 与等差数列前n 项和有关的最值问题典例2 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n最大?[解] 解法一:由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1.从而S n =d2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1,又a 1>0,所以-a 113<0.故当n =7时,S n 最大.解法二:由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由解法一可知a =-a 113<0,故当n =7时,S n 最大.解法三:由解法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0, 即⎩⎨⎧a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. 解法四:由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0, 所以a 7>0,a 8<0,所以当n =7时,S n 最大. 【解题法】 求等差数列前n 项和的最值的方法(1)二次函数法:用求二次函数最值的方法(配方法)求其前n 项和的最值,但要注意n ∈N *. (2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取得最值.(3)项的符号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a n ≥0a n +1≤0的项数n ,使S n 取最大值;当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1 ≥0的项数n ,使S n 取最小值,即正项变负项处最大,负项变正项处最小,若有零项,则使S n 取最值的n 有两个.1.设{a n }是等差数列.下列结论中正确的是( ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0 答案 C解析 若{a n }是递减的等差数列,则选项A 、B 都不一定正确.若{a n }为公差为0的等差数列,则选项D 不正确.对于C 选项,由条件可知{a n }为公差不为0的正项数列,由等差中项的性质得a 2=a 1+a 32,由基本不等式得a 1+a 32>a 1a 3,所以C 正确. 2.在等差数列{a n }中,a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,则使S n >0成立的最大自然数n 是( )A .4025B .4024C .4023D .4022答案 B解析 ∵等差数列{a n }的首项a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,假设a 2012<0<a 2013,则d >0,而a 1>0,可得a 2012=a 1+2011d >0,矛盾,故不可能. ∴a 2012>0,a 2013<0. 再根据S 4024=4024(a 1+a 4024)2=2012(a 2012+a 2013)>0,而S 4025=4025a 2013<0,因此使前n 项和S n >0成立的最大自然数n 为4024.3.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n =2n 3n +1,则a nb n =( )A.23 B.2n -13n -1 C.2n +13n +1D.2n -13n +4答案 B解析 a n b n =2a n2b n =2n -12(a 1+a 2n -1)2n -12(b 1+b 2n -1)=S 2n -1T 2n -1=2(2n -1)3(2n -1)+1=2n -13n -1.故选B.4.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 答案 10解析 由a 3+a 4+a 5+a 6+a 7=25,得5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.5.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________. 答案 5解析 设等差数列的首项为a 1,根据等差数列的性质可得,a 1+2015=2×1010,解得a 1=5.6.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.答案 ⎝⎛⎭⎫-1,-78 解析 由题意知d <0且⎩⎪⎨⎪⎧ a 8>0,a 9<0,即⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78.7.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 根据题意知a 7+a 8+a 9=3a 8>0,即a 8>0.又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时,{a n }的前n 项和最大.8.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c,求非零常数c . 解 (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项a n =4n -3. (2)由(1)知a 1=1,d =4. 所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝⎛⎭⎫n -142-18. 所以当n =1时,S n 最小,最小值为S 1=a 1=1. (3)由(2)知S n =2n 2-n ,所以b n =S nn +c =2n 2-n n +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c. 因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c, 所以2c 2+c =0,所以c =-12或c =0(舍去),故c =-12.已知等差数列{a n }的前n 项和为S n ,且a 5=9,S 5=15,则使其前n 项和S n 取得最小值时的n =________.[错解][错因分析] 等差数列的前n 项和最值问题,可以通过找对称轴来确定,本题只关注到n ∈N *,并未关注到n =1与n =2时,S 1=S 2,导致错误.[正解] ∵a 5=9,S 5=15,∴a 1=-3,d =3. ∴a n =3n -6,S n =32n 2-92n .把S n 看作是关于n 的二次函数,其对称轴为n =32.∴当n =1或n =2时,S 1=S 2且最小. [心得体会]课时练 基础组1.已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64答案 A解析 由题意可知2a 8=a 7+a 9=16⇒a 8=8,S 11=11(a 1+a 11)2=11×2a 62=11a 6=992,a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A. 2.已知S n 表示数列{a n }的前n 项和,若对任意的n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2014=( )A .1006×2013B .1006×2014C .1007×2013D .1007×2014答案 C解析 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,a 1=0,令n =2,则a 3=2=2a 2,a 2=1,于是a n +1-a n =1,故数列{a n }是首项为0,公差为1的等差数列,S 2014=2014×20132=1007×2013.故选C.3.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n答案 A解析由已知式2a n+1=1a n+1a n+2可得1a n+1-1a n=1a n+2-1a n+1,知⎩⎨⎧⎭⎬⎫1a n是首项为1a1=1,公差为1a2-1a1=2-1=1的等差数列,所以1a n=n,即a n=1n.4.设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9=()A.63 B.45C.36 D.27答案 B解析S3=9,S6-S3=36-9=27,根据S3,S6-S3,S9-S6成等差数列,S9-S6=45,S9-S6=a7+a8+a9=45,故选B.5.已知等差数列{a n}中,前四项和为60,最后四项和为260,且S n=520,则a7=() A.20 B.40C.60 D.80答案 B解析前四项的和是60,后四项的和是260,若有偶数项,则中间两项的和是(60+260)÷4=80.S n=520,520÷80不能整除,说明没有偶数项,有奇数项,则中间项是(60+260)÷8=40.所以共有520÷40=13项,因此a7是中间项,所以a7=40.6.已知等差数列{a n}的前n项和为S n,且S4S2=4,则S6S4=()A.94 B.32C.53D.4答案 A解析由S4S2=4,可设S2=x,S4=4x.∵S2,S4-S2,S6-S4成等差数列,∴2(S4-S2)=S2+(S6-S4).则S6=3S4-3S2=12x-3x=9x,因此,S6S4=9x4x=94.7.设等差数列{a n}的前n项和为S n,若a1=-3,a k+1=32,S k=-12,则正整数k=______.答案13解析由S k+1=S k+a k+1=-12+32=-212,又S k+1=(k+1)(a1+a k+1)2=(k+1)⎝⎛⎭⎫-3+322=-212,解得k=13.8.设正项数列{a n }的前n 项和是S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 1=________.答案14解析 设等差数列{a n }的公差为d , 则S n =d 2n 2+(a 1-d2)n ,∴S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,数列{S n }是等差数列,则S n 是关于n 的一次函数(或者是常数),则a 1-d2=0,S n =d2n ,从而数列{S n }的公差是d2,那么有d 2=d ,d =0(舍去)或d =12,故a 1=14.9.已知等差数列{a n }的前n 项和为S n ,若S 2=10,S 5=55,则a 10=________. 答案 39解析 设等差数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧a 1+(a 1+d )=10,5a 1+5×42d =55,即⎩⎪⎨⎪⎧2a 1+d =10,a 1+2d =11,解得a 1=3,d =4,a 10=a 1+(10-1)d =39. 10设数列{a n }为等差数列,数列{b n }为等比数列.若a 1<a 2,b 1<b 2,且b i =a 2i (i =1,2,3),则数列{b n }的公比为________.答案 3+2 2解析 设a 1,a 2,a 3分别为a -d ,a ,a +d ,因为a 1<a 2,所以d >0,又b 22=b 1b 3,所以a 4=(a -d )2(a +d )2=(a 2-d 2)2,则a 2=d 2-a 2或a 2=a 2-d 2(舍),则d =±2a .若d =-2a ,则q =b 2b 1=⎝⎛⎭⎫a 2a 12=(1-2)2=3-22<1,舍去;若d =2a ,则q =⎝⎛⎭⎫a 2a 12=3+2 2. 11.等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解 (1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数,又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52. 因此d =-3.数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝⎛⎭⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫17-110+⎝⎛⎭⎫14-17+…+⎝⎛ 110-3n -⎭⎫113-3n=13⎝⎛⎭⎫110-3n -110=n10(10-3n ).12.已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.解 数列{a n }不是等差数列,a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, ∴S n -S n -1+2S n S n -1=0(n ≥2), ∴1S n -1S n -1=2(n ≥2),又S 1=a 1=12, ∴⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列. ∴1S n =2+(n -1)×2=2n ,故S n =12n. ∴当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),∴a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝⎛⎭⎫1n +1-1n -1=1n (n -1)(n +1).∴当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.能力组13.已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .8C .2 2D .4答案 D解析 由2a 2n =a 2n +1+a 2n -1(n ≥2)可得,数列{a 2n }是首项为a 21=1,公差为a 22-a 21=3的等差数列,由此可得a 2n =1+3(n -1)=3n -2,即得a n =3n -2,∴a 6=3×6-2=4,故应选D.14.已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为( )A .11B .19C .20D .21答案 B 解析 ∵a 11a 10<-1,且S n 有最大值, ∴a 10>0,a 11<0,且a 10+a 11<0, ∴S 19=19(a 1+a 19)2=19·a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0, 故使得S n >0的n 的最大值为19.。

数列知识点总结(高中数学)

数列知识点总结(高中数学)

数列知识点总结 数列的概念与简单表示法知识点一、数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项。

数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常称为首项),排在第二位的数称为这个数列的第2项……排在第n 位的数称为这个数列的第n 项,所以数列的一般形式可以写成: ,,,,,,321 n a a a a简记为{}n a 。

项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列。

1.从第2项起,每一项都大于它的前一项的数列叫做递增数列; 2.从第2项起,每一项都小于它的前一项的数列叫做递减数列; 3.各项相等的数列叫做常数列;4.从第2项起,有些项大于它的前一项,有些项小于它前一项的数列叫做摆动数列; 知识点二、通项公式如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。

知识点三、数列的前n 项和1.数列的前n 项和的定义:我们把数列{}n a 从第一项起到第n 项止的各项之和,称为数列{}n a 的前n 项和,记作n S ,即n n a a a S +++= 21。

2.数列前n 项和n S 与通项公式n a 之间的关系:⎩⎨⎧≥-==-.2,,1,11n S S n S a n n n等差数列知识点一、等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

知识点二、等差中项有三个数b A a ,,组成的等差数列可以看成简单的等差数列,这时A 叫做b a 与的等差中项。

1.根据等差中项的定义:b A a ,,是等差数列,则2b a A +=;反之,若2ba A +=,则b A a ,,是等差数列。

2.在等差数列{}n a 中,任取相邻的三项()*+-∈≥N n n a a a n n n ,2,,11,则n a 是1-n a 与1+n a 的等差中项;反之,n a 是1-n a 与1+n a 的等差中项对一切*∈≥N n n ,2均成立,则数列{}n a 是等差数列。

高中数列知识点归纳总结及例题

高中数列知识点归纳总结及例题

高中数列知识点归纳总结及例题数列是高中数学中的一个重要概念,它在许多数学问题中都起着至关重要的作用。

通过学习数列的定义、性质和求解方法,可以帮助我们更好地理解和应用数学知识。

本文将对高中数列知识点进行归纳总结,并附上相关例题供读者练习。

1. 数列的定义与性质数列是按照一定顺序排列的一组数。

其中,每一个数称为数列的项,位置称为项数,用字母a表示数列的通项。

数列的性质包括等差数列和等比数列两种常见情况:1.1 等差数列等差数列是指数列中相邻两项之差都相等的数列。

设数列为{an},公差为d,则有如下性质:(1)通项公式:an = a1 + (n-1)d(2)前n项和公式:Sn = (a1 + an) * n / 2(3)项数公式:n = (an - a1) / d + 1例题1:已知等差数列{an}的首项是3,公差是4,求第10项的值。

解析:根据等差数列的通项公式,代入a1 = 3,d = 4,n = 10,求得a10 = 3 + (10-1) * 4 = 39。

1.2 等比数列等比数列是指数列中相邻两项之比都相等的数列。

设数列为{an},公比为q,则有如下性质:(1)通项公式:an = a1 * q^(n-1)(2)前n项和公式:Sn = a1 * (q^n - 1) / (q - 1)(3)项数公式:n = logq(an / a1) + 1例题2:已知等比数列{an}的首项是2,公比是3,求第5项的值。

解析:根据等比数列的通项公式,代入a1 = 2,q = 3,n = 5,求得a5 = 2 * 3^(5-1) = 162。

2. 数列的求和数列的求和是数学中常见的问题之一,通过找到数列的规律和应用对应的公式,可以快速求解数列的和。

下面分别介绍等差数列和等比数列的求和公式。

2.1 等差数列的求和对于等差数列{an},前n项和的计算公式为Sn = (a1 + an) * n / 2。

其中,a1为首项,an为末项,n为项数。

高中数列知识全面总结及练习

高中数列知识全面总结及练习

高中数列知识全面总结及练习高中数列是数学中的一个重要概念,数字的思维和计算能力离不开数列的理解。

在高中数学学习中,学习者要学到的知识有:一、数列的概念;二、数列的定义;三、数列的类别;四、数列的性质;五、前n项和;六、数列的通项公式;七、数列的变换公式;八、数列的特殊性质等。

一、数列的概念数列是一组有次序,并有一定规律的若干数字所组成的集合,每一个数都被称为数列的一个项。

数列可以是有限的,也可以是无限的。

由于数列具有次序,所所以可以定义第一项,第二项,第三项……第n项的含义,n是正整数。

二、数列的定义数列也可以用等差、等比、加减运算或混合记法等表示为数列,读者可以用数学符号一一定义数学这样的数列:若把a1,a2,a3...an,看作一个数列,则称这个数列为:a1, a1 + d再, a1 + 2d再,a1 + 3d再,...,an,其中d叫做“公差”,上述的数列便称为“等差数列”。

若把a1,a2,a3......an看作一个数列,则称这个数列为:a1,ar1,ar2......ar(n-1),an,三、数列的类别可以把数列划分为有限数列、无限数列和无穷数列:1.有限数列是指数列中项数是有限的数列;2.无限数列是指数列中项数是无限的数列;3.无穷数列是指数列中项数是不可能计算出来的,其中包括有限个项数,也包括无限数列。

四、数列的性质1.等差数列:其中任意两项的差值都相等;2.等比数列:其中任意两项的比值都相等;3.等差等比数列:即项的差值和比值都是相等的数列;4.混合等差等比数列:即项的差值或比值中有一样是相等的数列。

五、前n项和前n项和指的是数列的前n项的累加结果,对于等差数列和等比数列一般可以用公式表示:(1)若a1,a2,...,an为等差数列,则前 n 项和 S n = n(a1 + an)/2;六、数列的通项公式对等差数列或者等比数列而言,可以建立数列的通项公式,它是一般项a_n的函数。

高考数列的概念专题及答案 百度文库

高考数列的概念专题及答案 百度文库

一、数列的概念选择题1.若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有1n n a a +=成立,则称数列{}n a 为周期数列,周期为T .已知数列{}n a 满足()111,10,{1,01n n n n na a a m m a a a +->=>=<≤ ,则下列结论错误的是( ) A .若34a =,则m 可以取3个不同的数; B.若m =,则数列{}n a 是周期为3的数列;C .存在m Q ∈,且2m ≥,数列{}n a 是周期数列;D .对任意T N *∈且2T ≥,存在1m >,使得{}n a 是周期为T 的数列. 2.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N++=+∈且1300nS=,若23a <,则n 的最大值为( )A .49B .50C .51D .523.在数列{}n a 中,11a =,对于任意自然数n ,都有12nn n a a n +=+⋅,则15a =( )A .151422⋅+B .141322⋅+C .151423⋅+D .151323⋅+4.已知数列{}n a 的通项公式为23nn a n ⎛⎫= ⎪⎝⎭,则数列{}n a 中的最大项为( ) A .89B .23C .6481D .1252435.数列{}n a 满足 112a =,111n n a a +=-,则2018a 等于( )A .12B .-1C .2D .36.若数列的前4项分别是1111,,,2345--,则此数列的一个通项公式为( ) A .1(1)n n--B .(1)n n -C .1(1)1n n +-+D .(1)1n n -+7.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的是A .21n n n a a a ++=+B .13599100a a a a a ++++=C .2499a a a a +++=D .12398100100S S S S S ++++=-8.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( )A .2072B .2073C .2074D .20759.已知数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=-,则2019a =( ) A .1B .3C .2D .3-10.在数列{}n a 中,12a =,111n n a a -=-(2n ≥),则8a =( ) A .1-B .12C .1D .211.在数列{}n a 中,11a =,()*122,21n n a n n N a -=≥∈-,则3a =( )A .6B .2C .23 D .21112.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:()()22221211236n n n n ++++++=)A .1624B .1198C .1024D .156013.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .174B .184C .188D .16014.已知数列{a n }满足112,0,2121, 1.2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若a 1=35,则a 2019 = ( )A .15B .25C .35D .4515.数列{}n a 满足12a =,1111n n n a a a ++-=+,则2019a =( ) A .3-B .12-C .13D .216.已知数列265n a n n =-+则该数列中最小项的序号是( )A .3B .4C .5D .617.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4B .6C .8D .1018.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤C .数列{}n a 的最小项为3a 和4aD .数列{}n a 的最大项为3a 和4a 19.数列1111,,,57911--,…的通项公式可能是n a =( ) A .1(1)32n n --+ B .(1)32n n -+ C .1(1)23n n --+D .(1)23nn -+20.数列1,3,5,7,9,--的一个通项公式为( )A .21n a n =-B .()1(21)nn a n =--C .()11(21)n n a n +=--D .()11(21)n n a n +=-+二、多选题21.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =C .135********a a a a a ++++= D .2222123202020202021a a a a a a ++++=22.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( )A .1(1)nn a =+-B .2cos2n n a π= C .(1)2sin2n n a π+= D .1cos(1)(1)(2)n a n n n π=--+--23.若不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2- B .1- C .1 D .224.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()n nF n ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦ D .()n n F n ⎡⎤⎥=+⎥⎝⎭⎝⎭⎦25.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小B .130S =C .49S S =D .70a =26.已知S n 是等差数列{}n a (n ∈N *)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有( )A .数列{}n a 的公差d <0B .数列{}n a 中S n 的最大项为S 10C .S 10>0D .S 11>027.(多选)在数列{}n a 中,若221(2,,n n a a p n n N p *--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .(){}1n- 是等方差数列C .{}2n是等方差数列.D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列28.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为829.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d >D .数列{}na 也是等差数列30.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=B .27S S =C .5S 最小D .50a =31.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( )A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥32.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值33.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =C .95S S >D .67n S S S 与均为的最大值34.数列{}n a 满足11,121nn n a a a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2n S n = C .数列{}n a 的通项公式为21n a n =- D .数列{}n a 为递减数列35.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <B .70a >C .{}n S 中5S 最大D .49a a <【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.C 解析:C 【解析】试题分析:A:当01m <≤时,由34a =得1;125m m =<≤时,由34a =得54m =; 2m >时,()2311,,24a m a m =-∈+∞=-= 得6m = ;正确 .B:234111,11,1,m a a a =>∴====> 所以3T =,正确.C :命题较难证明,先考察命题D .D :命题的否定为“对任意的T N *∈,且2T ≥,不存在1m >,使得{}n a 是周期为T 的数列”,而由B 显然这个命题是错误的,因此D 正确,从而只有C 是错误. 考点:命题的真假判断与应用.【名师点睛】本题主要考查周期数列的推导和应用,考查学生的推理能力.此题首先要理解新定义“周期为T 的数列”,然后对A 、B 、C 、D 四个命题一一验证,A 、B 两个命题按照数列的递推公式进行计算即可,命题C 较难证明,但出现在选择题中,考虑到数学选择题中必有一个选项正确,因此我们先研究D 命题,并且在命题D 本身也很难的情况下,采取“正难则反”的方法,考虑命题D 的否定,命题D 的否定由命题B 很容易得出是错误的,从而命题D 是正确的.2.A解析:A 【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n nS =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值.【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+ 2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n=,因为22485048+348503501224,132522S S ⨯+⨯====,所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+因为2491149349412722S a a +⨯-=+=+,2511151351413752S a a +⨯-=+=+,又因为23a <,125a a +=,所以 12a > 所以当1300n S =时,n 的最大值为49 故选:A 【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.3.D解析:D 【分析】在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减法求15a . 【详解】12n n n a a n +=+⋅, 12n n n a a n +-=⋅,12112a a ∴-=⋅,23222a a -=⋅,34332a a -=⋅11(1)2n n n a a n ---=-⋅,以上1n -个等式,累加得12311122232(1)2n n a a n --=⋅+⋅+⋅++-⋅①又2341122122232(2)2(1)2n n n a a n n --=⋅+⋅+⋅++-⋅+-⋅②①- ②得23112222(1)2n n n a a n --=++++--⋅12(12)(1)2(2)2212n n n n n --=--⋅=-⋅--,(2)23n n a n ∴=-⋅+ ,151515(152)231323a ∴=-⋅+=⋅+,故选:D 【点睛】本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.4.A解析:A 【分析】由12233nn n n a a +-⎛⎫-=⋅ ⎪⎝⎭,当n <2时,a n +1-a n >0,当n <2时,a n +1-a n >0,从而可得到n =2时,a n 最大. 【详解】解:112222(1)3333n n nn n n a a n n ++-⎛⎫⎛⎫⎛⎫-=+-=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当n <2时,a n +1-a n >0,即a n +1>a n ;当n =2时,a n +1-a n =0,即a n +1=a n ;当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{}n a 中的最大项为a 2或a 3,且2328239a a ⎛⎫==⨯= ⎪⎝⎭.故选:A . 【点睛】此题考查数列的函数性质:最值问题,属于基础题.5.B解析:B 【分析】先通过列举找到数列的周期,再求2018a . 【详解】n=1时,234511121,1(1)2,1,121,22a a a a =-=-=--==-==-=- 所以数列的周期是3,所以2018(36722)21a a a ⨯+===-. 故选:B 【点睛】本题主要考查数列的递推公式和数列的周期,意在考查学生对这些知识的掌握水平和分析推理能力.6.C解析:C 【分析】根据数列的前几项的规律,可推出一个通项公式. 【详解】设所求数列为{}n a ,可得出()111111a+-=+,()212121a+-=+,()313131a+-=+,()414141a+-=+,因此,该数列的一个通项公式为()111n na n +-=+.故选:C. 【点睛】本题考查利用数列的前几项归纳数列的通项公式,考查推理能力,属于基础题.7.C解析:C 【分析】21n n S a +=-,则111n n S a -+=-,两式相减得到A 正确;由A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=进而得到B正确;同理可得到C 错误;由21n n S a +=-得到12398S S S S +++⋯+=123451002111......1a a a a a a +-+-+-+-++-=100100.S -进而D 正确. 【详解】已知21n n S a +=-,则111n n S a -+=-,两式相减得到2121n n n n n n a a a a a a ++++=-⇒=+,故A 正确;根据A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=,故B 正确;24698a a a a +++⋯+=2234569697a a a a a a a a ++++++⋯++=1234569697a a a a a a a a ++++++⋯++=97991S a =-,故C 不正确;根据2123981n n S a S S S S +=-+++⋯+=,123451002111......1a a a a a a +-+-+-+-++-= 100100.S -故D 正确. 故答案为C. 【点睛】这个题目考查了数列的应用,根据题干中所给的条件进行推广,属于中档题,这类题目不是常规的等差或者等比数列,要善于发现题干中所给的条件,应用选项中正确的结论进行其它条件的推广.8.C解析:C 【分析】由于数列22221,2,3,2,5,6,7,8,3,45⋯共有2025项,其中有45个平方数,12个立方数,有3个既是平方数,又是立方数的数,所以还剩余20254512+31971--=项,所以去掉平方数和立方数后,第2020项是在2025后的第()20201971=49-个数,从而求得结果. 【详解】∵2452025=,2462116=,20202025<,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉45个平方数,因为331217282025132197=<<=,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉12个立方数,又66320254<<,所以在从数列22221,2,3,2,5,6,7,8,3,45⋯中有3个数即是平方数, 又是立方数的数,重复去掉了3个即是平方数,又是立方数的数, 所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉平方数和立方数后还有20254512+31971--=项,此时距2020项还差2020197149-=项, 所以这个数列的第2020项是2025492074+=, 故选:C. 【点睛】本题考查学生的实践创新能力,解决该题的关键是找出第2020项的大概位置,所以只要弄明白在数列22221,2,3,2,5,6,7,8,3,45⋯去掉哪些项,去掉多少项,问题便迎刃而解,属于中档题.9.C解析:C 【分析】根据数列{}n a 的前两项及递推公式,可求得数列的前几项,判断出数列为周期数列,即可求得2019a 的值.【详解】数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=- 当1n =时,321322a a a =-=-= 当2n =时,432231a a a =-=-=- 当3n =时,543123a a a =-=--=- 当4n =时,()654312a a a =-=---=- 当5n =时,()765231a a a =-=---= 当6n =时,()876123a a a =-=--= 由以上可知,数列{}n a 为周期数列,周期为6T = 而201933663=⨯+ 所以201932a a == 故选:C 【点睛】本题考查了数列递推公式的简单应用,周期数列的简单应用,属于基础题.10.B解析:B 【分析】通过递推公式求出234,,a a a 可得数列{}n a 是周期数列,根据周期即可得答案. 【详解】 解:211111=1=22a a =--,3211121a a =-=-=-,4311112a a =-=+=, 则数列{}n a 周期数列,满足3n n a a -=,4n ≥85212a a a ∴===, 故选:B. 【点睛】本题考查数列的周期性,考查递推公式的应用,是基础题.11.C【分析】利用数列的递推公式逐项计算可得3a 的值. 【详解】()*122,21n n a n n N a -=≥∈-,11a =,212221a a ∴==-,3222213a a ==-. 故选:C. 【点睛】本题考查利用数列的递推公式写出数列中的项,考查计算能力,属于基础题.12.C解析:C 【分析】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,则n c n =,依次用累加法,可求解.【详解】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b , 设{}n c 的前n 项和为n C ,易得n c n =,()()()111121n n n n n n n C c c c b b b b b b +----=+++=++++-所以11n n b b C +=-,1213b a a -==22n n n C +=,进而得21332n n n nb C ++=+=+, 所以()21133222n n n n b n -=+=-+,()()()()2221111121233226n n n n B n n n n +-=+++-++++=+同理:()()()111112n n n n n n n B b b b a a a a a a +---=+++=+++--11n n a a B +-=所以11n n a B +=+,所以191024a =. 故选:C 【点睛】本题考查构造数列,用累加法求数列的通项公式,属于中档题.13.A解析:A 【分析】根据已知条件求得11n n n a a -=--,利用累加法求得19a .依题意:3,4,6,9,13,18,24,1,2,3,4,5,6,所以11n n n a a -=--(2n ≥),且13a =, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()12213n n =-+-++++()()()11113322n n n n -+--=+=+.所以19191831742a ⨯=+=. 故选:A 【点睛】本小题主要考查累加法,属于中档题.14.B解析:B 【分析】根据数列的递推公式,得到数列的取值具备周期性,即可得到结论. 【详解】∵112,02121,12n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩,又∵a 135=,∴a 2=2a 1﹣1=235⨯-115=,a 3=2a 225=, a 4=2a 3=22455⨯=, a 5=2a 4﹣1=245⨯-135=, 故数列的取值具备周期性,周期数是4, 则2019a =50443a ⨯+=325a =, 故选B . 【点睛】本题主要考查数列项的计算,根据数列的递推关系是解决本题的关键.根据递推关系求出数列的取值具备周期性是解决本题的突破口.15.B解析:B由递推关系,可求出{}n a 的前5项,从而可得出该数列的周期性,进而求出2019a 即可. 【详解】 由1111n n n a a a ++-=+,可得111nn n a a a ++=-,由12a =,可得23a =-,312a =-,413a =,52a =,由15a a =,可知数列{}n a 是周期数列,周期为4, 所以2019312a a ==-. 故选:B.16.A解析:A 【分析】首先将n a 化简为()234n a n =--,即可得到答案。

高考数学数列大题知识点

高考数学数列大题知识点

高考数学数列大题知识点数列是高中数学中重要的章节之一,也是高考数学中的常见考点。

数列题目通常要求学生用数列的知识解决实际问题,培养学生的逻辑思维能力。

本文将介绍高考数学数列大题的一些重要知识点,帮助大家备考高考。

一、等差数列等差数列是最常见也是最简单的数列类型之一。

等差数列是指数列中的任意两个相邻项之间的差都是相等的。

等差数列的通项公式为:an=a1+(n-1)d,其中a1表示第一项,d表示公差,n表示项数。

在高考中,等差数列常被用来解决年龄、时间、里程等实际问题。

例如:问题:一个等差数列的首项是3,公差是2,若这个数列的第10项是多少?解题思路:根据等差数列的通项公式,代入相应的值,得出第10项的值为3+9*2=21。

二、等比数列等比数列是常见的另一种数列类型。

等比数列是指数列中的任意两个相邻项之间的比都是相等的。

等比数列的通项公式为:an=a1*r^(n-1),其中a1表示第一项,r表示公比,n表示项数。

等比数列常被用来解决增长、衰减等实际问题。

例如:问题:一个等比数列的首项是2,公比是3,若这个数列的第5项是多少?解题思路:根据等比数列的通项公式,代入相应的值,得出第5项的值为2*3^(5-1)=162。

三、求和公式在高考数学数列大题中,求和也是一个重要的考点。

根据不同的数列类型,求和公式也会有所不同。

对于等差数列,其前n项和公式为:Sn=n/2*(a1+an),其中n 表示项数,a1表示首项,an表示第n项。

对于等比数列,其前n项和公式为:Sn=a1*(r^n-1)/(r-1),其中n表示项数,a1表示首项,r表示公比。

通过掌握求和公式,可以快速计算数列的前n项和,提高解题效率。

四、数列的性质和应用除了等差数列和等比数列,数列还有一些其他的重要性质和应用。

首先是斐波那契数列。

斐波那契数列是指从第3项开始,每一项是前两项的和。

斐波那契数列常被用来解决兔子繁殖、植物生长等问题。

其通项公式为:an=an-1+an-2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.对于数列{a n},“a n+1>|a n|(n=1,2,…)”是“{a n}为递增数列”的()
A、必要不充分条件
B、充分不必要条件
C、充要条件
D、既不充分也不必要条件
答案:B
解析:由a n+1>|a n|(n=1,2,)知{a n}所有项均为正项,
且a1<a2<…<a n<a n+1,
即{a n}为递增数列
反之,{a n}为递增数列,
不一定有a n+1>|a n|(n=1,2,),
如-2,-1,0,1,2
题干评注:数列
问题评注:按一定次序排列的一列数称为数列。

数列中的每一个数都叫做这个数列的项。

2.已知数列{a n}对任意的p,q∈N*满足a p+q=a p+a q,且a2=-6,那么a10等于()A、-165 B、-33 C、-30 D、-21
答案:C
解析:a4=a2+a2=-12,
∴a8=a4+a4=-24,
∴a10=a8+a2=-30
题干评注:数列
问题评注:按一定次序排列的一列数称为数列。

数列中的每一个数都叫做这个数列的项。

3.若数列{a n}前8项的值各异,且a n+8=a n对任意的n∈N*都成立,则下列数列中,能取遍数列{a n}前8项值的数列是()
A、{a2k+1}
B、{a3k+1}
C、{a4k+1}
D、{a6k+1}
答案:B
解析:由已知得数列以8为周期,
当k分别取1,2,3,4,5,6,7,8时,
a3k+1分别与数列中的第4项,第7项,第2项,第5项,第8项,第3项,第6项,第1项相等,
故{a3k+1}能取遍前8项
题干评注:数列
问题评注:按一定次序排列的一列数称为数列。

数列中的每一个数都叫做这个数列的项。

4.对于数列{a n}(n∈N+,a n∈N+),若b k为a1,a2,a3…a k中的最大值,则称数列{b n}为数列{a n}的“凸值数列”.如数列2,1,3,7,5的“凸值数列”为2,2,3,7,7.由此定义可知,“凸值数列”为1,3,3,9,9的所有数列{a n}个数为()
A、3
B、9
C、12
D、27
答案:D
解析:数列{a n}(n∈N+,a n∈N+),若b k为a1,a2,a3…a k中的最大值,则称数列{b n}为数列{a n}的“凸值数列”
数列{a n}的,“凸值数列”为1,3,3,9,9
∴知数列{a n}中的a3和a5分别可取的值为1,2,3;1,2,3,4,5,6,7,8,9,
根据乘法原理得知满足条件的个数为:27
题干评注:数列
问题评注:按一定次序排列的一列数称为数列。

数列中的每一个数都叫做这个数列的项。

5.在数列a1,a2,…,a n…的每相邻两项中插入3个数,使它们与原数构成一个新数列,
则新数列的第49项()
A、不是原数列的项
B、是原数列的第12项
C、是原数列的第13项
D、是原数列的第14项
答案:B
解析:设在原数列中插了x个3在原数列的x+1个数中的空中,
则3x+(x+1)=49,
解得x=12
题干评注:数列
问题评注:按一定次序排列的一列数称为数列。

数列中的每一个数都叫做这个数列的项。

6.数列{a n}共有7项,其中五项是1,两项为2,则满足上述条件的数列共有()
A、15个
B、21个
C、36个
D、42个
答案:B
解析:根据题意,两个2可以在一起也可以不在一起,
①两个2不在一起:五个1有六个空,从中选出两个空放两个2.共有C62=15种排法;
②两个2在一起:五个一有六个空,六选一有c61=6种排法;
综合②③得一共21种组合方式.
题干评注:数列
问题评注:按一定次序排列的一列数称为数列。

数列中的每一个数都叫做这个数列的项。

7.凸n边形有f(n)条对角线,则凸n+1边形有对角线条数f(n+1)为()
A、f(n)+n+1
B、f(n)+n
C、f(n)+n-1
D、f(n)+n-2
答案:C
解析:由n边形到n+1边形,增加的对角线是增加的一个顶点与原n-2个顶点连成的n-2条对角线,及原先的一条边成了对角线.
题干评注:数列
问题评注:按一定次序排列的一列数称为数列。

数列中的每一个数都叫做这个数列的项。

8.在数列1,1,2,3,5,8,x,21,34,55中,x等于()
A、11
B、12
C、13
D、14
答案:C
解析:数列1,1,2,3,5,8,x,21,34,55 设数列为{a n}
∴a n=a n-1+a n-2(n>3)
∴x=a7=a5+a6=5+8=13
题干评注:数列
问题评注:按一定次序排列的一列数称为数列。

数列中的每一个数都叫做这个数列的项。

9.下列四个数中,哪一个是数列{n(n+1)}中的一项()
A、380
B、39
C、35
D、23
答案:A
解析:由n(n+1)=380,有n=19.所以A正确;
n(n+1)=39,n(n+1)=35,n(n+1)=23均无整数解,
则B、C、D都不正确.
题干评注:数列
问题评注:按一定次序排列的一列数称为数列。

数列中的每一个数都叫做这个数列的项。

10.把数列{2n+1}(n∈N*)依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数,第六个括号两个数,…循环分别为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,
41),(43)(45,47)…则第104个括号内各数之和为()
A、2036
B、2048
C、2060
D、2072
答案:D
解析:由题意知104/4=26,
∴第104个括号中最后一个数字是2×260+1,
∴2×257+1+2×258+1+2×259+1+2×260+1=2072
题干评注:数列
问题评注:按一定次序排列的一列数称为数列。

数列中的每一个数都叫做这个数列的项。

相关文档
最新文档