第二章拉伸压缩2拉伸压缩力学性能

合集下载

第二章 轴向拉伸和压缩

第二章  轴向拉伸和压缩

第二章 轴向拉伸和压缩§2−1 轴向拉伸和压缩的概念F(图2−1)则为轴向拉伸,此时杆被2−1虚线);若作用力F 压缩杆件(图(图2−2工程中许多构件,(图2−3)、各类(图2−4)等,这类结构的构2−1和图2−2。

§ 2−2 内力·截面法·轴力及轴力图一、横截面上的内力——轴力图2−5a 所示的杆件求解横截面m−m 的内力。

按截面法求解步骤有:可在此截面处假想将杆截断,保留左部分或右部分为脱离体,移去部分对保留部分的作用,用内力来代替,其合力F N ,如图2−5b 或图2−5c 所示。

对于留下部分Ⅰ来说,截面m −m 上的内力F N 就成为外力。

由于原直杆处于平衡状态,故截开后各部分仍应维持平衡。

根据保留部分的平衡条件得 mF N F N(a )(b ) (c )图2−5Ⅱ图2−1图2−2图2-4F F F F Fx==-=∑N N ,0,0 (2−1)式中,F N 为杆件任一截面m −m 上的内力,其作用线也与杆的轴线重合,即垂直于横截面并通过其形心,故称这种内力为轴力,用符号F N 表示。

若取部分Ⅱ为脱离体,则由作用与反作用原理可知,部分Ⅱ截开面上的轴力与前述部分上的轴力数值相等而方向相反(图2−5b,c)。

同样也可以从脱离体的平衡条件来确定。

二、轴力图当杆受多个轴向外力作用时,如图2−7a ,求轴力时须分段进行,因为AB 段的轴力与BC 段的轴力不相同。

要求AB 段杆内某截面m −m 的轴力,则假想用一平面沿m −m 处将杆截开,设取左段为脱离体(图2−7b),以F N Ⅰ代表该截面上的轴力。

于是,根据平衡条件∑F x =0,有 F F -=ⅠN负号表示的方向与所设的方向相反,即为压力。

要求B C 段杆内某截面n-n 的轴力,则在n −n 处将杆截开,仍取左段为脱离体(图2−7c ),以F N Ⅱ代表该截面上的轴力。

于是,根据平衡条件∑F x =0,有 02N Ⅱ=+-F F F由此得F F =N Ⅱ在多个力作用时,由于各段杆轴力的大小及正负号各异,所以为了形象地表明各截面轴力的变化情况,通常将其绘成“轴力图”(图2−7d)。

材料力学(机械类)第二章 轴向拉伸与压缩

材料力学(机械类)第二章  轴向拉伸与压缩



拉伸压缩与剪切
1
பைடு நூலகம்
§2-1

轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)

2
拉、压的特点:

1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3

§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4

材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。

现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:

N A
F
FN
σ
10
例题2-2
A 1
45°
C
2

2.第二章 直杆的拉伸与压缩

2.第二章 直杆的拉伸与压缩

21
§2-3 材料的力学性能
力学性能(机械性能):指材料在外力作用下在
强度与变形等方面所表现出的性能。
材料的力学性能是通过材料的力学试验得到的, 常做的力学性能试验有拉伸、压缩、弯曲、冲击、 疲劳、硬度等试验。
22
一、拉伸试验
实验条件:室温、静载(缓慢加载)、小变形等 金属标准试件:圆截面长试件标距L=10d; 短试件 L=5d,d =10mm。 试件材料:低碳钢(Q235-A)、灰铸铁 试验仪器:万能试验机
8
二、外力与内力的概念
外力:物体所受其它物体所给的作用力。包括载荷 和约束反力。 内力:由于外力作用引起同一构件内部各质点间的 附加相互作用力。 内力与外力的关系: 外力增加,内力随之增加,但内力达到某一限 度时就会引起构件破坏,因此内力与构件的承载能力 密切相关。研究构件强度问题时首先必须求内力。
蠕变极限σn 、持久极限σD ⑵应力松弛
如高温管道的法兰连接螺栓
36
3. 低温对材料力学性能的影响
低温对材料力学性能的影响主要表现为材料的塑 性、韧性指标随温度的降低而减小。
当温度低于某一数值后,材料的塑性指标将急剧 下降,从而转变为脆性材料,这一温度称为无塑 性转变温度NDT(或脆性转变温度)。
于1900年提出
d
F F HB A D D 2 d2 D 2


39
σ b≈3.6HB(MPa)
B. 洛氏硬度
由美国人Rockwell 于1919年 提出。 用金刚石圆锥体或硬度钢球做 压头,根据试样的压痕深度来 表示硬度高低。 常见有:HRA、HRB、HRC HB=10HRC
弹性性能:抵抗弹性变形的能力,
用弹性模量E表示

第二章_直杆的拉伸和压缩

第二章_直杆的拉伸和压缩

F
1
FN1 A1
28.3103 202 106
4
90106 Pa 90MPa
2
FN2 A2
20103 152 106
89106Pa 89MPa
2.1.3 应变的概念
绝对变形ΔL, 相对变形或线应变:
L
L
伸长时ε为正,缩短时ε为负
2.2 拉伸和压缩时材料的力学性能
2.2.1 拉伸和压缩试验及材料的力学性能
1、强度校核:
max
N A
2、设计截面:
A
N
3、确定许可载荷: NA
目录
塑性材料 :以材料的屈服极限作为确定许用应力的基础。 变形特征:当杆内的最大工作应力达到材料的屈服极限时,沿 整个杆的横截面将同时发生塑性变形,影响杆的正常工作。 许 用内力的表示为:
对于一般构件的设计,ns规定为1.5到2.0 脆性材料 :以材料的断裂极限作为确定许用应力的基础。 变形特征:直到拉断也不发生明显的塑性变形,而且只有断裂 时才丧失工作能力。许用内力的表示为:
OA
BC
D
PA
PB
PC
PD
N1 A
BC
D
PA
PB
PC
PD
解: 求OA段内力N1:设置截面如图
X 0 N 1 P A P B P C P D 0
N 1 5 P 8 P 4 P P 0N1 2P
N2
BC
D
PB 同理,求得AB、BC、 CD段内力分别为:
N2= –3P N3= 5P N4= P
2.1.3 拉伸和压缩时横截面上的应力
FN F
AA
应力集中:在截面突变处应力局部增大的 现象
应力集中系数:k=σmax/σ

材料拉伸与压缩时的力学性能

材料拉伸与压缩时的力学性能

σp σe
应力达到ζ b后,试件在某一局部范围内横向尺寸突然缩小,出现“颈缩”现象。 (5)塑性指标 l1 l 1000 0 延伸率: l
σs
A A1 截面收缩率: 1000 0 A
5% 为塑性材料 5% 为脆性材料
δ、 ψ 值越大,其塑性越好,因此,δ 、ψ 是衡量材料塑性的主 要指标。
E
σs
σb
(2) 屈服阶段 (2) 屈服阶段 当应力超 过b点后,出 现了锯齿形曲 线,这表明应 力变化不大, 但应变急剧增 加,材料失去 了抵抗变形的 能力。这种现 象称为材料的 屈服,屈服阶 段的最低点应 力值, ζ s 称为材料的屈 服极限。屈服 极限是衡量材 料强度的重要 指标。 (3) 强化阶段
4、铸铁的压缩试验
铸铁压缩时的ζ—ε曲线,曲线没有明显的直线部分,在应力很小时可以 近似地认为符合胡克定律。曲线没有屈服阶段,变形很小时沿轴线大约成 45°~50°的斜面发生破坏。把曲线最高点的应力值称为抗压强度,用ζ b 表示。压缩时的强度极限有时比拉伸时的强度极限高4 ~ 5倍。
铸铁材料的抗压强度约是抗拉强度的4~5倍。其抗压性能远大于抗 拉性能,反映了脆性材料共有的属性。
5、综上试验可以看出: 塑性材料的抗拉与抗压能力都很强,且抗冲击能力也强,齿轮、轴等 零件多用塑性材料制造。 脆性材料的抗压能力远高于抗拉能力,脆性材料多用于制造受压构件。
σb
2、铸铁的拉伸试验 抗拉强度ζ b 铸铁是脆性材料的典型代表。图6-12a 是铸铁拉伸时的 ζ —ε 曲线,从图中看出曲 线没有明显的直线部分和屈服阶段,无颈 缩现象而发生断裂破坏,断口平齐,塑性 变形很小。把断裂时曲线最高点所对应的 应力值ζ b,称为抗拉强度。

拉伸和压缩时的力学性能

拉伸和压缩时的力学性能
§2-6 材料在拉伸和压缩时的力学性能
力学性能 ——材料受力时在强度和变形方面所表 材料受力时在强度和变形方面所表 现出来的性能. 现出来的性能. 力学性能 取决于 内部结构 外部环境
本节讨论的是常温,静载,轴向拉伸(或压缩) 本节讨论的是常温,静载,轴向拉伸(或压缩) 变形条件下的力学性能. 变形条件下的力学性能.
ψ ≈ 60%
无屈服阶段的塑性材料
σ0.2 称为名义屈服极限
时的应力值 对应于εp=0.2%时的应力值
灰口铸铁在拉伸时的σ —ε 曲线 特点: 特点: 1, σ —ε 曲线从很低应力 , 水平开始就是曲线; 水平开始就是曲线;采用割 线弹性模量 2,没有屈服,强化,局部变 ,没有屈服,强化, 形阶段, 形阶段,只有唯一拉伸强度 指标σb 典型的脆性材料 3,伸长率非常小,拉伸强 ,伸长率非常小, 度σb基本上就是试件拉断时 横截面上的真实应力
(平均塑性伸长率) 平均塑性伸长率) 断面收缩率: 断面收缩率:
A A1 ψ= ×100% A
Q235钢的主要强度指标: 钢的主要强度指标: 钢的主要强度指标
σ s = 240MPa σ b = 390MPa
Q235钢的弹性指标: 钢的弹性指标: 钢的弹性指标
E = 200 ~ 210GPa
Q235钢的塑性指标: δ = 20% ~ 30% 钢的塑性指标: 钢的塑性指标 的材料称为塑性材料 塑性材料; 通常 δ > 5% 的材料称为塑性材料; δ < 5% 的材料称为脆性材料. 的材料称为脆性材料 脆性材料.
铸铁试件在轴向拉伸时的破坏断面: 铸铁试件在轴向拉伸时的破坏断面:
Ⅳ,金属材料在压缩时的力学性能 压缩试样
l =1~ 3 圆截面短柱体 d l =1~ 3 正方形截面短柱体低碳钢拉,压时的σs 以及弹性模量E基本相同 基本相同. 以及弹性模量 基本相同.

材料拉伸、压缩时的力学性能-

材料拉伸、压缩时的力学性能-
把握现在就是创造未来材料在拉伸和压缩时的力学性能材料在拉伸和压缩时的力学性能材料在拉伸时的力学性能材料在外力作用下表现出的变形破坏等方面的特性称材料的力学性能也称机械性质
建筑力学 八组课件
把握现在就是创造未来
材料在拉伸和压缩时的力学性能
材料在拉伸时的力学性能 材料在外力作用下表现出的变形、破坏等方面的特性称材料 的力学性能,也称机械性质。 研究材料的力学性能的目的是确定材料的一些重要性能指标, 以作为计算材料强度、 刚度和选用材料的依据。 材料的机械性质通过试验测定,通常为常温静载试验。试验方 法应按照国家标准进行。
塑性材料、脆性材料材料压缩 时的力学性能与拉伸有何不同
脆性材料:压缩时的强度极限远大 于拉伸时的强度极限,抗压强度远 远超过抗拉强度
拉伸时塑性材料有截面收缩,脆性材料没有。
塑性材料:可以被压成极簿的平板而一般不 破坏。因此,其强度极限一般是不能确定的。 我们只能确定的是压缩的屈服极限应力。
材料在卸载过程中应力 和应变是线形关系,这 就是卸载定律。

与低碳钢相比:

锰钢、强铝、退火球墨铸铁

没有明显屈服阶段
材 料 拉
共同点:
≥5%,属塑性材料

对于没有明显屈服阶段的

低碳钢 塑性材料,用名义屈服极限
的 力
σ0.2来表示。

σ0.2

质 名义屈服极限σ0.2(对无屈服阶段
的材料)通常以产生0.2%的塑性
低碳钢在拉伸时的力学性能
D
b
E
B
e P
A C s
2、屈服阶段BC(失去抵 抗变形的能力)
s — 屈服极限
3、强化阶段CD(恢复抵抗

材料力学课件第二章 轴向拉伸和压缩

材料力学课件第二章 轴向拉伸和压缩

2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、低碳钢压缩时的力学性能
(1)弹性阶段与拉伸时相同, 杨氏模量、比例极限相同;
试件:短柱l=(1.0~3 Nhomakorabea0)d(2)屈服阶段,拉伸和压缩
时的屈服极限相同,即
s
s
(3)屈服阶段后,试样越压
越扁,无颈缩现象,测不
出强度极限 b 。
三、脆性材料在拉压时的力学性能
1 铸铁拉伸时的应力-应变曲线
第二章 拉伸、压缩与剪切
材料的力学性能 一 概述 二 塑性材料在拉压时的力学性能 三 脆性材料在拉压时的力学性能 四 塑性、脆性材料的强度指标(失效应力) 五 其它材料在拉压时的力学性能 六 几种非金属材料的力学性能
一、概述
1 为什么要研究材料的力学性质
为构件设计提供合理选用材料的依据。
强度条件:
关于 0.2 有如下四种论述,请判断哪一个是正确的: (A)弹性应变为0.2%时的应力值; (B)总应变为0.2%时的应力值; (C)塑性应变为0.2%时的应力值; (D)塑性应变为0.2时的应力值。 正确答案是( C )
材料的力学性质/课堂讨论题
低碳钢加载→卸载→ 再加载路径有以下四种,请判断哪一 个是正确的:( ) (A)OAB →BC →COAB ; (B)OAB →BD →DOAB ; (C)OAB →BAO→ODB; (D)OAB →BD →DB。 正确答案是( D )
l1 l 100%
l
5%的材料为塑性材料; 5%的材料为脆性材料。
(2)截面收缩率 A A1 100%
A
低碳钢拉伸时的力学性能小结
一条应力-应变曲线
二个规律(F与△l成正比规律,卸载规律)
三个现象(屈服、冷作强化、颈缩) 四个阶段(弹性、屈服、强化、颈缩) 五个性能指标( E 、 s 、 b 、 、 )
拉伸
脆 性
拉伸:与无明显的线性关系,
材 料
拉断前应变很小.只能测得
b
。抗拉强度差。弹性模量E以
总应变为0.1%时的割线斜率来
度量。破坏时沿横截面拉断。
b
1 铸铁压缩时的力学性能
b




压缩:
b
(4.0
~
5.0)
b

适于做抗压构件。破坏时破裂面
与轴线成45°~ 55°。
b
四、塑性、脆性材料的强度指标 (失效应力)
材料暂时失去抵抗变 形的能力。
低碳钢拉伸时的应力-应变图
Ab Bs
强化阶段
E
E
1
1
强度极限 b
o p e A' p e
材料又恢复并增强了抵抗变形的能力。
卸载规律 冷作(应变)强化现象:材料比例极限提 高,塑性降低.
低碳钢拉伸时的应力-应变图 颈缩阶段
断裂
试件断裂过程图
塑性性能指标
(1)延伸率
低碳钢材料在拉伸实验过程中,不发生明显的塑性变形时,承受的最 大应力应当小于的数值,有以下4种答案,请判断哪一个是正确的: (A)比例极限; (B)屈服极限; (C)强度极限; (D)许用应力。 正确答案是( B )
材料的力学性质/课堂讨论题
关于低碳钢试样拉伸至屈服时,有以下结论,请判断哪一个是正确 的: (A)应力和塑性变形很快增加,因而认为材料失效; (B)应力和塑性变形虽然很快增加,但不意味着材料失效; (C)应力不增加,塑性变形很快增加,因而认为材料失效; (D)应力不增加,塑性变形很快增加,但不意味着材料失效。 正确答案是( C )
关于材料的力学一般性能,有如下结论,请判断哪一个是正确的: (A)脆性材料的抗拉能力低于其抗压能力; (B)脆性材料的抗拉能力高于其抗压能力; (C)塑性材料的抗拉能力高于其抗压能力; (D)脆性材料的抗拉能力等于其抗压能力。 正确答案是( A )
工作应力
FN A
[ ]
理论计算求解
通过试验研究材料力学性质得到
2 何谓材料的力学性能
材料在受力、变形过程中所表现的行为及特征指标。
3 材料的力学性质与哪些因素有关 与材料的组成成分、结构组织(晶体或非晶体)、应力状
态、温度和加载方式等诸因素有关。
4 塑性材料与脆性材料 断裂前产生较大塑性变形的材料(如低碳钢)称为塑性材料。 断裂前塑性变形很小的材料(如铸铁、石材)称为脆性材料。
强度指标(失效应力)
韧性金属材料




塑性材料
s
脆性材料
b
五、其他材料在拉压时的力学性能
锰钢
强铝
退火球墨铸铁
o
名义屈服极限σ0.2的确定
σ
b
0.2
o
0.2%
确定的方法是:
在ε轴上取0.2%的点,
ε
对此点作平行于σ-ε曲线
的直线段的直线(斜率亦为
E),与σ-ε曲线相交点对
应的应力即为σ0.2 .
一、塑性材料在拉压时的力学性能
塑性材料以低碳钢为代表 低碳钢——含碳量在0.25%以下的碳素钢。 低碳钢拉伸时的应力-应变图
低碳钢拉伸时的应力-应变图
弹性阶段
B
比例极限 p
弹性极限 e
A
弹性模量 E
力与变形成正比的规律
低炭钢拉伸时的应力-应变图
屈服阶段 屈服极限 s
屈服现象: 应力-应变曲线上的锯齿线 试件表面的滑移线
六、几种非金属材料在的力学性能
混凝土
木材
玻璃钢
材料的力学性质/课堂讨论题
塑性材料冷作硬化后,材料的力学性能发生了变化。试判断以 下结论哪一个是正确的: (A)屈服应力提高,弹性模量降低; (B)屈服应力提高,塑性降低; (C)屈服应力不变,弹性模量不变; (D)屈服应力不变,塑性不变。 正确答案是( B )
相关文档
最新文档