切线判定与性质练习题(2)
切线的性质与判定

P 图1切线的性质与判定直线与圆相切是直线与圆的特殊位置关系,有关的性质与判定也是圆中重点知识,现举例说明,供大家参考.一、切线性质的应用例1如图1,AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连BC .若∠P=30º,求∠B 的度数.分析:要求∠B 周角的2倍”,因此∠AOC=2∠B ,所以只要求出∠AOC 的度数,而PA 是⊙O 切线,根据圆的切线性质知△PAO 是直角三角形,而∠P 知,这样根据“直角三角形两锐角互余”即可求出∠B 的度数. 解:因为PA 切⊙O 于A ,AB 是⊙O 的直径,所以OA ⊥PA ,即∠PAO=90º.因为∠P=30º,所以∠AOC =90º-∠P=90º-30º=60º.又因为∠AOC=2∠B ,所以∠B=30º.点评:“圆的切线垂直于经过切点的半径”,这一性质在求角的度数和线段长度中有着广泛的应用.二、切线的判定例2(兴义)如图2,AB 是⊙O 的直径,点P 在BA ∠BPC=30°.求证:PC 是⊙O 的切线.分析:由于题目中没有明确直线PC 与⊙O 因为∠BPC=30°,所以OD=12OP .因为AP=12AB AP=OA=12OP .所以OD= OA ,即圆心O 到直线PC O 的切线.点评:圆的切线的判定常见方法有两种类型:一当已知条件中已明确给出直线与圆的公共点时,常采用连接这点和圆心这条辅助线,去证明这个半径垂直于已知直线.这种方法简称“连半径,证垂直”.二当已知条件中没有明确给出直线与圆的公共点时,常采用过圆心作直线的垂线段这条辅助线,去证明垂线段的长度等于圆的半径长.这种方法简称“作垂直,证半径”.本例属于第二种类型.。
圆的切线的性质和判定-练习题-含答案.doc

D.不能确定的切线的性质与判定副标题 题号 * 总分 得分一、选择题(本大题共2小题,共6.0分)1.己知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为() A.相离 B.相切 C.相交 D.无法确定【答案】C 【解析】解:半径r = 5,圆心到直线的距离d=3,v 5 > 3, BPr > d,二直线和圆相交,故选C.由直线和圆的位置关系:r>d,可知:直线和圆相交.本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系: 设。
的半径为厂,圆心。
到直线/的距离为丈 ①直线/和0。
相交②直线 /和。
相切od=r ;③直线/和。
0相离^d>r.2. 在中,zC= 90°, BC=3cm, AC=4cm,以点 C 为圆心,以2.5cm 为半径画圆,则。
C 与直线AB 的位置关系是() A,相交 B.相切 C.相离 【答案】A 【解析】解:过C 作CD LAB 于。
,如图所示: A ABC 中,L.C — 90, AC= 4, BC = 3, ・・・AB =、泌=5,7 A ABC^Jm=^-ACxBC=预8x CD, 2 2・•. 3 X 4 = 5 CD ,CD= 2.4<2.5, 即』< r, .••以2.5为半径的。
C 与直线AB 的关系是相交; 故选A.过C 作CD LAB 于C,根据勾股定理求出AB,根据三角形的面积公式求出CD,得出 d<r,根据直线和圆的位置关系即可得出结论.本题考查了直线和圆的位置关系,用到的知识点是勾股定理,三角形的面积公式;解此 题的关键是能正确作出辅助线,并进一步求出CO 的长,注意:直线和圆的位置关系有: 相离,相切,相交.二、填空题(本大题共3小题,共9.0分)3, 如图,已知。
是MBC 的内切圆,切点为。
、E 、 尸,如果AE=2, CD= 1, BF= 3,则内切圆的半 径『= .BD【答案】1【解析】解:・.・。
人教版九年级上《24.2.3切线的判定和性质》同步练习(含答案)

2022-2023人教版数学九年级上册同步练习24.2.3 切线的判定和性质一.选择题(共15小题)1.如图,在以点O为圆心的两个同心圆中,大圆的弦AB与小圆相切,切点为C,若大圆的半径是13,AB=24,则小圆的半径是()A.4B.5C.6D.72.如图,AB、AC、BD是⊙O的切线,切点分别为P、C、D,若AB=5,AC=3,则BD的长是()A.1.5B.2C.2.5D.33.如图,⊙O中,CD是切线,切点是D,直线CO交⊙O于B、A,∠A=20°,则∠C的度数是()A.25°B.65°C.50°D.75°4.如图,直线AB与⊙O相切于点A,⊙O的半径为1,若∠OBA=30°,则OB长为()A.1B.2C.D.25.如图,∠NAM=30°,O为边AN上一点,以点O为圆心,2为半径作⊙O,交AN边于D、E两点,则当⊙O与AM相切时,AD等于()A.4B.3C.2D.16.如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD 分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0B.1C.2D.37.已知⊙O的半径为5,直线EF经过⊙O上一点P(点E,F在点P的两旁),下列条件能判定直线EF与⊙O相切的是()A.OP=5B.OE=OFC.O到直线EF的距离是4D.OP⊥EF8.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=()A.3B.2C.5D.9.如图,AB是⊙O的直径,点P是⊙O外一点,PO交⊙O于点C,连接BC,PA.若∠P=40°,当∠B等于()时,PA与⊙O相切.A.20°B.25°C.30°D.40°10.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1B.3C.5D.1或511.如图,⊙O的半径为3,四边形ABCD是⊙O的内接四边形,∠A=60°,∠D=110°,的度数是70°,直线l与⊙O相切于点A.在没有滑动的情况下,将⊙O沿l向右滚动,使O点向右移动70π,则此时⊙O与直线l相切的切点所在的劣弧是()A.B.C.D.12.如图,在等边△ABC中,点O在边AB上,⊙O过点B且分别与边AB、BC 相交于点D、E、F是AC上的点,判断下列说法错误的是()A.若EF⊥AC,则EF是⊙O的切线B.若EF是⊙O的切线,则EF⊥ACC.若BE=EC,则AC是⊙O的切线D.若BE=EC,则AC是⊙O的切线13.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D 是⊙O上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=CD;(4)弧AC=弧AD.其中正确的个数为()A.1个B.2个C.3个D.4个14.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.直线MN与l1相交于M;与l2相交于N,⊙O的半径为1,∠1=60°,直线MN从如图位置向右平移,下列结论①l1和l2的距离为2 ②MN=③当直线MN与⊙O相切时,∠MON=90°④当AM+BN=时,直线MN与⊙O相切.正确的个数是()A.1B.2C.3D.415.如图,直线AB、CD相交于点O,∠AOD=30°,半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm.如果⊙P以1cm/s的速度沿由A向B 的方向移动,那么()秒钟后⊙P与直线CD相切.A.4B.8C.4或6D.4或8二.填空题(共6小题)16.在平面直角坐标系中,点P的坐标为(﹣4,0),半径为1的动圆⊙P沿x 轴正方向运动,若运动后⊙P与y轴相切,则点P的运动距离为.17.如图,直线PA是⊙O的切线,AB是过切点A的直径,连接PO交⊙O于点C,连接BC,若∠ABC=25°,则∠P的度数为.18.如图,已知PA、PB是⊙O的切线,A、B分别为切点,∠OAB=30°.(1)∠APB=;(2)当OA=2时,AP=.19.如图所示,直线y=x﹣2与x轴、y轴分别交于M,N两点,⊙O的半径为1,将⊙O以每秒1个单位的速度向右作平移运动,当移动s时,直线MN 恰好与圆O相切.20.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向以0.5个单位/秒的速度平移,使⊙P与y轴相切,则平移的时间为秒.21.已知,如图,AB是⊙O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,过E作弦GF⊥BC交圆于G、F两点,连接CF、BG.则下列结论:①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是(只需填序号)三.解答题(共9小题)22.如图,AB是半圆O的直径,C是半圆O上的一点,CF切半圆O于点C,BD ⊥CF于为点D,BD与半圆O交于点E.(1)求证:BC平分∠ABD.(2)若DC=8,BE=4,求圆的直径.23.如图,一圆与平面直角坐标系中的x轴切于点A(8,0),与y轴交于点B (0,4),C(0,16),求该圆的直径.24.如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点B作BP平行于DE,交⊙O于点P,连结EP、CP、OP.(1)BD=DC吗?说明理由;(2)求∠BOP的度数;(3)求证:CP是⊙O的切线.25.如图,▱ABCD中,⊙O过点A、C、D,交BC于E,连接AE,∠BAE=∠ACE.(1)求证:AE=CD;(2)求证:直线AB是⊙O的切线.26.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.27.如图(1),在△ABC中,∠ACB=90°,以AB为直径作⊙O;过点C作直线CD交AB的延长线于点D,且BD=OB,CD=CA.(1)求证:CD是⊙O的切线.(2)如图(2),过点C作CE⊥AB于点E,若⊙O的半径为8,∠A=30°,求线段BE.28.如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;(3)求证:CD=HF.29.如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.30.如图,AB是半径为2的⊙O的直径,直线m与AB所在直线垂直,垂足为C,OC=3,点P是⊙O上异于A、B的动点,直线AP、BP分别交m于M、N两点.(1)当点C为MN中点时,连接OP,PC,判断直线PC与⊙O是否相切并说明理由.(2)点P是⊙O上异于A、B的动点,以MN为直径的动圆是否经过一个定点,若是,请确定该定点的位置;若不是,请说明理由.参考答案与试题解析一.选择题(共15小题)1.【解答】解:∵AB=24,OB=OA=13,∴BC=12;在Rt△OCB中,∴OC==5.故选:B.2.【解答】解:∵AC、AP为⊙O的切线,∴AC=AP,∵BP、BD为⊙O的切线,∴BP=BD,∴BD=PB=AB﹣AP=5﹣3=2.故选:B.3.【解答】解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∠COD=2∠A=40°,∴∠C=90°﹣40°=50°,故选:C.4.【解答】解:∵直线AB与⊙O相切于点A,连接OA则∠OAB=90°.∵OA=1,∴OB=.故选:B.5.【解答】解:设直线AM与⊙O相切于点K,连接OK.∵AM是⊙O的切线,∴OK⊥AK,∴∠AKO=90°∵∠A=30°,∴AO=2OK=4,∵OD=2,∴AD=OA﹣OD=2,故选:C.6.【解答】解:连接DG、AG,作GH⊥AD于H,连接OD,如图,∵G是BC的中点,∴AG=DG,∴GH垂直平分AD,∴点O在HG上,∵AD∥BC,∴HG⊥BC,∴BC与圆O相切;∵OG=OD,∴点O不是HG的中点,∴圆心O不是AC与BD的交点;而四边形AEFD为⊙O的内接矩形,∴AF与DE的交点是圆O的圆心;∴(1)错误,(2)(3)正确.故选:C.7.【解答】解:∵点P在⊙O上,∴只需要OP⊥EF即可,故选:D.8.【解答】解:如图所示:MK=,故选:B.9.【解答】解:∵PA是⊙O的切线,∴∠PAO=90°,∴∠AOP=90°﹣∠P=50°,∵OB=OC,∴∠AOP=2∠B,∴∠B=∠AOP=25°,故选:B.10.【解答】解:当圆P在y轴的左侧与y轴相切时,平移的距离为3﹣2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选:D.11.【解答】解:连结OC、OD、OA,如图,∵∠D=110°,∴∠B=180°﹣∠D=70°,∴∠AOC=2∠B=140°,∵∠A=60°,∴∠BOD=120°,∵的度数是70°,∴∠COD=70°,∴∠AOD=70°,∠BOC=50°,∴AD弧的长度==π,∴BC弧的长度==π,∵70π=6π•12﹣2π,而2π>π,∴向右移动了70π,此时与直线l相切的弧为.故选:C.12.【解答】解:A、如图1,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确;B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确;C、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图2,过O作OH⊥AC于H,∵∠BAC=60°,∴OH=AO≠OB,∴C选项错误;D、如图2,∵BE=EC,∴CE=BE,∵AB=BC,BO=BE,∴AO=CE=OB,∴OH=AO=OB,∴AC是⊙O的切线,∴D选项正确.故选:C.13.【解答】解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故(1)正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故(2)正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°,∴CO=PO=AB,∴PO=AB,∵AB是⊙O的直径,CD不是直径,∴AB≠CD,∴PO≠DC,故(3)错误;(4)由(2)证得四边形PCBD是菱形,∴∠ABC=∠ABD,∴弧AC=弧AD,故(4)正确;故选:C.14.【解答】解:如图1,∵⊙O与l1和l2分别相切于点A和点B,∴OA⊥l1,OB⊥l2,∵l1∥l2,∴点A、B、O共线,∴l1和l2的距离=AB=2,所以①正确;作NH⊥AM,如图1,则四边形ABNH为矩形,∴NH=AB=2,在Rt△MNH中,∵∠1=60°,∴MH=NH=,∴MN=2MH=,所以②正确;当直线MN与⊙O相切时,如图2,∠1=∠2,∠3=∠4,∵l1∥l2,∴∠1+∠2+∠3+∠4=180°,∴∠1+∠3=90°,∴∠MON=90°,所以③正确;过点O作OC⊥MN于C,如图2,=S△OAM+S△OMN+S△OBN,∵S四边形ABNM∴•1•AM+•1•BN+MN•OC=(BN+AM)•2,即(AM+BN)+MN•OC=AM+BN,∵AM+BN=,MN=,∴OC=1,而OC⊥MN,∴直线MN与⊙O相切,所以④正确.故选:D.15.【解答】解:由题意CD与圆P1相切于点E,点P1只能在直线CD的左侧,∴P1E⊥CD又∵∠AOD=30°,r=1cm∴在△OEP1中OP1=2cm又∵OP=6cm∴P1P=4cm∴圆P到达圆P1需要时间为:4÷1=4(秒),或P1P=8cm∴圆P到达圆P1需要时间为:8÷1=8(秒),∴⊙P与直线CD相切时,时间为4或8秒.故选:D.二.填空题(共6小题)16.【解答】解:若运动后⊙P与y轴相切,则点P到y轴的距离为1,此时P点坐标为(﹣1,0)或(1,0),而﹣1﹣(﹣4)=3,1﹣(﹣4)=5,所以点P的运动距离为3或5.故答案为3或5.17.【解答】解:由圆周角定理得,∠AOP=2∠ABC=50°,∵PA是⊙O的切线,AB是过切点A的直径,∴∠PAO=90°,∴∠P=90°﹣∠AOP=40°,故答案为:40°.18.【解答】解:(1)∵在△ABO中,OA=OB,∠OAB=30°,∴∠AOB=180°﹣2×30°=120°,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,即∠OAP=∠OBP=90°,∴在四边形OAPB中,∠APB=360°﹣120°﹣90°﹣90°=60°,故答案为:60°.(2)如图,连接OP;∵PA、PB是⊙O的切线,∴PO平分∠APB,即∠APO=∠APB=30°,又∵在Rt△OAP中,OA=3,∠APO=30°,∴AP===2,故答案为:2.19.【解答】解:作EF平行于MN,且与⊙O切,交x轴于点E,交y轴于点F,如图所示.设直线EF的解析式为y=x+b,即x﹣y+b=0,∵EF与⊙O相切,且⊙O的半径为1,∴b2=×1×|b|,解得:b=或b=﹣,∴直线EF的解析式为y=x+或y=x﹣,∴点E的坐标为(,0)或(﹣,0).令y=x﹣2中y=0,则x=2,∴点M(2,0).∵根据运动的相对性,且⊙O以每秒1个单位的速度向右作平移运动,∴移动的时间为2﹣秒或2+秒.故答案为:2﹣或2+.20.【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故答案为2或1021.【解答】解:连接BD、OC、AG,过O作OQ⊥CF于Q,OZ⊥BG于Z,∵OD=OB,∴∠ABD=∠ODB,∵∠AOD=∠OBD+∠ODB=2∠OBD,∵∠AOD=2∠ABC,∴∠ABC=∠ABD,∴弧AC=弧AD,∵AB是直径,∴CD⊥AB,∴①正确;∵CD⊥AB,∴∠P+∠PCD=90°,∵OD=OC,∴∠OCD=∠ODC=∠P,∴∠PCD+∠OCD=90°,∴∠PCO=90°,∴PC是切线,∴②正确;假设OD∥GF,则∠AOD=∠FEB=2∠ABC,∴3∠ABC=90°,∴∠ABC=30°,已知没有给出∠B=30°,∴③错误;∵AB是直径,∴∠ACB=90°,∵EF⊥BC,∴AC∥EF,∴弧CF=弧AG,∴AG=CF,∵OQ⊥CF,OZ⊥BG,∴CQ=AG,OZ=AG,BZ=BG,∴OZ=CQ,∵OC=OB,∠OQC=∠OZB=90°,∴△OCQ≌△BOZ,∴OQ=BZ=BG,∴④正确.故答案为:①②④.三.解答题(共9小题)22.【解答】(1)证明:连结OC,如图,∵CD为切线,∴OC⊥CD,∵BD⊥DF,∴OC∥BD,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴BC平分∠ABD;(2)解:连结AE交OC于G,如图,∵AB为直径,∴∠AEB=90°,∵OC∥BD,∴OC⊥CD,∴AG=EG,易得四边形CDEG为矩形,∴GE=CD=8,∴AE=2EG=16,在Rt△ABE中,AB==4,即圆的直径为4.23.【解答】解:过圆心O′作y轴的垂线,垂足为D,连接O′A,∵O′D⊥BC,∴D为BC中点,∴BC=16﹣4=12,OD=6+4=10,∵⊙O′与x轴相切,∴O′A⊥x轴,∴四边形OAO′D为矩形,半径O′A=OD=10,24.【解答】解:(1)BD=DC.理由如下:连接AD,∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=DC;(2)∵AD是等腰△ABC底边上的中线,∴∠BAD=∠CAD,∴,∴BD=DE.∴BD=DE=DC,∴∠DEC=∠DCE,△ABC中,AB=AC,∠A=30°,∴∠DCE=∠ABC=(180°﹣30°)=75°,∴∠DEC=75°,∴∠EDC=180°﹣75°﹣75°=30°,∵BP∥DE,∴∠PBC=∠EDC=30°,∴∠ABP=∠ABC﹣∠PBC=75°﹣30°=45°,∵OB=OP,∴∠OBP=∠OPB=45°,∴∠BOP=90°;(3)设OP交AC于点G,如图,则∠AOG=∠BOP=90°,在Rt△AOG中,∠OAG=30°,∴=,又∵==,∴=,∴=,又∵∠AGO=∠CGP,∴△AOG∽△CPG,∴∠GPC=∠AOG=90°,∴OP⊥PC,∴CP是⊙O的切线;25.【解答】解:(1)∵四边形ABCD是平行四边形∴AB=CD,∠B=∠ADC∵四边形ADCE是⊙O内接四边形∴∠ADC+∠AEC=180°∵∠AEC+∠AEB=180°∴∠ADC=∠AEB∴∠B=∠AEB∴AE=CD(2)如图:连接AO,并延长AO交⊙O交于点F,连接EF.∵AF是直径∴∠AEF=90°∴∠AFE+∠EAF=90°∵∠BAE=∠ECA,∠AFE=∠ACE∴∠AFE=∠BAE∴∠BAE+∠EAF=90°∴∠BAF=90°且AO是半径∴直线AB是⊙O的切线26.【解答】(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.27.【解答】(1)证明:如图1,连结OC,∵点O为直角三角形斜边AB的中点,∴OC=OA=OB.∴点C在⊙O上,∵BD=OB,∴AB=DO,∵CD=CA,∴∠A=∠D,∴△ACB≌△DCO,∴∠DCO=∠ACB=90°,∴CD是⊙O的切线;(2)解:如图2,在Rt△ABC中,BC=ABsin∠A=2×8×sin30°=8,∵∠ABC=90°﹣∠A=90°﹣30°=60°,∴BE=BCcos60°=8×=4.28.【解答】(1)证明:(1)如图,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)证明:∵∠C=∠BHE=90°,∠EBC=∠EBA,∴BEC=∠BEH,∵BF是⊙O是直径,∴∠BEF=90°,∴∠FEH+∠BEH=90°,∠AEF+∠BEC=90°,∴∠FEH=∠FEA,∴FE平分∠AEH.(3)证明:如图,连结DE.∵BE是∠ABC的平分线,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE,∵∠C=∠EHF=90°,∴△CDE≌△HFE(AAS),∴CD=HF,29.【解答】解:(1)如图,连接OA;∵OC=BC,AC=OB,∴OC=BC=AC=OA.∴△ACO是等边三角形.∴∠O=∠OCA=60°,∵AC=BC,∴∠CAB=∠B,又∠OCA为△ACB的外角,∴∠OCA=∠CAB+∠B=2∠B,∴∠B=30°,又∠OAC=60°,∴∠OAB=90°,∴AB是⊙O的切线;(2)解:作AE⊥CD于点E,∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2,∴DE=AE=,∴CD=DE+CE=+.30.【解答】解:(1)直线PC与⊙O相切,理由是:如图1,∵AC⊥MN,∴∠ACM=90°,∴∠A+∠AMC=90°,∵AB是⊙O的直径,∴∠APB=∠NPM=90°,∴∠PNM+∠AMC=90°=∠A+∠ABP,∴∠ABP=∠AMC,∵OP=OB,∴∠ABP=∠OPB,Rt△PMN中,C为MN的中点,∴PC=CN,∴∠PNM=∠NPC,∴∠OPC=∠OPB+∠NPC=∠ABP+∠PNM=∠AMC+∠PNM=90°,即OP⊥PC,∴直线PC与⊙O相切;(2)如图2,设该圆与AC的交点为D,连接DM、DN,∵MN为直径,∴∠MDN=90°,则∠MDC+∠NDC=90°,∵∠DCM=∠DCN=90°,∴∠MDC+∠DMC=90°,∴∠NDC=∠DMC,则△MDC∽△DNC,∴,即DC2=MC•NC∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴,即MC•NC=AC•BC;即AC•BC=DC2,∵AC=AO+OC=2+3=5,BC=3﹣2=1,∴DC2=5,∴DC=,∵MN⊥DD',∴D'C=DC=,∴以MN为直径的一系列圆经过两个定点D和D',此定点在C的距离都是.。
圆的切线综合练习题与答案完整版

圆的切线综合练习题与答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】切线的判定与性质练习题一、选择题(答案唯一,每小题3分)1.下列说法中,正确的是( )A.与圆有公共点的直线是圆的切线 B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线 D.圆心到直线的距离等于半径的直线是圆的切线2. 如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为( )A.70° B.35° C.20° D.40°第2题第3题第4题第5题3. 如图,线段AB是⊙O的直径,点C,D为⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠CDB等于( )A.20° B.25° C.30° D.40°4.如图,等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为( )A.8 B.6 C.5 D.45.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是( )A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC二.填空题(每小题3分)6.如图,在⊙O中,弦AB=OA,P是半径OB的延长线上一点,且PB=OB,则PA与⊙O的位置关系是_________.第6题第7题第8题7.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为________________.8.如图,AB是⊙O的直径,O是圆心,BC与⊙O切于点B,CO交⊙O于点D,且BC=8,CD=4,那么⊙O的半径是______.9. 如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.第9题第10题第11题10. 如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC,BE.若AE=6,OA=5,则线段DC的长为______.11.如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=30°,则∠B=________度.三、解答题(写出详细解答或论证过程)12.(7分)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.求证:AC是⊙O的切线.第12题第13题第14题13.(7分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.求证:∠BDC=∠A.14.(7分)如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D,求证:AC与⊙D相切.15.(10分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.第15题第16题16.(12分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):__________________________或者_______________________;(2)如图②,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.17.(12分)如图,已知直线PA交⊙O于A,B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长.答案:DDADC 6. 相切 7. ∠ABC=90°不排除等效答案 8. 6 9. 45 10. 4 11. 6012. 解:连接OD,∵BD为∠ABC平分线,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为⊙O的切线13. 解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠ODB+∠BDC=90°,∵AB是⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A14. 解:过D作DH⊥AC于H,由角平分线的性质可证DB=DH,∴AC与⊙D相切15. 解:(1)∵∠COD=2∠CAD,∠D=2∠CAD,∴∠D=∠COD.∵PD与⊙O相切于点C,∴OC⊥PD,即∠OCD=90°,∴∠D=45°(2)由(1)可知△OCD是等腰直角三角形,∴OC=CD=2,由勾股定理,得OD=22+22=22,∴BD=OD-OB=22-216. (1) ∠BAE=90°∠EAC=∠ABC(2) (2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线17. 解:(1)连接OC,证∠DAC=∠CAO=∠ACO,∴PA∥CO,又∵CD⊥PA,∴CO⊥CD,∴CD为⊙O 的切线(2)过O作OF⊥AB,垂足为F,∴四边形OCDF为矩形.∵DC+DA=6,设AD=x,则OF=CD=6-x,AF=5-x,在Rt△AOF中,有AF2+OF2=OA2,即(5-x)2+(6-x)2=25,解得x1=2,x2=9,由AD<DF知0<x<5,故x=2,从而AD=2,AF=5-2=3,由垂径定理得AB=2AF=6。
切线的判定和性质

例 如图,△ABC 内接于大⊙O ,∠B =∠C ,小⊙O 与AB 相切于点D .求证:AC 是小圆的切线.分析 AC 与小⊙O 的公共点没有确定,故应过O 作AC 的垂线段OE .再证明OE 等于小圆半径,用“到圆心的距离等于半径的直线是圆的切线”来判定AC 是小圆的切线. 证明 连结OD ,作OE ⊥AC 于E . ∵∠B =∠C ,∴AB=AC .又AB 与⊙O 小相切于D ,∴OD ⊥AB . ∵OE ⊥AC ,∴OD=OE .即小⊙O 的圆心O 到AC 的距离等于半径,所以AC 是小圆的切线. 说明:(1)本题为证明切线的两个常见方法(①连半径证垂直;②作垂直证半径.)之一;(2)本题为基本题型,但应用到切线的性质和判定;(3)本题为教材110页例4的变形题.例 (大连市,l 999)阅读:“如图△ABC 内接于⊙O ,∠CAE=∠B . 求证:AE 与⊙O 相切于点A . 证明:作直径AF ,连结FC ,则∠ACF =90°.∴ ∠AFC+∠CAF =90°. ∵∠B =∠AFC . ∴ ∠B+∠CAF =90°. 又∵ ∠CAE=∠B ,∴ ∠CAE+∠CAF =90°. 即AE 与⊙O 相切于点A .问题:通过阅读所得到的启示证明下题(阅读题中的结论可以直接应用).问题:通过阅读所得到的启示证明下题(阅读题中的结论可以直接应用).如图,已知△ABC 内接于⊙O .P 是CB 延长线上一点,连结AP .且PA 2=PB ·PC . 求证:PA 是⊙O 的切线. 证明:∵PA 2=PB ·PC ,∴PAPBPC PA . 又∵ ∠P=∠P ,∴△PAB ∽△PCA .∠PAB=∠C . 由阅读题的结论可知,PA 是⊙O 的切线. 说明:(1)此题的阅读材料来源于教材第117页B 组第1题;(2)应用“连半径证垂直”证明切线.例 (西宁,1999)已知:如图,Rt △ABC 中,∠C=90°,以AB 为直径的⊙O 交斜边AB 于E ,OD ∥AB . 求证:(1)ED 是⊙O 的切线;(2)2 DE 2=BE ·OD证明:(1)连结OE 、CE ,则CE ⊥AB . 在Rt △ABC 中,∵OA=OC ,OD ∥AB ,∴D 为BC 的中点,∴DE=CD , 又∵OC=OE ,OD=OD ,∴△COD ≌△EOD ,∴∠OED=∠OCD=90°,∴ED 是⊙O 的切线.(2)在Rt △ABC 中,CE ⊥AB ,∴△CBE ∽△ABC ,∴CB 2=BE ·AB , ∵OD 为△ABC 的中位线,∴AB=2OD ,BC=2ED ,∴(2ED )2=BE ·2OD 即2 DE 2=BE ·OD说明:此题为综合题,主要应用切线的性质定理、判定定理、射影定理、中位线定理等知识.BC典型例题四例 (北京市西城区试题,2002)已知:AB 为⊙O 的直径,P 为AB 延长线上的一个动点,过点P 作⊙O 的切线,设切点为C.(1)当点P 在AB 延长线上的位置如图1所示时,连结AC ,作APC ∠的平分线,交AC 于点D ,请你测量出CDP ∠的度数;(2)当点P 在AB 延长线上的位置如图2和图3所示时,连结AC ,请你分别在这两个图中用尺规作APC ∠的平分线(不写做法,保留作图痕迹),设此角平分线交AC 于点D ,然后在这两个图中分别测量出CDP ∠的度数;猜想:CDP ∠的度数是否随点P 在AB 延长线上的位置的变化而变化?请对你的猜想加以证明.解:(1)测量结果:︒=∠45CDP . (2)作图略.图2中的测量结果:︒=∠45CDP . 图3中的测量结果:︒=∠45CDP .猜想:︒=∠45CDP 为确定的值,CDP ∠的度数不随点P 在AB 延长线上的位置的变化而变化.证法一:连结BC .∵ AB 是⊙O 的直径, ∴ ︒=∠90ACB .∵ PC 切⊙O 于点C ,∴ A ∠=∠1.∵ PD 平分APC ∠,.454,3,21432︒=∠=∠∴∠+∠=∠∠+∠=∠∠=∠∴CDP A CDP∴ 猜想正确. 证法二:连结OC .∵ PC 切⊙O 于点C ,.901.︒=∠+∠∴⊥∴CPO OC PC∵ PD 平分APC ∠,.45)1(212.121,31.3,.212︒=∠+∠=∠+∠=∠∴∠=∠∴∠+∠=∠∠=∠∴=∠=∠∴CPO A CDP A A A OC OA CPO∴ 猜想正确.典型例题五例 (北京市崇文区,2002)已知:ABC∆≌C B A '''∆,3,5,90==︒='''∠=∠AC AB B C A ACB ,对应边AC 与C A ''重合,如图(1).若将C B A '''∆沿CB 边按箭头所示方向平移,如图(2),使边AB 、B A ''相交于点D ,边C A ''交AB 于点E ,边AC 交B A ''于点F ,以C C '为直径在五边形CF C DE '内作半圆O ,设C B '的长为x ,半圆O 的面积为y .1.求y 与x 的函数关系式及自变量x 的取值范围; 2.连结EF ,求EF 与半圆O 相切时的x 的值.解:1.∵ ABC ∆≌C B A '''∆,3,5,90==︒='''∠=∠AC AB B C A ACB ,,4,.4x C B BC C C x C B BC -='-='∴='∴=∴ππππ28)24(2122+-=-=∴x x x y .以C C '为直径在五边形内作半圆,依题意,在运动过程中C A ''、AC 与⊙O 始终相切,故只需考虑AB 与⊙O 相切的特殊位置,以确定x 的最小值.当C B A '''∆沿CB 边按箭头所示方向平移时, ∵ ABC ∆≌C B A '''∆, ∴ B B '∠=∠, ∴ B DB '∆是等腰三角形.又∵ ,,C O OC C B BC '=''=∴ .O B BO '=∴ O 是B B '的中点.∴ O 到BD 、D B ''的距离相等.∴ AB 与⊙O 相切时,B A ''必与⊙O 相切. 设切点分别为G 、H ,连结OG , 则有,,90B B BCA BGO ∠=∠︒=∠=∠ ∴ BOG ∆∽BAC ∆..5244324,xx BA BO AC OG --=-=∴ 解之得.1=x当1<x 或4≥x 时,不合题意,∴ 自变量x 的取值范围是41<≤x . 2.在C BE '∆和FC B '∆中,⎪⎩⎪⎨⎧︒='∠='∠'=''∠=∠,90,,CF B E C B C B C B B B ∴ C BE '∆≌FC B '∆.,90,//.︒='∠'='∴C FC FC C E FC C E∴ 四边形CF C E '为矩形. 当EF 与⊙O 相切时,C C C E '='21. ).4(2143,43,43tan x x x C E BC AC C B C E B -=∴='∴==''=解之得.58=x典型例题六例 已知如图,在ABC ∆中,AC AB =,以AB 为直径的⊙O 交BC 于D ,过D 作⊙O 的切线交AC 于E ,求证:AC DE ⊥.分析:因为DE 是⊙O 的切线,D 是切点,所以连OD ,得DE OD ⊥,因此本题的关键在于证明OD AC //. 证明 连结AD 、ODAB 为⊙O 的直径,AC AB =,BC AD ⊥∴.D 是BC 中点,O 是AB 的中点,OD ∴为BAC ∆的中位线,AC OD //∴DE 是切线,D 为切点,OD 是⊙O 的半径DE OD ⊥∴AC DE ⊥∴ 说明:连结OD 构成了“切线的性质定理”的基本图形,连结AD 构成了圆周角推论的基本图形.典型例题七例 如图,已知⊙O 中,AB 为直径,过B 点作⊙O 的切线,连线CO ,若OC AD //交⊙O 于D .求证:CD 是⊙O 的切线.分析:要证AD 是⊙O 的切线,只须证AD 垂直于过切点D 的半径,由此应想到连结OD .证明 连结OD OC AD // ,A COB ∠=∠∴及ODA COD ∠=∠ OD OA = ,OAD ODA ∠=∠∴ COD COB ∠=∠∴CO 为公共边,OB OD =COB ∆∴≌COD ∆.即ODC B ∠=∠ BC 是切线,AB 是直径, ︒=∠∴90B ,︒=∠90ODC , CD ∴是⊙C 的切线.说明:辅助线OD 构造于“切线的判定定理”与“全等三角形”两个基本图形,先用切线的性质定理,后用判定定理.典型例题八例 如图,以ABC ∆Rt 的一条直角边AB 为直径作圆斜边BC 于E ,F 是AC 的中点,求证:EF 是圆的切线.分析:连OE ,因为EF 过半径OE 的外端,要证EF 是切线,只需证︒=∠90OEF . 思路1 连OF ,证OAF ∆≌OEF ∆,则有︒=∠=∠90OAF OEF思路2 连AE ,则︒=∠90AEC ,证︒=∠+∠=∠+∠90OAE FAE OEA FEA 证明1 如图,连OF 、OE ,的中位线是中点为中点为ABC OF AB O AC F ∆⇒⎭⎬⎫B BC OF ∠=∠⇒⇒1//,32∠=∠ 又B OE OB ∠=∠⇒=3,即21∠=∠,OE OA =,OF OF = 所以OAF ∆≌OEF ∆有︒=∠=∠90OAF OEF 即EF OE ⊥, EF 过半径OE 的外端, 所以EF 是⊙O 的切线.证明2 如图,连结AE 、OE AB 是⊙O 直径︒=∠⇒90AEBFA FE AC F AEC =⇒⎭⎬⎫︒=∠⇒中点为9042314321∠+∠=∠+∠⇒⎭⎬⎫∠=∠⇒=∠=∠⇒OE OAEF OE ⊥⇒︒⇒90 FE 过半径OE 的外端 所以EF 是⊙O 的切线说明:这里的辅助线OE ,仍然想着构造“切线判定定理”的基本图形的作用.典型例题九例 如图,已知弦AB 等于半径,连结OB 并延长使.(1)求证AC 是⊙O 的切线; (2)请你在⊙O 上选取一点D ,使得 (自己完成作图,并给出证明过程)证明:(1)即是⊙O 的切线.(2)①作BO 延长线交⊙O 于D ,连接AD ,,所以D 点为所求. ②如图,在圆上取一点使得,连结,所以点也为所求.说明:证明一条直线是圆的切线,通常选择:(1)到圆心的距离等于圆的半径的直线是圆的切线;(2)经过半径的外端并且垂直于这条半径的直线是圆的切线.而涉及切线问题时,应灵活运用切线的性质,通常连结切点和圆心.题目的第(2)问是分类讨论问题,当题目中的图形未给定时,作图时,应将所有符合条件的图形作出,再分别解答.典型例题十例 已知:直线AB 经过⊙O 上的点C ,并且CB CA OB OA ==,.求证:直线AB 是⊙O 的切线.证明 连结OC .∵CB CA OB OA ==,,∴OC 是等腰三角形OAB 底边AB 上的中线. ∴.OC AB ⊥∴AB 是⊙O 的切线.说明:本题考查切线的判定,解题关键是作出辅助线,易错点是把求证的结论“AB 是⊙O 的切线”.作为条件使用,造成推理过程中的逻辑混乱.典型例题十一例 如图,AB 是⊙O 直径,弦AB CD //,连AD ,并延长交⊙O 过点B 的切线于E ,作AC EG ⊥于G .求证:.CG AC =证明 连结BC 交AE 于F 点...21,32.31,//BF AF CD AB =∴∠=∠∴∠=∠∠=∠∴BE 为⊙O 切线,...54,21.9051,9042.EF AF EF BF BE AB =∴=∴∠=∠∠=∠︒=∠+∠︒=∠+∠∴⊥∴AB 为直径,∴.AC BC ⊥..//,CG AC BC EG AC EG =∴∴⊥说明: 本题主要考查切线的性质,解题关键是作辅助线.典型例题十二例 如图,AB 是⊙O 的直径,CD 是⊙O 的切线,C 为切点,AD 交⊙O 于点E ,AC AB AD ,5,4==平分BDA ∠.(1)求证:CD AD ⊥.(2)求AC .证明 (1)连OC .CD 切⊙O 于C ,∴.CD OC ⊥..//.32,21.31,CD AD AD OC OC OA ⊥∴∴∠=∠∴∠=∠∠=∠∴=解 (2)连BC .AB 是⊙O 的直径,∴︒=∠90ACB .ABC ADC ∆∴∠=∠︒=∠,21,90 ∽.ACD ∆∴.AD AC AC AB =即.52.45=∴=AC ACAC 说明:在题目条件中若有切线,常常要作出过切点的半径.利用三角形相似的知识求出线段的长.典型例题十三例 (北京朝阳区试题,2002)已知:在内角不确定的ABC ∆中,AC AB =,点E 、F 分别在AB 、AC 上,BC EF //,平行移动EF ,如果梯形EBCF 有内切圆, 当21=AB AE 时,322sin =B ; 当31=AB AE 时,23sin =B (提示:43223=); 当41=AB AE ,54sin =B . (1)请你根据以上所反映的规律,填空:当51=AB AE 时,B sin 的值等于_________; (2)当nAB AE 1=时(n 是大于1的自然数),请用含n 的代数式表示=B sin ___________,并画出图形、写出已知、求证和证明过程。
专题18圆的切线的性质与判定(原卷版)

专题18 圆的切线的性质与判定(原卷版)类型一利用圆的切线的性质求角度1.(2023•鼓楼区三模)如图,P A、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠A+∠C=220°,则∠P的度数°.2.(2023秋•沙坪坝区校级月考)如图,已知AB与⊙O相切于点A,AC是⊙O的直径,连接BC交⊙O于点D,E为⊙O上一点,当∠CED=58°时,∠B的度数是()A.32°B.64°C.29°D.58°3.(2022秋•金华期末)AB为⊙O的直径,延长AB到点P,过点P作⊙O的切线,切点为C,连接AC,∠P=40°,D为圆上一点,则∠D的度数为()A.20°B.25°C.30°D.40°类型二利用圆的切线的性质求长度4.(2023•九龙坡区模拟)如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线P A交OC 延长线于点P,则P A的长为.5.(2022秋•梁溪区校级期中)如图,在四边形材料ABCD 中,AD ∥BC ,∠A =90°,AD =9cm ,AB =20cm ,BC =24cm .现用此材料截出一个面积最大的圆形模板,则此圆的半径是 .类型三 圆的切线的判定6.(2022•孝南区一模)如图,在Rt △ABC 中,∠ACB =90°,D 为AB 的中点,以CD 为直径的⊙O 分别交AC ,BC 于点E ,F 两点,过点F 作FG ⊥AB 于点G .试判断FG 与⊙O 的位置关系,并说明理由.7.(2021•福州模拟)如图,已知△AOB 中,OA =OB ,∠AOB =120°,以O 为圆心,12OA 长为半径作圆分别交OA ,OB 于点C ,D ,弦MN ∥AB .(1)判断直线AB 与⊙O 的位置关系并说明理由;(2)求证:MĈ=ND ̂.类型四圆的切线的判定与性质的综合运用8.(2022•郴州)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.9.(2023春•邗江区月考)已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.(1)如图1,E为OA上一点,若CE⊥AB,且∠ACD=∠ACE,求证:DC与⊙O相切;(2)如图2,CD与⊙O相交于点F,若CO⊥AB,∠D=30°,OA=1,求AD、DF、弧AF围成的图形的面积.10.如图,AB是⊙O的直径,AC是⊙O的弦,点P为AB延长线上一点,连接CP,∠BCP=∠BAC,∠ACB的平分线与直径AB交于点E,交⊙O于点D.(1)求证:CP是⊙O的切线;(2)求证:PE=PC;(3)探究AC+BC与CD之间的数量关系,并说明理由.11.(2023•湖州)如图,在Rt△ABC中,∠ACB=90°,点O在边AC上,以点O为圆心,OC为半径的半圆与斜边AB相切于点D,交OA于点E,连结OB.(1)求证:BD=BC.(2)已知OC=1,∠A=30°,求AB的长.12.(2023秋•建邺区校级月考)如图,等腰△ABC内接于⊙O,AC的垂直平分线交边BC于点E,交⊙O 于F,垂足为D,连接AF并延长交BC的延长线于点P.(1)求证:∠CAP=12∠B;(2)若EB=CP,求∠BAC的度数.13.(2023•盐城)如图,在△ABC中,O是AC上(异于点A,C)的一点,⊙O恰好经过点A,B,AD⊥CB于点D,且AB平分∠CAD.(1)判断BC与⊙O的位置关系,并说明理由.(2)若AC=10,DC=8,求⊙O的半径长.14.(2023秋•台江区校级月考)如图,AB是⊙O的直径,P A为⊙O的切线,弦AC⊥PO,垂足为M,连接PC.(1)求证:PC是⊙O的切线;(2)若P A=AB,连接BM,求证:BM=√2CM.15.(2023•婺城区模拟)如图,在△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,⊙O的切线DE交AC于点E.(1)求证:E是AC中点;(2)若AB=10,BC=6,连接CD,OE,交点为F,求OF的长.16.(2022秋•丰润区期末)如图,AB为⊙O的直径,过圆上一点D作⊙O的切线CD交BA的延长线于点C,过点O作OE∥AD交CD于点E,连接BE.(1)直线BE与⊙O相切吗?并说明理由;(2)若CA=2,CD=4,求DE的长.。
中考真题;切线的判定与性质(答案详解)

中考复习:切线的判定与性质知识考点:1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。
2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。
精典例题:【例1】如图,AC 为⊙O 的直径,B 是⊙O 外一点,AB 交⊙O 于E 点,过E 点作⊙O 的切线,交BC 于D 点,DE =DC ,作EF ⊥AC 于F 点,交AD 于M 点。
(1)求证:BC 是⊙O 的切线;(2)EM =FM 。
:【例2】如图,△ABC 中,AB =AC ,O 是BC 的中点,以O 为圆心的圆与AB 相切于点D 。
求证:AC 是⊙O 的切线。
》【例3】如图,已知AB 是⊙O 的直径,BC 为⊙O 的切线,切点为B ,OC 平行于弦AD ,OA =r 。
<(1)求证:CD 是⊙O 的切线; (2)求OC AD ⋅的值;(3)若AD +OC =r 29,求CD 的长。
•例1图321MFOEDCB A例2图 EO D C B A •例3图321OD C BA探索与创新:【问题一】如图,以正方形ABCD 的边AB 为直径,在正方形内部作半圆,圆心为O ,CG 切半圆于E ,交AD 于F ,交BA 的延长线于G ,GA =8。
(1)求∠G 的余弦值;!(2)求AE 的长。
【问题二】如图,已知△ABC 中,AC =BC ,∠CAB =α(定值),⊙O 的圆心O 在AB 上,并分别与AC 、BC 相切于点P 、Q 。
,(1)求∠POQ ;(2)设D 是CA 延长线上的一个动点,DE 与⊙O 相切于点M ,点E 在CB 的延长线上,试判断∠DOE 的大小是否保持不变,并说明理由。
(|•问题一图 G F E O DCB A 问题二图NQ P EO DC BA答案精典例题:【例1】如图,AC 为⊙O 的直径,B 是⊙O 外一点,AB 交⊙O 于E 点,过E 点作⊙O 的切线,交BC 于D 点,DE =DC ,作EF ⊥AC 于F 点,交AD 于M 点。
切线的判定和性质

并说明理由。
B
O
A
C
例2 已知:直线AB经过⊙O上的点C, 并且OA=OB,CA=CB。
求证:直线AB是⊙ O的切线。
O
A
C
B
例3:已知:点P为 ∠ AOB平分线上的点, PD ⊥ OA于D,以P为圆心,PD为半径 作 ⊙P。
求证: ⊙ P与OA,OB都相切。
A
D
P O
C B
已知:在△ABC中,AB=AC,以AB为 直径作⊙O交BC于D,DE⊥AC于E, 求证:DE是⊙ O的切线。
B
O
C
连半径得垂直
一题多解,发散思维
如图,以△ ABD的边AB为直径,作 半圆O交AD于C,过点C的切线CE和 BD互相垂直,垂足为D,
用多种方法证明:AB=BD A
O
C
B
ED
综合题,要慎重,挖掘条件
如图,在Rt△ ABC中,∠ B=90度,∠
A的平分线交BC于D,E为AB上一点,
DE=DC,以D为圆心,DB的长为半径作
直线与圆的位置关系
直线与圆相切
如果⊙O的半径为r,圆心O到直线L的 距离为d,那么
(1)直线L与⊙ O相交
d<r
(2)直线L与⊙ O相切
d=r
(3)直线L与⊙ O相离
d>r
做一做,想一想:
画⊙ O,在⊙ O上任取一 点A,连结OA,过A点作直 线L ⊥ OA.
问:直线L是否与⊙ O 相切,为什么?
数
A E
G
B
C
变式训练4
变如式训图练,5∠:C=90°,AC=6, 改形内边成周切的:长A圆长B的。=1半0,径半为径2,为计2.求算三斜角
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
切线的判定练习题
1、已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.
求证:直线AB是⊙O的切线.
2、如图7-51,AB是⊙O的直径,∠ABT=45°,AT=AB.
求证:AT是⊙O的切线.
3.如右图,AB是⊙O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=30°,求证:DC是⊙O的切线.
4、如图7-53,AB为⊙O的直径,C为⊙O上一点,AD和过C点切线互相垂直,垂足为D.
求证:AC平分∠DAB.
5、如图,AN是⊙O的直径,⊙O过BC的中点D.DE⊥AC.
求证:DE是⊙O的切线.
6、已知:如图,AB是⊙O的直径,P是⊙O外一点,PA⊥AB,•弦BC∥OP,求证:PC为⊙O的切线
7、已知:如图,在Rt△ABC中,∠ABC=900,以AB为直径的⊙
O交AC于E点,D为BC的中点。
求证:DE与⊙O相切。
8、已知:AB为⊙O的直径,AC为弦,D为AB上一点,过D点作
AB的垂线DE交AC于F,EF=EC。
求证:EC与⊙O相切。
9、已知:△ABC中AB=AC,O为BC的中点,以O为圆心的圆与
AC相切于点E,
求证:AB与⊙O也相切。
O
B
A
C
E
D
O
B A
C
D
E
F
B C
O
E
10.已知:在以O 为圆心的两个同心圆中,大圆的弦AB 和CD 相等,且AB 与小圆相切于点E , 求证:CD 与小圆相切。
11、已知:以等腰△ABC 的一腰AB 为直径的⊙O 交BC 于D ,,过D 作DE ⊥AC 于E , 求证:DE 是⊙O 的切线。
12、如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过点B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?并证明你的结论.
13.已知:如图,P 是∠AOB 的角平分线OC 上一点.PE ⊥OA 于E .以P 点为圆心,PE 长为半径作⊙P .
求证:⊙P 与OB 相切.
O
E
A
B C
B C
D
A
O
E
14.已知:如图,Rt △ABC 中,∠ACB =90°,以AC 为直径的半圆O 交AB 于F ,E 是BC 的中点.求证:直线EF 是半圆O 的切线.
15.已知:如图,△ABC 中,AD ⊥BC 于D 点,.2
1
BC AD
以△ABC 的中位线为直径作半圆O ,试确定BC 与半圆O 的位置关系,并证明你的结论.
16.已知:如图,△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于E 点,直线EF ⊥AC 于F .
求证:EF 与⊙O 相切.。