什么是热敏电阻及其主要类型和参数

合集下载

热敏电阻的类型和工作原理

热敏电阻的类型和工作原理

热敏电阻的类型和工作原理热敏电阻是一种特殊的电阻,其电阻值随温度的变化而变化。

通常分为两种类型:正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)。

1. 正温度系数热敏电阻正温度系数热敏电阻,简称为PTC,是指当温度升高时,电阻值也随之升高的一类热敏电阻。

PTC 热敏电阻的材料广泛应用于许多不同的领域,如汽车电子、工业自动化、家电、电信、医疗器械等。

常见的 PTC 材料有:铂、镍、氧化物等。

常见的 NTC 材料有:氧化锌、硅酸铁、铬酸镁等。

热敏电阻的工作原理基本上是根据温度的变化影响材料的电阻值。

当温度升高时,电子的热运动会增强导致原子晶格的振动量增加,进而导致材料电阻值增大;相反,当温度降低时,电子的热运动会减少,导致原子晶格的振动量也减少而电阻值随之减小。

热敏电阻的电阻值与温度之间的关系可以通过热敏电阻的温度系数表达。

正温度系数热敏电阻的温度系数大约在 0.03%~0.06% / ℃ 之间。

总体来讲,热敏电阻的温度系数越大,其变化率越快,对于环境温度的变化反应越灵敏。

通常选用的热敏电阻的温度系数都是比较大的。

三、热敏电阻的应用热敏电阻的应用非常广泛,其主要应用领域包括:电力、家用电器、汽车、航空、航天、医疗器械、工业自动化、通信等各个领域。

1. 温度测量:在许多场合下,需要测量环境的温度,这时可以采用热敏电阻来测量。

3. 温度补偿:在一些设备中,需要对环境温度进行补偿,热敏电阻也可以用来进行温度补偿。

热敏电阻的应用非常广泛,以其准确性、可靠性和经济性而受到各个领域的重视。

四、热敏电阻的优点1. 灵敏度高:热敏电阻能够通过改变电阻值来反应温度的变化,对环境温度的变化非常敏感且变化率快,因此在环境变化迅速的场合应用非常广泛。

2. 高精度:热敏电阻具有较高的温度测量精度,可以测量精度高达±0.5°C。

3. 经济实用:热敏电阻的成本相比其他传感器较为低廉,适用于大规模应用,经济实用。

热敏电阻 参数

热敏电阻 参数

热敏电阻参数
热敏电阻是一种通过温度变化来改变电阻值的电子元件。

其电阻值与环境温度呈反比例关系,即温度升高时其电阻值下降,反之亦然。

热敏电阻的主要参数包括:温度系数、电阻值、耐压、精度、响应时间等。

1. 温度系数:热敏电阻的温度系数是指在一定温度范围内,电阻值相对于温度变化的比率。

常用的温度系数有正温度系数和负温度系数两种。

正温度系数的热敏电阻随着温度的升高,电阻值也随之升高;而负温度系数的热敏电阻则相反。

2. 电阻值:热敏电阻的电阻值通常在几百欧姆到几十兆欧姆之间。

选择不同电阻值的热敏电阻要根据具体的应用场合和要求。

3. 耐压:热敏电阻的耐压指其能承受的最大电压值。

一般来说,热敏电阻的耐压越高,其可靠性也越高。

4. 精度:热敏电阻的精度是指其电阻值与实际温度值之间的误差范围。

常用的精度等级有1%、2%、5%等。

5. 响应时间:热敏电阻的响应时间是指其电阻值变化与温度变化之间的时间差。

响应时间越短,热敏电阻对温度变化的响应能力就越强。

总之,热敏电阻在工业自动化、电子仪器、家用电器、汽车电子等领域都有广泛的应用。

选择合适的热敏电阻参数可以提高产品的性能和可靠性。

- 1 -。

NTC热敏电阻基础知识介绍

NTC热敏电阻基础知识介绍

NTC热敏电阻基础知识介绍NTC热敏电阻(Negative Temperature Coefficient Thermistor)是一种温度敏感的电阻元件,它的电阻值随温度的升高而降低。

NTC热敏电阻通常由含有金属氧化物粉末的陶瓷材料制成,这些氧化物通常是镍、锡、铁等,另外还有一些常见的材料,如硅、锗等。

NTC热敏电阻的工作原理是基于材料的温度系数,也就是材料的电阻随温度变化的速率。

NTC热敏电阻材料具有负温度系数(即负温度系数),即其电阻值随温度升高而减小。

这是由于在材料内部的晶格结构中,温度升高会导致电子和空穴的热激发增加,进而使得电阻值减小。

1.高灵敏度:NTC热敏电阻对温度的变化非常敏感,可以轻易地检测出微小的温度变化。

2.宽温度范围:NTC热敏电阻可以在较大的温度范围内使用,一般可以达到-55°C至200°C。

3.高稳定性:NTC热敏电阻的性能稳定,可以长时间稳定地工作。

4.响应速度快:NTC热敏电阻的响应速度非常快,可以在极短的时间内对温度变化进行检测。

1.温度测量和控制:NTC热敏电阻可以用来测量和控制温度,例如在热水器、空调等家用电器中用于温度控制。

2.电子设备保护:NTC热敏电阻可以用于电子设备的过热保护,当设备温度超过一定阈值时,NTC热敏电阻的电阻值会发生急剧变化,从而触发保护电路。

3.温度补偿:由于整个电路中的其他元件可能也受到温度的影响,NTC热敏电阻可以用于对整个电路进行温度补偿,确保电路可靠稳定地工作。

4.液位测量:NTC热敏电阻可以与液位测量装置配合使用,例如测量液体的温度,从而推算出液位的高度。

总之,NTC热敏电阻是一种非常重要的温度敏感元件,具有高灵敏度、宽温度范围、高稳定性和快速响应的特点。

它在温度测量和控制、电子设备保护、温度补偿以及液位测量等领域有着广泛的应用。

随着技术的发展和应用的需求,NTC热敏电阻的性能和应用范围还将继续扩大。

热敏电阻参数

热敏电阻参数

热敏电阻参数
热敏电阻(Thermistor)是一种基于物理变化机理(如温度变化)变化的非线性电阻元件,是一种热敏电子元件。

它由一种特殊的绝缘制成,其中嵌入一小片汞的玻璃或者瓷的片子,在这一小片上覆盖了一层碳酸钙,然后用两个不锈钢网做两个接头,以便连接线环,最后卷上一层圆线,接电,它的温度特性是随着温度的升高,电阻值呈下降趋势。

热敏电阻的基本参数有四类:电阻值、电压限制、额定偏差、响应时间。

1) 电阻值:电阻值是表示热敏电阻在一定温度下电阻的大小,其取值范围一般在100欧姆~100K欧姆之间,而且一般以25℃时的电阻值作为基准进行参数说明;
2) 电压限制:指在热敏电阻的固定条件下,热敏电阻接受不同电压的情况下,它的稳定电阻值应该是多少;
3) 额定偏差:说明在热敏电阻常温下的真实电阻和额定电阻之间的差距;
4) 响应时间:热敏电阻的响应时间指的是在当温度发生变化的情况下,热敏电阻的电阻值从一种状态变为另一种状态所需要的时间,一般情况下,热敏电阻的响应时间越短越好。

NTC热敏电阻特性参数基本知识

NTC热敏电阻特性参数基本知识

NTC热敏电阻特性参数基本知识NTC热敏电阻(Negative Temperature Coefficient Thermistor)是一种温度敏感的电阻器件,其电阻值随温度的升高而下降。

它具有快速响应、高精度、可靠性高等特点,被广泛应用于温度测量、温度补偿、过热保护等领域。

一、NTC热敏电阻的结构与原理NTC热敏电阻由导电粒子均匀分布在陶瓷或聚合物基底中组成。

当温度升高时,导电粒子随之受热膨胀,导致电阻器的电阻值下降;反之,当温度下降时,导电粒子缩小,电阻值则上升。

这种负温度系数的特性使得NTC热敏电阻可以作为温度变化的传感器使用。

二、NTC热敏电阻的温度特性1. 热敏特性(Temperature Coefficient of Resistance,TCR):TCR是NTC热敏电阻电阻值随温度变化的斜率,通常以ppm/℃或%/℃来表示。

TCR越大,NTC热敏电阻对温度变化的灵敏度越高。

2. 零点电阻(Zero Power Resistance):零点电阻指NTC热敏电阻在零功率状态下的电阻值。

NTC热敏电阻的零点电阻通常在室温(25℃)下测量。

3. B值(B Value):B值是NTC热敏电阻数据表的一个重要参数,用于描述NTC热敏电阻电阻值与温度之间的关系。

B值越大,NTC热敏电阻对温度变化的响应越快。

三、NTC热敏电阻的封装形式与特点1.芯片型:芯片型NTC热敏电阻封装小巧,适合高密度集成电路板焊接使用。

常见的封装形式有0402、0603、0805等。

2.线材型:线材型NTC热敏电阻采用线材引出,方便直接连接电路。

常见的线材型NTC热敏电阻有带头、带露点、带保护套等。

3.壳体型:壳体型NTC热敏电阻采用外壳封装,结构较为坚固,适用于恶劣环境下的温度检测和控制。

常见的壳体型NTC热敏电阻有玻璃封装、金属封装等。

四、NTC热敏电阻的应用1.温度测量:NTC热敏电阻可以通过测量其电阻值来获取温度信息,广泛应用于温度计、恒温器、温度传感器等领域。

热敏电阻

热敏电阻

电阻分类
正温度系数热敏电阻
热敏电阻正温度系数(PTC)是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻现象或材料,可 专门用作恒定温度传感器.该材料是以BaTiO3或SrTiO3或PbTiO3为主要成分的烧结体,其中掺入微量的Nb、Ta、 Bi、 Sb、Y、La等氧化物进行原子价控制而使之半导化,常将这种半导体化的BaTiO3等材料简称为半导(体)瓷; 同时还添加增大其正电阻温度系数的Mn、Fe、Cu、Cr的氧化物和起其他作用的添加物,采用一般陶瓷工艺成形、 高温烧结而使钛酸铂等及其固溶体半导化,从而得到正特性的热敏电阻材料。其温度系数及居里点温度随组分及 烧结条件(尤其是冷却温度)不同而变化。
电阻值计算例:试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在 10°C~30°C的电阻值。步骤(1)根据电阻-温度特性表,求常数C、D、E。 To=25+273.15T1=10+273.15T2=20+273.15T3=30+273.15(2)代入BT=CT2+DT+E+50,求BT。(3)将数值代入 R=5exp {(BT1/T-1/298.15)},求R。T:10+273.15~30+273.15。
材料分类
热敏材料一般可分为半导体类、金属类和合金类三类,现分别简述如下 。
半导体热敏电阻材料
这类材料有单晶半导体、多晶半导体、玻璃半导体、有机半导体以及金属氧化物等。它们均具有非常大的电 阻温度系数和高的电阻率,用其制成的传感器的灵敏度也相当高。按电阻温度系数也可分为负电阻温度系数材料 和正电阻温度系数材料.在有限的温度范围内,负电阻温度系数材料a可达-610-2/℃,正电阻温度系数材料a可高 达-6010-2/℃以上。如饮酸钡陶瓷就是一种理想的正电阻温度系数的半导体材料。上述两种材料均广泛用于温度 测量、温度控制、温度补瞬、开关电路、过载保护以及时间延迟等方面,如分别用子制作热敏电阻温度计、热敏 电阻开关和热敏电阻温度计、热敏电阻开关和热敏电阻延迟继电错等 。

举例说明热敏电阻的类型及特点和测温原理

举例说明热敏电阻的类型及特点和测温原理

【热敏电阻的类型及特点和测温原理】一、引言随着科技的不断进步和应用领域的不断拓展,热敏电阻作为一种敏感度极高的传感器在温度测量和控制方面发挥着越来越重要的作用。

热敏电阻能够根据温度的变化而改变电阻值,因此在各种需要高精度、高灵敏度温度控制的场合得到了广泛的应用。

本文将从热敏电阻的基本原理、类型及特点和测温原理等方面展开,希望能够为读者提供全面、深入的了解。

二、热敏电阻的基本原理热敏电阻是一种特殊材料制成的电阻器,它的电阻值随温度的升高而减小,反之则增大。

这是因为材料在不同温度下,其电子的运动状态会发生改变,从而影响了电阻的数值。

通常情况下,热敏电阻的阻值在低温时较高,随着温度的升高而急剧下降,这种特性使得热敏电阻成为一种理想的温度传感器。

三、热敏电阻的类型及特点1. 负温度系数(NTC)热敏电阻NTC热敏电阻是在常见的热敏电阻中应用最为广泛的一种类型。

它的特点是温度升高时电阻值下降,而且电阻值随温度的变化而呈现非线性关系。

这种非线性特性使得NTC热敏电阻能够对温度变化更为敏感,因此在一些需要高精度温度控制的领域得到了广泛应用。

2. 正温度系数(PTC)热敏电阻相对于NTC热敏电阻,PTC热敏电阻的温度升高时电阻值也会随之增大,呈现出正相关的关系。

PTC热敏电阻通常应用在需要自保护的电路中,当电路温度升高时,PTC热敏电阻的电阻值急剧上升,从而限制了电路中的电流,起到了自动保护电路的作用。

3. 双温度系数热敏电阻双温度系数热敏电阻是一种同时具备NTC和PTC特性的热敏电阻,它在温度升高和温度降低时的电阻值变化规律都非常明显。

这种特性使得双温度系数热敏电阻可以应用在更广泛的温度范围内,具有更高的灵活性和适用性。

四、热敏电阻的测温原理热敏电阻的测温原理主要是利用了其电阻值与温度呈现出的一定关系。

在实际应用中,我们通常通过将热敏电阻连接在一个稳流源上,当电压施加到热敏电阻上时,随着温度的升高,电阻值会相应地发生变化,从而可以通过测量电阻值的变化来反推出温度的变化。

热敏电阻种类

热敏电阻种类

热敏电阻种类热敏电阻种类热敏电阻是指在一定温度范围内,其电阻值随着温度的变化而发生变化的电阻。

热敏电阻广泛应用于温度测量、温度控制、恒温器、自动控制等领域。

根据不同的材料和结构,热敏电阻可以分为多种类型。

一、负温度系数热敏电阻(NTC)负温度系数热敏电阻是指在一定的温度范围内,随着温度升高,其电阻值会下降。

NTC的材料主要有氧化物、硅酸盐和聚合物等,其中氧化物材料最为常见。

NTC主要应用于恒流源、恒压源、过流保护器等。

二、正温度系数热敏电阻(PTC)正温度系数热敏电阻是指在一定的温度范围内,随着温度升高,其电阻值会上升。

PTC的材料主要有聚合物和氧化物等。

PTC具有自保护功能,在过载或过流时会自动断开电路,起到保护电路的作用。

PTC主要应用于电源开关、电热器、恒温器等。

三、负热电效应热敏电阻(NTC-T)负热电效应热敏电阻是指在一定的温度范围内,随着温度升高,其输出电压会下降。

NTC-T的材料主要有氧化物和硅酸盐等。

NTC-T主要应用于温度传感器、温度控制器等。

四、铂电阻(PT100)铂电阻是指以铂为材料制成的热敏电阻,其特点是精度高、稳定性好、线性度好。

铂电阻主要应用于工业自动化控制系统中的温度测量和控制。

五、石墨烯热敏电阻石墨烯是一种新型材料,具有良好的导电性和导热性能。

利用其特殊结构和性质,可以制成高灵敏度和高精度的石墨烯热敏电阻。

该种类型的热敏电阻具有响应速度快、稳定性好等优点,在新能源汽车领域有广泛应用。

六、陶瓷热敏电阻陶瓷热敏电阻是指以陶瓷材料为基底制成的热敏电阻。

该种类型的热敏电阻具有良好的抗干扰性和稳定性,可以适用于恶劣环境下的温度测量和控制。

七、玻璃负温度系数热敏电阻(GNTC)玻璃负温度系数热敏电阻是指以玻璃为基底制成的负温度系数热敏电阻。

该种类型的热敏电阻具有响应速度快、精度高等优点,主要应用于汽车发动机控制系统中的温度测量和控制。

八、金属氧化物半导体(MOX)热敏电阻金属氧化物半导体(MOX)是指由金属氧化物组成的半导体材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构——用钛酸钡(BaTiO3)、锶(Sr)、锆(Zr)等材料制成的。
属直热式热敏电阻器。
特性——电阻值与温度变化成正比关系,即当温度升高时电阻值随之增大。在常温下,其电阻值较小,仅有几欧姆~几十欧姆;当流经它的电流超过额定值时,其电阻值能在几秒钟内迅速增大至数百欧姆~数千欧姆以上。
作用与应用——广泛应用于彩色电视机消磁电路、电冰箱压缩机启动电路及过热或过电流保护等电路中、还可用于电驱蚊器和卷发器、电热垫、暖器等小家电中。
什么是热敏电阻及其主要类型和参数?
热ቤተ መጻሕፍቲ ባይዱ电阻器(thermistor)——型号MZ、MF:
是一种对温度反应较敏感、阻值会随着温度的变化而变化的非线性电阻器,通常由单晶、多晶半导体材料制成。
文字符号:“RT”或“R”
热敏电阻器的种类:
A.按结构及形状分类——圆片形(片状)、圆柱形(柱形)、圆圈形(垫圈形)等多种热敏电阻器。
●负温度系数热敏电阻器(NTC—negative temperature coefficient thermistor)
结构——用锰(Mn)、钴(Co)、镍(Ni)、铜(Cu)、铝(Al)等金属氧化物(具有半导体性质)或碳化硅(SiC)等材料采用陶瓷工艺制成的。
特性——电阻值与温度变化成反比关系,即当温度升高时,电阻值随之减小。
作用与应用——广泛应用于电冰箱、空调器、微波炉、电烤箱、复印机、打印机等家电及办公产品中,作温度检测、温度补偿、温度控制、微波功率测量及稳压控制用。
B.按温度变化的灵敏度分类——高灵敏度型(突变型)、低灵敏度型(缓变型)热敏电阻器。
C.按受热方式分类——直热式热敏电阻器、旁热式热敏电阻器。
D.按温变(温度变化)特性分类——正温度系数(PTC)、负正温度系数(NTC)热敏电阻器。
热敏电阻器的主要参数:除标称阻值、额定功率和允许偏差等基本指标外,还有如下指标:
1)测量功率:指在规定的环境温度下,电阻体受测量电源加热而引起阻值变化不超过0.1%时所消耗的功率。
2)材料常数:是反应热敏电阻器热灵敏度的指标。通常,该值越大,热敏电阻器的灵敏度和电阻率越高。
3)电阻温度系数:表示热敏电阻器在零功率条件下,其温度每变化1℃所引起电阻值的相对变化量。
4)热时间常数:指热敏电阻器的热惰性。即在无功功率状态下,当环境温度突变时,电阻体温度由初值变化到最终温度之差的63.2%所需的时间。
10)稳压范围:指稳压用热敏电阻器在规定的环境温度范围内稳定电压的范围值。
11)最大电压:指在规定的环境温度下,热敏电阻器正常工作时所允许连续施加的最高电压值。
12)绝缘电阻:指在规定的环境条件下,热敏电阻器的电阻体与绝缘外壳之间的电阻值。
●正温度系数热敏电阻器(PTC—positive temperature coefficient thermistor)
5)耗散系数:指热敏电阻器的温度每增加1℃所耗散的功率。
6)开关温度:指热敏电阻器的零功率电阻值为最低电阻值两倍时所对应的温度。
7)最高工作温度:指热敏电阻器在规定的标准条件下,长期连续工作时所允许承受的最高温度。
8)标称电压:指稳压用热敏电阻器在规定的温度下,与标称工作电流所对应的电压值。
9)工作电流:指稳压用热敏电阻器在在正常工作状态下的规定电流值。
相关文档
最新文档