流体力学例题解答
流体力学题解

2-1 两高度差z =20cm 的水管,与一倒U 形管压差计相连,压差计内的水面高差h =10cm ,试求下列两种情况A 、B 两点的压力差:(1)γ1为空气;(2)γ1为重度9kN/m 3的油。
已已知知::z=20cm ,h=10cm 。
解析:设倒U 型管上部两流体分界点D 处所在的水平面上的压力为p ',BC 间的垂直距离为l ,则有)(A z l h p p +++'=水γ;l h p p 水γγ++'=1B 以上两式相减,得 h z h p p 1B A )(γγ-+=-水(1) 当γ1为空气时,气柱的重量可以忽略不计,则A 、B 两点的压力差为 Pa 2943)2.01.0(9810)(B A =+⨯=+=-z h p p 水γ (2) 当γ1为重度9kN/m 3的油时,A 、B 两点的压力差为Pa 20431.09000)2.01.0(9810)(1B A =⨯-+⨯=-+=-h z h p p γγ水2-2 U 形水银压差计中,已知h 1=0.3m ,h 2=0.2m ,h 3=0.25m 。
A 点的相对压力为p A =24.5kPa ,酒精的比重为0.8,试求B 点空气的相对压力。
已已知知::h 1=0.3m ,h 2=0.2m ,h 3=0.25m 。
p A =24.5kPa ,S=0.8。
解析:因为左右两侧的U 型管,以及中部的倒U 型管中1、2、3点所在的水平面均为等压面,依据题意列静力学方程,得3B 3h p p 汞γ+=, 232h p p 酒精γ-=, 221h p p 汞γ+=, 121A )(p h h p =++水γ 将以上各式整理后,可得到B 点空气的相对压力为Pa10906.2)]25.02.0(6.132.08.0)2.03.0[(9810105.24)()(4332221A B ⨯-=+⨯-⨯++⨯+⨯=+-+++=h h h h h p p 汞酒精水γγγ 以mH 2O 表示为 O mH 96.2981010906.224B-=⨯-==水γp h2-3 如图所示,一洒水车等加速度a=0.98m/s2向前平驶,求水车内自由表面与水平面间的夹角a ;若B点在运动前位于水面下深为h=1.0m ,距z 轴为xB= -1.5m ,求洒水车加速运动后该点的静水压强。
流体力学计算题及问题详解

第二章例1:用复式水银压差计测量密封容器内水面的相对压强,如下列图。
:水面高程z 0=3m,压差计各水银面的高程分别为z 1=, z 2=, z 3=m, z 4=m, 水银密度 3/13600m kg ρ=',水的密度3/1000m kg ρ= 。
试求水面的相对压强p 0。
解:ap z z γz z γz z γp =-----+)(')(')(3412100)()('1034120z z γz z z z γp ---+-=∴例2:用如下列图的倾斜微压计测量两条同高程水管的压差。
该微压计是一个水平倾角为θ的Π形管。
测压计两侧斜液柱读数的差值为L=30mm ,倾角θ=30∘,试求压强差p 1 – p 2 。
解: 224131)()(p z z γz z γp =-+-- θL γz z γp p sin )(4321=-=-∴例3:用复式压差计测量两条气体管道的压差〔如下列图〕。
两个U 形管的工作液体为水银,密度为ρ2 ,其连接收充以酒精,密度为ρ1 。
如果水银面的高度读数为z 1 、 z 2 、 z 3、z 4 ,试求压强差p A – p B 。
解: 点1 的压强 :p A )(21222z z γp p A --=的压强:点)()(33211223z z γz z γp p A -+--=的压强:点 B A p z z γz z γz z γp p =---+--=)()()(3423211224 )()(32134122z z γz z z z γp p B A ---+-=-∴例4:用离心铸造机铸造车轮。
求A-A 面上的液体总压力。
解: C gz r p +⎪⎭⎫ ⎝⎛-=2221ωρ a p gz r p +⎪⎭⎫ ⎝⎛-=∴2221ωρ在界面A-A 上:Z = - ha p gh r p +⎪⎭⎫⎝⎛+=∴2221ωρ⎪⎭⎫⎝⎛+=-=∴⎰2420218122)(ghR R rdr p p F a Rωπρπ例5:在一直径d= 300mm ,而高度H=500mm 的园柱形容器中注水至高度h 1 = 300mm ,使容器绕垂直轴作等角速度旋转。
流体力学习题解答

流体⼒学习题解答第⼀章习题答案选择题(单选题)1.1 按连续介质的概念,流体质点是指:(d )(a )流体的分⼦;(b )流体内的固体颗粒;(c )⼏何的点;(d )⼏何尺⼨同流动空间相⽐是极⼩量,⼜含有⼤量分⼦的微元体。
1.2 作⽤于流体的质量⼒包括:(c )(a )压⼒;(b )摩擦阻⼒;(c )重⼒;(d )表⾯张⼒。
1.3 单位质量⼒的国际单位是:(d )(a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。
1.4 与⽜顿内摩擦定律直接有关的因素是:(b )(a )剪应⼒和压强;(b )剪应⼒和剪应变率;(c )剪应⼒和剪应变;(d )剪应⼒和流速。
1.5 ⽔的动⼒黏度µ随温度的升⾼:(b )(a )增⼤;(b )减⼩;(c )不变;(d )不定。
1.6 流体运动黏度ν的国际单位是:(a )(a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ?。
1.7 ⽆黏性流体的特征是:(c )(a )黏度是常数;(b )不可压缩;(c )⽆黏性;(d )符合RT p=ρ。
1.8 当⽔的压强增加1个⼤⽓压时,⽔的密度增⼤约为:(a )(a )1/20000;(b )1/10000;(c )1/4000;(d)1/2000。
1.9 ⽔的密度为10003kg/m ,2L ⽔的质量和重量是多少?解:10000.0022m V ρ==?=(kg )29.80719.614G mg ==?=(N )答:2L ⽔的质量是2kg ,重量是。
体积为3m 的油料,重量为4410N ,试求该油料的密度是多少?解:44109.807899.3580.5m G g V V ρ====(kg/m 3)答:该油料的密度是m 3。
1.11 某液体的动⼒黏度为Pa s ?,其密度为8503/kg m ,试求其运动黏度。
解:60.005 5.88210850µνρ-===?(m 2/s )答:其运动黏度为65.88210-?m 2/s 。
流体力学例题讲解

第1章 流体运动基本方程
1.8 运动方程
【例题】如图,水在双喷嘴中流动,试求水对喷嘴作用的合力大小及方向。两个
喷嘴的射流速度都是12m/s,导管轴线以及两个喷嘴的轴线都在一个水平面
内, d1 0.15m d2 0.10m d3 0.0,75不m计摩擦 1。000kg / m3
解:由连续方程得 A1V1 A2V2 A3V3
26.2
0.12m3
/
s
V2
Q A2
0.12 0.1002
15.29m / s
4
在2、3面间应用伯努利方程
p2
15.29 2
26 .2 2
3
06
1018 9.81 2 9.81
2 9.81
1.8 运动方程
p2 260 kPa
Fx p2 A2 p3 A3 cos200 Fx Q(V3 cos200 V2 )
g
p1 37.3kPa
p1 A1 0.659 kN
第1章 流体运动基本方程
Fx p1 A1 0 Fx Q2V2x Q3V3x Q1V1x
1.8 运动方程
V2x 12 cos150 11.59m / s V3x 12 cos 300 10.39m / s V1x 8.33m / s
1 (
2 x
u ) y
1 [ c(x2 y2 ) 2 (x2 y2)2
c(x2 y2 ) ] 0 (x2 y2)2
表明除在坐标原点,x、y=0, 未确z 定之外,其余流动的
旋转角速度均为零。
★ 流体微团是否作旋转运动?
第1章 流体运动基本方程
1.6 流体本构方程
【例题】已知粘性流动的速度场为 V 5x 2 yzi 3xy 2 zj 8xyz 2k
流体力学题及问题详解

C (c) 盛有不同种类溶液的连通器DC D水油BB (b) 连通器被隔断AA(a) 连通容器1. 等压面是水平面的条件是什么?2. 图中三种不同情况,试问:A-A 、B-B 、C-C 、D-D 中哪个是等压面?哪个不是等压面?为什么?3 已知某点绝对压强为80kN/m 2,当地大气压强p a =98kN/m 2。
试将该点绝对压强、相对压强和真空压强用水柱及水银柱表示。
4. 一封闭水箱自由表面上气体压强p 0=25kN/m 2,h 1=5m ,h 2=2m 。
求A 、B 两点的静水压强。
速?答:与流线正交的断面叫过流断面。
过流断面上点流速的平均值为断面平均流速。
引入断面平均流速的概念是为了在工程应用中简化计算。
8.如图所示,水流通过由两段等截面及一段变截面组成的管道,试问:(1)当阀门开度一定,上游水位保持不变,各段管中,是恒定流还是非恒定流?是均匀流还是非均匀流?(2)当阀门开度一定,上游水位随时间下降,这时管中是恒定流还是非恒定流?(3)恒定流情况下,当判别第II 段管中是渐变流还是急变流时,与该段管长有无关系?9 水流从水箱经管径分别为cmd cm d cm d 5.2,5,10321===的管道流出,出口流速sm V /13=,如图所示。
求流量及其它管道的断面平均流速。
解:应用连续性方程(1)流量:==33A v Q 4.91s l /103-⨯(2) 断面平均流速s m v /0625.01=,s m v /25.02= 。
10如图铅直放置的有压管道,已知d 1=200mm ,d 2=100mm ,断面1-1处的流速v 1=1m/s 。
求(1)输水流量Q ;(2)断面2-2处的平均流速v 2;(3)若此管水平放置,输水流量Q 及断面2-2处的速度v 2是否发生变化?(4)图a 中若水自下而上流动,Q 及v 2是否会发生变化?解:应用连续性方程 (1)4.31=Q s l / (2)s m v /42= (3)不变。
流体力学例题解答

Z1
因为 Z1 Z 2 0
水
p1
u p u 1 Z 2 2 2 (1) 2g 水 2g
2
2
u1 umax
u2 0
(1)式整理为
umax 2g
2
p 2 p1
水
(2)
4) 由流体静力学可知,选取等压面A-A1, B-B1, C-C1,如图所示,设高度为h 分别列等压面左右两边的流体平衡公式,可得 A A1 C B B1 C1 h 等压面A-A1
4
昼夜供水量: V
24 3600 Q 24 3600 0.00455 392.7m3
3
1 H 1 B H h 12 s i n 60 [ 2 ] 1 H H s i n60 s i n60 B 2 s i n60 s i n60 h H H 3.464m s i n60 2 s i n60 6 s i n60
由计算可知,重油在40℃时流动比在10 ℃时流动的水头损失小。
例题 4-2 某厂自其高位水池加装一条管路,向一个新建的居民点用水池供水,如 图所示。已知H=40m,管径d=50mm,弯管l/R=0.5,是普通镀锌管(△
=0.4mm)。问在平均温度为20℃时,这条管路在一个昼夜中能供水多
少水量?
解:求供水量,即流量,须先求出流速。
求A B两点的压强差
图中1-1,2-2和3-3均为等压面,根据流体静压强计算公式, 可以逐个写出每一点的静压强,分别为
p1 p A 1 gh1 p2 p1 3 gh2 p3 p2 2 gh3 p4 p3 3 gh4 p B p4 1 g h5 h4
D 2
流体力学经典习题解答以及经典试卷及详细解答

第1章 绪论1.1 若某种牌号的汽油的重度γ为7000N/m 3,求它的密度ρ。
解:由g γρ=得,3327000N/m 714.29kg/m 9.8m /m γρ===g1.2 已知水的密度ρ=997.0kg/m 3,运动黏度ν=0.893×10-6m 2/s ,求它的动力黏度μ。
解:ρμ=v 得,3624997.0kg/m 0.89310m /s 8.910Pa s μρν--==⨯⨯=⨯⋅ 1.3 一块可动平板与另一块不动平板同时浸在某种液体中,它们之间的距离为0.5mm ,可动板若以 0.25m/s 的速度移动,为了维持这个速度需要单位面积上的作用力为2N/m 2,求这两块平板间流体的动力黏度μ。
解:假设板间流体中的速度分布是线性的,则板间流体的速度梯度可计算为13du u 0.25500s dy y 0.510--===⨯ 由牛顿切应力定律d d uyτμ=,可得两块平板间流体的动力黏度为 3d 410Pa s d yuτμ-==⨯⋅1.4上下两个平行的圆盘,直径均为d ,间隙厚度为δ,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以角速度ω旋转,求所需力矩T 的表达式。
题1.4图解:圆盘不同半径处线速度 不同,速度梯度不同,摩擦力也不同,但在微小面积上可视为常量。
在半径r 处,取增量dr ,微面积 ,则微面积dA 上的摩擦力dF 为du r dF dA2r dr dz ωμπμδ== 由dF 可求dA 上的摩擦矩dT32dT rdF r dr πμωδ==积分上式则有d 43202d T dT r dr 32πμωπμωδδ===⎰⎰1.5 如下图所示,水流在平板上运动,靠近板壁附近的流速呈抛物线形分布,E 点为抛物线端点,E 点处0d =y u ,水的运动黏度ν=1.0×10-6m 2/s ,试求y =0,2,4cm 处的切应力。
(提示:先设流速分布C By Ay u ++=2,利用给定的条件确定待定常数A 、B 、C )题1.5图解:以D 点为原点建立坐标系,设流速分布C By Ay u ++=2,由已知条件得C=0,A=-625,B=50则2u 625y 50y =-+ 由切应力公式du dyτμ=得du(1250y 50)dy τμρν==-+ y=0cm 时,221510N /m τ-=⨯;y=2cm 时,222 2.510N /m τ-=⨯;y=4cm 时,30τ= 1.6 某流体在圆筒形容器中。
流体力学答案解析

流体力学答案解析题目:一不可压缩流体在水平管道内作稳定流动,管道截面由圆形逐渐扩大为方形,入口直径为d,出口边长为a。
已知入口流速为v1,入口处的压力为p1,求出口处的流速v2和压力p2。
解析:首先,根据连续性方程,流体在管道内的流速和截面积之间存在以下关系:A1v1 = A2v2其中,A1和A2分别为入口和出口的截面积。
由于管道截面由圆形变为方形,我们可以分别计算两个截面的面积。
入口截面积A1 = π(d/2)^2出口截面积 A2 = a^2将上述面积代入连续性方程,得到:π(d/2)^2 v1 = a^2 v2解得:v2 = (π(d/2)^2 v1) / a^2接下来,我们应用伯努利方程,该方程描述了流体在流动过程中速度、压力和高度之间的关系。
在水平管道中,高度不变,因此伯努利方程简化为:p1/ρ + v1^2/2 = p2/ρ + v2^2/2其中,ρ为流体的密度。
将v2的表达式代入伯努利方程,得到:p1/ρ + v1^2/2 = p2/ρ + (π(d/2)^2 v1)^2 /(2a^2ρ)化简得到:p2 = p1 + ρ(v1^2 - v2^2)/2将v2的表达式代入上式,得到:p2 = p1 + ρ(v1^2 - (π(d/2)^2 v1)^2 /(2a^2ρ))/2化简得到:p2 = p1 + (ρ/2)(v1^2 - (π(d/2)^4 v1^2) / (2a^2))进一步化简得到:p2 = p1 + (ρ/2)(v1^2(1 - (π(d/2)^4) / (2a^2)))至此,我们已经求得了出口处的流速v2和压力p2。
以下是对解题过程的详细解析:1. 连续性方程的应用:连续性方程是流体力学中的一个基本原理,描述了流体在流动过程中质量守恒的关系。
在本题中,由于流体是不可压缩的,因此在流动过程中质量守恒。
根据连续性方程,我们可以求出出口处的流速v2。
2. 伯努利方程的应用:伯努利方程是流体力学中的一个重要方程,描述了流体在流动过程中速度、压力和高度之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H
pa
2 1 v1
2g
0
pa
2 v2 2
2g
h f hr
由已知条件可知,v1=v2≈0 ∴H=hf+hr
管道进口的局部阻力系数 90°圆弯管 闸板阀 (全开) 管道 出口
即: 故:
ξ1=0.5 ξ2=0.294*2=0.588 ξ3=0.1 ξ4=1.0
将上式逐个代入下一个式子
pB pA 1gh1 3 gh2 2 gh3 3 gh4 1g h5 h4
整理后得A,B两点的压强差
p A pB 1 g h5 h4 3 gh4 2 gh3 3 gh2 1 gh1
9806 0.5 0.3 133400 0.3 7850 0.2 133400 0.25 9806 0.6 67867 Pa
由图可看出,
x
H h 3 1 2.31m tan 60 tan 60
根据力矩平衡: 当闸门刚刚转动时,力P、T对铰链A的力矩代数和应为零。即
M A Pl Tx 0
T Pl 50 .92 3.464 76 .36 KN x 2.31
[例题3.1] 物体绕流如图所示,上游无穷处流速 u 4.2m / s , 压强为 p 0 的 水流收到迎面物体的阻碍后,在物体表面上的顶冲点S处的流速减至零, 压强升高,称S点位滞流点或驻点。 求点S处的压强。
ps 0.9mH2 0 8.83kPa
故,滞流点S处的压强
[例题3.2]
在D=150mm的水管中,装一带水银压差计的毕托管,用来测量管轴心处 的流速,如下图所示,管中流速均速V为管轴处流速u的0.84倍,如果 1、2两点相距很近而且毕托管加工良好,不计水流阻力。求水管中的流 量。
解: 1) 取管轴线设置水平基准面,过水断面1-1, 2-2经过1、2两点并垂直于流向。 2)水流经1、2两点时没有能量损失, 基准面 3)列出1点到2点的无粘性流体伯努利方程:
Z1
因为 Z1 Z 2 0
水
p1
u p u 1 Z 2 2 2 (1) 2g 水 2g
2
2
u1 umax
u2 0
(1)式整理为
umax 2g
2
p 2 p1
水
(2)
4) 由流体静力学可知,选取等压面A-A1, B-B1, C-C1,如图所示,设高度为h 分别列等压面左右两边的流体平衡公式,可得 A A1 C B B1 C1 h 等压面A-A1
习题1-1
一底面积为40cm*45cm,高1cm的木块,质量为5kg,沿涂有润滑油的斜面向下 作匀速运动,木块运动速度u=1m/s,油层厚度1mm,斜坡角θ=22.62°,由木 块所带动的油层的速度呈直线分布,求油的粘度
θ
解:木块重量沿斜坡分力 F与剪切力 T 平衡时,匀速下滑
m g sin T A
由计算可知,重油在40℃时流动比在10 ℃时流动的水头损失小。
例题 4-2 某厂自其高位水池加装一条管路,向一个新建的居民点用水池供水,如 图所示。已知H=40m,管径d=50mm,弯管l/R=0.5,是普通镀锌管(△
=0.4mm)。问在平均温度为20℃时,这条管路在一个昼夜中能供水多
少水量?
解:求供水量,即流量,须先求出流速。
40 ℃ 的雷诺数为:
重油的流动状态均为层流,有达西公式可得相应的沿程水头损失为:
l V 2 64 l V 2 64 1000 0.9712 h f1 1 88.1m油柱 d 2 g Re1 d 2 g 116.5 0.3 2 9.8 l V 2 64 l V 2 64 1000 0.9712 h f 2 2 5.28m油柱 d 2 g Re2 d 2 g 1942 0.3 2 9.8
p A p1 水 (h h) p A1
等压面B-B1
(3)
pB p A1 水银h pB1
等压面C-C1
(4)
pC pB1 pC 1 p2 水 h
联立等式(3)、 (4)、 (5)可得
p2 p1= ( 水银- 水 )h
(5)
(6)
5)将式(6)代入式(2)可得:
u p
S
解:设滞流点S处的压强为Ps,粘性作用可以忽略。 根据通过S点的流线上伯努利方程,有:
ps u 2 s u2 z zs 2g 2g p
有
z z s
ps
代入数据,可得:
u2 u2 s 4.22 0.9m 2 g 2 g 2 9.8 p
4
昼夜供水量: V
24 3600 Q 24 3600 0.00455 392.7m3
D 2
(8)
[例题3.3]
某污水处理厂从高位水池引出一条供水管路AB,如图所示。 已知:流量Q=0.04米3/秒;管径D=300mm;压力表读数 pB=9.8 ×104pa,高度H=20m。求水流在管路AB中水头损失?
解:选取水平基准面O-O,过水断面1-1、2-2。设单位重量的水自 断面1-1沿管路AB流到B 点,
du dy
m gsin 5 9.8 sin 22.62 0.1047 ( Pa s) u 1 A 0.4 0.45 0.001
例题2-1
h4 =300mm 如图所示,已知 h1 600mm h2 250mm,h3 200mm,
3 3 3 h5 =500mm 1 1000 kg m ,2 800 kg m ,3 13598 kg m
2 9.8 40 v 2.316(m/s) 4000 0.036 2.188
2.316 0.05 5 Re 1 . 15 10 0.01007 10 4 vd
由△/d及Re,返回查莫迪图,管中流动确实属于过渡区,并且λ的取值 也是合适的。
管中流量: Q Av 0.05 2 2.316 0.00455 m 3 s
u max
2g
h
水
( 水 银 - 水 )
2 9.8
0.02 (133280 9800 ) 2.22 m / s (6) 9800
6)由此可得管中流速均速V V=0.84umax=0.84×2.22=1.87 水管中的流量为
m/s
(7)
3.14 0.152 Q VA 1.87 1.87 0.033m 3 / s 4 4
例题2-2
如图所示为烟气脱硫除尘工程中的气水分离器,其右侧装一个水银U 型测压管,量得△h=200mm,此时分离器中水面高度H为多少?
解:分离器中水面处的真空度为
pV Hg h 133280 0.2 26656 Pa
自分离器到水封槽中的水,可以看成是静止的,在A、B两点列出 流体静力学基本方程:
,
则可列出伯努利方程:
z1+
p1
+
1v12
2g
=z 2+
p2
+
p1ቤተ መጻሕፍቲ ባይዱ
2v 2 2
2g
+ hl
因为:z1=H=20米,z2=0,
0
p2
pB
49000 5米 9800
v2=Q/A=1.92米/秒 取α1=α2=1,v1=0 则:20 + 0 + 0 = 0 + 5 + 1.922/19.6 + hl 故 hl=14.812(米)
例题 4-1
在长度l=1000m、直径d=300mm的管路中输送重度为9.31kN/M3
10 的重油,其重量流量为G=2300kN/h,求油温分别为
℃(
2/s)和 25cm
2/s)时的水头损失? G 2300 3 油温 40 ℃ ( 1.5cm Q 0.0686m S 解:管中重油的体积流量为 9.31 3600
3
1 H 1 B H h 12 s i n 60 [ 2 ] 1 H H s i n60 s i n60 B 2 s i n60 s i n60 h H H 3.464m s i n60 2 s i n60 6 s i n60
求A B两点的压强差
图中1-1,2-2和3-3均为等压面,根据流体静压强计算公式, 可以逐个写出每一点的静压强,分别为
p1 p A 1 gh1 p2 p1 3 gh2 p3 p2 2 gh3 p4 p3 3 gh4 p B p4 1 g h5 h4
1 2 3 4 2.188
v2 v2 H h f hr ( ) (4000 2.188) d 2g 2g
l
管道的相对粗糙度 △/d= 0.4/50=0.008,假定此管中流动属于过渡区,查 莫迪图,暂取λ=0.036 可得:
0 0
pa
H H pV
pB
pa
pa pV
故: H
26656 2.72m 9800
例题2-3
如图所示,倾斜闸门AB,宽度B为1m(垂直于图面),A处为铰链轴,整个 闸门可绕此轴转动。已知水深H=3m,h=1m,闸门自重及铰链中的摩擦力 可略去不计。求升起此闸门所需垂直向上的力。
解:就平面壁来说,其左、右两侧都承受P0的作用,互相抵消其影响,总压力为
P hc A
H H B 2 s i n60 1 3 9800 3 1 2 s i n60 50922 N