微滤在水处理的应用..
微滤及其在水处理中的应用

微滤及其在水处理中的应用
微滤技术是一种过滤技术,其将液体通过一定的压力和滤芯,经过晶
体或植物细胞壁、抗原和抗体等分子被筛选出来。
其可以把微小的悬浮物
和有机污染物从水中筛出来,把水过滤到可以安全饮用的标准。
微滤技术在水处理中已经被广泛应用。
它可以有效减少微生物、悬浮物、污染物、有机物及重金属等污染。
它可以有效去除水中颗粒物质,使
得水能够通过滤芯,从而把水中有害物质滤除,使水变得透明和清澈。
微滤技术还可以用于净化污水,提高水的质量,使污水变得更加安全。
微滤技术可以有效降低水中有机物、重金属离子、悬浮物等污染物的浓度,使污水能够被安全释放到大气和水体中。
微滤技术在水处理中的应用是非常重要的。
它不仅可以有效去除水中
的有害物质,提高水的质量,使水中的污染物浓度降低;而且可以减少对
环境的污染,保证水的安全,为人们提供安全的饮用水。
膜(微滤、超滤、纳滤、反渗透)概述及其应用

膜(微滤、超滤、纳滤、反渗透)概述及其应用膜技术简介为了满足工业生产和饮用水方面的要求,各种膜的技术应运而生。
它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。
膜是具有选择性分离功能的材料,利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。
膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要是陶瓷膜和金属膜,其过滤精度较低,选择性较小。
有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。
微滤(MF)又称微孔过滤,它属于精密过滤,其基本原理是筛孔分离过程。
微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙稀、聚碳酸酯、聚砜、聚酰胺等。
无机膜材料有陶瓷和金属等。
鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。
对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1~1微米,故微滤膜能对大直径的菌体、悬浮固体等进行分离。
可作为一般料液的澄清、保安过滤、空气除菌。
超滤(UF)是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1000um分子量之间。
超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,超滤过程通常可以理解成与膜孔径大小相关的筛分过程。
以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、浓缩的目的。
对于超滤而言,膜的截留特性是以对标准有机物的截留分子量来表征,通常截留分子量范围在1000~300000,故超滤膜能对大分子有机物(如蛋白质、细菌)、胶体、悬浮固体等进行分离,广泛应用于料液的澄清、大分子有机物的分离纯化、除热源。
微滤技术的原理及应用

微滤技术的原理及应用1. 引言微滤技术是一种在水处理、食品加工、制药等领域得到广泛应用的技术。
本文将介绍微滤技术的原理及其在不同领域中的应用。
2. 原理微滤技术是一种物理过滤技术,通过使用微孔直径在0.1至10微米之间的微滤膜,将悬浮物、微生物和大分子物质等颗粒分离出来。
微滤膜通常由陶瓷、聚酯、聚丙烯等材料制成,具有良好的孔径分布和较高的孔隙率。
微滤膜的孔径比一般滤膜要小,因此可以更好地过滤微小颗粒。
当水或其他溶液通过微滤膜时,颗粒物质被截留在膜表面,而清洁的液体则从膜的另一侧通过。
微滤膜具有高效的截留能力,能够过滤掉细菌、病毒、微生物、悬浮固体等物质。
3. 应用领域3.1 水处理微滤技术在水处理行业中得到广泛应用。
它可以过滤掉自来水中的病毒、细菌、悬浮物和有机物,从而使水更加洁净和安全。
微滤膜可以用于制备纯水、超纯水,以及用于饮用水、制药、电子半导体等特殊用途的水质处理。
3.2 食品加工在食品加工过程中,微滤技术可以用来去除原料中的颗粒物质、微生物和悬浮物,提高食品的质量和安全性。
常见的应用包括果汁和饮料的澄清、乳制品的脱脂、啤酒和葡萄酒的净化等。
3.3 制药微滤技术在制药行业中扮演着重要的角色。
它可以用来分离和纯化药物原料中的微生物和杂质,以及用于制备注射用水和注射剂等高纯度药物的生产。
微滤技术能够确保药品的纯度、安全性和稳定性。
3.4 生物技术在生物技术领域,微滤技术被广泛应用于细胞培养、蛋白质纯化和基因工程等过程中。
它可以去除细胞碎片、代谢产物和微生物,提高培养物的纯度和质量。
微滤技术还可以用于分离和富集目标蛋白质或基因,为后续的研究和应用提供高纯度的样品。
4. 结论微滤技术是一种重要而广泛应用的过滤技术,其原理简单而高效。
在水处理、食品加工、制药和生物技术等领域中,微滤技术可以提供清洁、安全和高纯度的液体和样品,促进相关行业的发展。
未来随着技术的进一步发展,微滤技术将会有更广阔的应用前景。
污水处理过程中的水循环利用技术有哪些

污水处理过程中的水循环利用技术有哪些在当今社会,水资源的合理利用和保护成为了至关重要的课题。
随着城市化进程的加速和工业的快速发展,污水的产生量不断增加。
然而,通过先进的技术手段,对污水进行有效处理并实现水循环利用,不仅可以缓解水资源短缺的压力,还能减少对环境的污染。
接下来,让我们一起探讨污水处理过程中的水循环利用技术。
一、物理处理技术物理处理技术是污水处理中的基础环节,常见的方法包括格栅过滤、沉淀和过滤等。
格栅过滤主要用于去除污水中较大的悬浮物和杂质,如树枝、塑料垃圾等。
通过格栅的阻挡作用,这些较大的物体被拦截下来,防止它们进入后续的处理设备,造成堵塞和损坏。
沉淀则是利用重力作用,使污水中的固体颗粒在沉淀池中逐渐下沉,形成污泥。
上清液则可以进一步处理或直接回用。
这种方法简单有效,对于去除较大颗粒的污染物效果显著。
过滤技术通常采用砂滤、活性炭过滤等方式。
砂滤通过细小的砂粒层过滤掉污水中的微小颗粒和杂质,活性炭过滤则能够吸附污水中的有机物和异味,提高水质。
二、化学处理技术化学处理技术在污水处理中发挥着重要作用,常见的有混凝沉淀、化学氧化和中和等。
混凝沉淀是向污水中添加混凝剂,使污水中的微小颗粒和胶体物质凝聚成较大的颗粒,然后通过沉淀去除。
混凝剂能够改变污染物的表面电荷和稳定性,促进它们的聚集和沉淀。
化学氧化则是利用氧化剂,如过氧化氢、高锰酸钾等,将污水中的有机物氧化分解为无害物质。
这种方法对于去除难以生物降解的有机物具有较好的效果。
中和主要用于处理污水中的酸碱度。
当污水的pH 值过高或过低时,通过添加酸或碱来调节 pH 值,使其达到合适的范围,以便后续的处理和回用。
三、生物处理技术生物处理技术是利用微生物的代谢作用来降解污水中的有机物和营养物质,是污水处理中最为常用和有效的方法之一。
活性污泥法是一种广泛应用的生物处理技术。
在曝气池中,微生物与污水充分接触,通过吸附、吸收和分解等过程,将有机物转化为二氧化碳、水和微生物细胞。
微孔滤膜过滤技术

微孔滤膜过滤技术摘要:微孔滤膜过滤技术作为一门新型的高效分离、浓缩、提纯及净化技术, 近30 年来发展迅速, 已经在石油化工、轻工纺织、食品、医药、环保等多个领域得到广泛应用[1] 。
膜分离技术具有操作简单、占地面积小, 处理过程中无相变及不会产生新的污染物质、分离效果好等优点, 近年来在水处理领域中得到广泛应用。
本文就膜过滤的研究进展,膜材料以及它的应用作简要综述。
关键词:微孔滤膜; 过滤技术; 除菌;应用正文:20 世纪80 年代以来,生命科学和生物工程技术的发展日新月异,生物产品(如酶、抗体、抗原、受体) 的种类越来越多. 这些制品通常是从发酵液中或天然产品中提取,再经纯化而得到的产品. 由于目标产物产量小,通常又与底物、细胞等混杂在一起,浓度很低,且生物产品与传统的化工产品不一样,它们一般都具有生物活性,对分离操作条件要求比较苛刻. 传统的化工分离方法如精馏、沉降、结晶等都难以达到要求.膜分离是20 世纪60 年代以来发展较快的一项分离技术,它具有操作条件温和、无污染、无相变等特点,在许多方面都得到了应用,象微滤、超滤已应用于生物化工和医药行业中. 膜分离是根据分子大小不同来实现分离的,一般相对分子质量相差10倍以上的物系才具有分离作用,因此它还远远不能满足生化分离的需要. 而生物亲和作用是生物分子之间的可逆专一性识别作用,具有极高的选性.[2]20 世纪70 年代以来,利用生物亲和相互作用,分离蛋白质等生物大分子的亲和纯化技术迅速发展. 其中亲和层析技术已得到广泛应用,但是亲和层析法亦存在许多难以克服的缺点: 1) 亲和载体价格昂贵,使用寿命短;2) 色谱柱易堵塞和污染,需对原料进行预处理以除去颗粒性杂质;3) 难以实现连续操作和规模放大. 目前亲和层析法仅局限于价值极高的生物活性物质的小批量纯化. 为克服膜过滤和亲和层析的缺点,发展了亲和2膜过滤技术,不仅利用了生物分子的识别性能,分离低浓度的生物制品,而且微孔滤膜的渗透性及通量大,能在纯化的同时实现浓缩,此外还有操作方便、设备简单、便于大规模生产的特点,发展前景引人瞩目。
微滤水处理技术基础知识

微滤水处理技术基础知识目录1 微滤可以分离出哪些物质 (1)2 筛分、吸附、架桥 (1)2.1筛分 (1)2.2吸附 (1)2.3架桥 (1)2.4图示 (2)3 微滤两种操作模式 (2)3.1死端过滤 (2)3.1.1 死端过滤的定义 (2)3.1.2 死端过滤的特点 (2)3.2错流过滤 (2)3.2.1 错流过滤的定义 (2)3.2.1 错流过滤的特点 (3)3.2.2 膜表面的浓差极化 (3)4 微滤膜的材料 (3)5 微滤的应用领域 (4)5.1饮用水处理 (4)5.1.1 过滤去除病原微生物 (4)5.1.2 混凝+微滤组合 (4)5.2纯水制备 (4)5.3城市污水回用实例1 (5)5.3.1 工艺流程简图 (5)5.3.2 微滤运行说明 (5)5.4城市污水回用实例2 (6)5.4.1 工艺流程简图 (6)5.4.2 微滤运行说明 (6)6 微滤膜的污染 (6)6.1脉冲反冲洗 (7)6.2化学清洗 (7)7 结语 (7)1微滤可以分离出哪些物质微滤(MF)是以多孔膜为过滤介质,在0.1~0.3MPa压力的推动下,分离出溶液中那些尺寸大于0.1微米的物质,例如微滤可以分离出溶液中的砂砾、淤泥、黏土等颗粒以及贾第虫、隐孢子虫、藻类和一些细菌等。
2筛分、吸附、架桥微滤膜的截留机理主要有三种:筛分、吸附和架桥。
筛分、吸附和架桥既可以发生在膜表面,也可发生在膜内部。
2.1筛分筛分属于机械截留,膜拦截比其孔径大或与孔径相当的微粒。
2.2吸附吸附属于物理化学作用,即使微粒尺寸小于膜孔径也能通过物理化学作用而被膜吸附。
2.3架桥架桥指的是多个微粒相互推挤,导致大家都不能进入膜孔或卡在孔中不能动弹。
2.4图示图2-1微滤膜截留机理示意图3微滤两种操作模式3.1死端过滤3.1.1死端过滤的定义待过滤的溶液流动方向与膜表面垂直的过滤方式称为死端过滤。
3.1.2死端过滤的特点在死端过滤方式下,滤饼层随着过滤时间的增加迅速增厚,溶液透过量也迅速下降。
微滤安全操作保养规程

微滤安全操作保养规程微滤器是目前最常用的物理水处理设备之一,在饮用水、工业用水和医药水的处理中都有着重要的应用。
虽然微滤器对于水质提升和物质过滤有着良好的效果,但其使用不当也会造成水质污染和人身伤害。
因此,在每次使用和保养微滤器时,必须严格遵守以下安全操作规程。
一、安全操作1. 设备启动在启动微滤器之前,应检查滤芯是否安装到位,或是否损坏。
如果发现滤芯有缺陷或者老化严重,需要及时更换。
启动微滤器时,必须检查水流方向是否正确,确保水从进水口流入,从出水口流出,避免反向渗透时造成污染。
2. 运行时在微滤器运行时,应定期检查进出水口安全阀门和流量计的运行情况,同时注意观察微滤器运行状态。
如发现滤芯压力过高,则需要进行清洗或更换滤芯。
此外,在清洗微滤器时不应使用尖锐的器具在滤芯表面刮擦,以免刮坏滤芯。
若需要维修,必须在停机状态下进行。
3. 停止时在停止微滤器使用时,应关闭进出水口安全阀门,并将排污阀打开,使器内水流完毕。
在进行清洗和维护时,必须先切断微滤器的电源,以防止电击等意外伤害。
二、日常保养1. 定期清洗微滤器的滤芯在使用过程中会因为水中溶解物或细菌、病毒等沉淀物的影响而产生堵塞、积垢等情况。
如果长时间不清洗,将会影响微滤器的过滤效果。
因此,定期清洗是必不可少的保养措施。
清洗微滤器时,首先需要关闭流量开关,然后打开排污阀,放出污水并关闭排污阀,接下来再将清洗剂加入容器中,开启微滤器,让清洗剂通过滤芯,清洗时间为30-60 分钟。
清洗完后,用清水反冲几次,彻底冲洗清洗剂和残留物后,再重新启用微滤器。
2. 滤芯更换如果微滤器的过滤效果下降,或者发现滤芯表面有破损、断裂等情况,需要及时更换滤芯。
更换滤芯时,需要将微滤器内的水排净,并将电源断开,然后按照说明书的要求进行更换。
3. 备用装置为确保微滤器的正常运行,在使用期间,应该保留备用装置。
当微滤器发生故障,或需要维修和更换滤芯时,可以随时切换到备用装置进行维护,防止影响正常生产或生活用水。
高效微滤机工作原理

高效微滤机工作原理
高效微滤机的工作原理主要是基于微孔滤芯的过滤作用。
首先,水源通过进水管道进入高效微滤机,经过预处理后进入微滤芯。
微滤芯通常采用陶瓷、石英、聚酯薄膜等材料制成,具有微细的孔隙结构。
微滤芯的孔径一般在0.1-10微米之间,可以有效地过滤掉水中的悬浮颗粒、泥沙、微生物、细菌等固体颗粒和微生物。
当水通过微滤芯时,由于芯片上的孔隙非常小,大多数固体颗粒和微生物会被阻挡在滤芯表面,而干净的水则能够通过滤芯的孔隙,进入滤芯内部。
微滤芯内部通常还设有一种纳米级表面处理技术,能够增强滤芯的吸附能力,进一步过滤掉微小的颗粒和微生物,提高过滤效果。
此外,微滤芯还能够有效去除水中的浑浊度、异色、异味等,使水质变得清澈透明。
在实际使用中,高效微滤机还会配备自动冲洗装置,定期对滤芯进行冲洗,以清除滤芯表面的杂质,保证其过滤效果。
同时,高效微滤机还设有出水管道,将过滤后的干净水输出给用户。
总之,高效微滤机借助微滤芯的微孔过滤作用,能够有效地去除水中的固体颗粒和微生物,提供干净、清澈的水质供给。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• MF膜在过滤时介质不会脱落,没有杂质溶出,无 毒,使用方便,使用寿命较长,同时,膜孔分布均 匀,可将大于孔径的微粒、细菌、污染物截留在滤 膜表面,滤液质量较高,也称为绝对过滤 (Absolute Filtration)。适合于过滤悬浮的微粒和 微生物。
MF滤除微粒和微生物的效率
测试微 粒 直径/μm 脱除率 /% 球形SiO2 0.21 >99.99 球形聚苯乙烯 0.038 >99.99 0.085 100 细菌 0.1~0.4 100 热原 0.001 >99.997
常饮用的自来水往往存在着二次污染的问题,
这对我们的人身健康带灰很大的隐患。 采用MF技术制造的家用净水器,通过 MF膜的过滤不仅能有效去除水中的 铁锈、泥沙等肉眼可见物,还能截留 住水中的细菌、大肠杆菌等。
⑦、在水净化中的应用
工业废水处理 重金属废水主要来自矿山、冶炼、电解、电镀 、农药、医 药、油漆、颜料等企业排出的废水。重金属离子废水的处理有 很多种方法,如离子交换法、活性炭吸附法等等。其中,应用 最广泛的是化学沉淀一微滤膜工艺 ,它是一种将传统的化学沉 淀与微滤膜分离相结合的一种新的处理方法。由于微滤膜的孔 径通常大于0.1ton,不能直接截留重金属离子,所以该法先将 废液进行预处理,使金属离子沉淀,然后再用微滤膜过滤除去。 生活污水处理 生活污水是废水 排放 的主要来 源之一 ,污水中的有机污 染物是导致水体被污染 的主要原 因,同时废水 中的氮 、磷是 引起海洋 、湖泊 、河流和其它水体 富营养化 的主要营养物质。 污水经过二级生化处理后 ,仍有一些污染物质如营养型无机盐、 氮、磷、胶体、细菌、病毒、微量微生物、重金属以及影响回 用的溶解性物质不能完全去除 ,不同用途的二次水常需要深度 处理 。在众多的污水深度处理技术中,膜分离技术是最具有竞 有竞争力且前景广阔的方法 。 。
4.拦集作用:颗粒惯性较小时,将随气流进入膜孔,若膜孔壁附近的气体 以层流方式运动,因为流速小,颗粒将由于重力作用而沉积下来。
微滤分离示意图
水分子
离子
大分子
颗粒与胶体
(a)膜表面层截留
(b)膜内部截留 (网络中截留)
终 端 过 滤
两种微滤过程的通量与滤饼厚度随时间的变化关系
错 流 过 滤
(A)终端过滤或死端过滤 (Deal-end filtration or In-line filtration)
我国经多年努力,已研制出多种材质的系列孔径的MF膜元件,并形成
产业化规模,已广泛用于国内各大著名的饮料生产商,如旭日升、汇 源果汁、农夫果汁等企业。
④. 在电子工业中的应用 电子工业使用的流体包括气体和液体,过滤器大致分为气体过滤 器和液体过滤器。气体过滤器采用疏水性MF膜来从主体气体(氮、氧、 氢)和特殊气体(如硅烷、胂、磷化氢、氨)中去除粒子。液体过滤 器分成化学药剂过滤、光敏抗蚀剂过滤器及去离子水过滤器。 在电子工业中,对去离子水的要求很高,因此应选择离子水的水质,进而导致电 子元器件或集成电路板的报废。 MF膜在纯水制备中主要用处有两方面:一是在RO或ED前用作保安过 滤器,用以清除细小的悬浮物质;二是在阳/阴或混合交换柱后,作为 最后一级终端过滤手段,用它滤除树脂碎片或细菌等杂质。
2、MBR技术处理高氨氮味精废水
味精废水的特点是COD高,氨氮高。某味精企业,采用传统工艺处理废水难于 达标,同时由于水资源短缺制约企业的发展。通过采用MBR技术很好的解决了这一 问题。 原水COD在4000-5000mg/L,氨氮在180-400mg/L,经过UASB后,出水COD 可以控制在500mg/L以下,氨氮略有上升,主要是在厌氧阶段产生了氨化反应。 由于氨氮浓度高,设置缺氧段,目的实现脱氮,同时通过反硝化补充部分硝化 过程的碱度消耗。 MBR系统对COD、NH4-N处理效果可以看出,进水氨氮浓度范围195420mg/L,出水氨氮可以控制在1mg/L以下。硝化效果非常理想。进水COD在390700mg/L范围波动,产水COD平均65mg/L。 理论上MBR所用膜过滤精度与CMF一样,实际检测MBR出水SS几乎为零,但 是基于以下原因,MBR出水一般并不直接进入RO: (1) MBR工艺中膜所在溶液环境的污泥浓度通常7000-9000mg/L,生化池和膜 池在室外,一旦大的机械杂质进入造成膜破损会导致出水水质下降,进而增加反渗 透膜污染的风险。 (2)由于产水总氮含量较高,产水管路中易滋生藻类,造成出水SDI保持在3以 下有一定困难。因此在该项目中,在MBR之后采用CMF工艺作为RO预处理,脱盐 水回用于生产过程的循环冷却用水。根据物料恒算,RO回收率控制在60%以内, 可以使各项排放水指标(包括RO浓水)达到《味精工业污染物排放标准》 (GB1319431-2004)。这样处理后,既达到了排放标准,又实现污水循环利用,节 约了宝贵的水资源。
• MF膜的孔径对严格控制成膜条件和选择滤膜的最佳应用极为重 要。常用测定方法有压汞法、泡压法、气体流量法和已知颗粒 通过法等。许多商品膜标示孔径时,通常也都注明所用的测试 方法。
第四节、MF膜材料
• 疏水聚合物膜:聚四氟乙烯(PTFE)、聚偏二氟乙烯 (PVDF)、聚丙烯(PP) • 亲水聚合物膜:纤维素酯(CA和CTA)、聚碳酸酯 (PC)、聚砜/聚醚砜(PSF/PES)、聚酰亚胺/聚醚酰亚 胺(PI/PEI)、聚脂肪酰胺(PA) • 陶瓷膜:氧化铝、氧化锆、氧化钛、碳化硅
微滤(MF)的发展
• 微滤膜分离技术始于十九世纪中叶,是以静压差为推 动力,利用筛网状过滤介质膜的“筛分”作用进行分 离的膜过程。它主要用于从气相和液相悬浮液中截留 微粒、细菌及其它污染物,以达到净化、分离和浓缩 等目的。实施微孔过滤的膜称为微滤膜。 • 微滤膜是均匀的多孔薄膜,厚度在oo一150N.m左右, 过滤粒径在0.025一10 N,m之间,操作压在0. 01 --0. 2MPa。到目前为止,国内外商品化的微滤膜约有13 类,总计400多种。
MF分离机理
集体截留。
悬浮液中固液分离机理:
筛分截留:微滤膜将尺寸大于其孔径的固体颗粒或颗粒聚
吸附截留:微滤膜将尺寸小于孔径的固体颗粒通过物理或
化学吸附而截留。 架桥截留:固体颗粒在膜的微孔入口因架桥作用而被截留。 网络截留:发生在膜内部,由膜孔的曲折形成。 静电截留:采用带相反电荷的微滤膜。
⑤. 在油田注水的应用 在石油开采中,向低渗透油田实行早期注入高质量的水是对低 渗透油田补充能量,稳定产量的长期的根本保证。 在石油开采注水工艺中一个核心的环节是如何保证注入水的水 质,MF技术在其中已发挥了较大的作用,国内主要用PE烧结
微孔管、折叠式MF膜过滤芯及中空纤维UF组件等。
⑥. 在家庭生活中的应用 由于我国城市自来水供给系统在输送过程中的不完善,我们日
第一节、微滤(MF)概述
• Microfiltration,MF,又称微孔过滤,它属于精密过 滤,过滤精度一般在0.1-30微米,像常见的各种PP 滤芯,活性炭滤芯,陶瓷滤芯等都属于微滤范围,用 于简单的粗过滤,能去除水中的泥沙、铁锈等大颗粒 杂质,但不能去除水中的细菌、病毒、有机物、重金 属离子等有害物质、微滤膜通常安装在超滤膜和反渗 透膜前面,作为超滤净水机和RO纯水机的前置处理 器,他能有效保护好超滤膜和反渗透膜,延长整机寿 命。纳滤是净化水技术的首选,但因其不成熟性无法 得到推广。
第六节、三种工艺典型应用案例
1、工业污水再生水项目
国内采用双膜工艺实现工业废水再生,由于工业企业受一次水 用水指标的限制,为满足生产需要,将混合污水通过集成工艺实现 污水再利用。 原水:生活污水+炼钢废水+排污河水 处理规模:CMF72,000吨/天,RO50,000吨/天 系统运行时,微滤装置、反渗透装置均采用并联运行的方式, 微滤装置的水的利用率设计不小于94%,微滤装置出水污染指数 (SDI)小于3。反渗透装置产水回收率不小于75%,初期总脱盐率不 小于97%,三年后脱盐率不小于95%。 传统生化工艺处理后,污水经絮凝沉淀,进入CMF系统处理, 出水可直接回用于低端产品生产线,CMF后接RO除盐后产水用于 高端产品生产线的工艺用水。该项目由于进水为复杂的混合污水, 水质波动较大,需要根据水质变化情况对膜系统及时维护清洗。全 部的生产用水供给,总体状况良好,实现了复杂水体的循环再利用。
微滤膜可以截留水中大部分悬浮物、 胶体和细菌,其优点包括:
① 出水水质好且稳定; ② 处理装置紧凑 ; ③ 可以去除细菌等微生物,出水可以不用再经消毒处理; ④ 处理水中可以不添加混凝剂,因此无化学污泥产生; ⑤ 系统中需要处理的污泥量大大降低,在某些情况下, 可以省去建造二沉池; ⑥ 处理规模较小的系 统其成本比一般处理工艺低。
微滤膜的主要优点
• 孔径均匀,过滤精度高。能将液体中所有大 于制定孔径的微粒全部截留; • 孔隙大,流速快。一般微滤膜的孔密度为107 孔/cm2,微孔体积占膜总体积的70%-80%。 由于膜很薄,阻力小,其过滤速度较常规过 滤介质快几十倍; • 无吸附或少吸附。微孔膜厚度一般在90一 150gm之间,因而吸附量很少,可忽略不计。 • 无介质脱落。微滤膜为均一的高分子材料, 过滤时没有纤维或碎屑脱落,因此能得到高 纯度的滤液。
实验室MF膜中试设备
实验室小型MF膜设备
发酵液提取陶瓷膜成套设备
第五节、MF膜的应用
在工业发达国家,从家庭生活到尖端技术都在 不同程度上应用MF技术,其主要用于无菌液体的制 备、生物制剂的分离、超纯水的制备以及空气的过滤、 生物及微生物的检测等方面。 ①. 在医疗卫生领域中的应用 主要体现在药用水(包括纯净水、注射用水) 的过滤、小针剂及眼药液的精滤及终端过滤,血液过 滤,中草药液、后发酵液的澄清过滤,空气、蒸汽的 过滤等。在制药工业中,终端过滤的选择相当关键, 其去除效率取决于选择合适的滤膜材料、膜孔径及流 程。
气体中悬浮颗粒分离机理:
1.直接截留:同筛分机理。 2.惯性沉积:当小于膜孔径的颗粒随气体直线运动时,在膜孔处流线 将发生改变,对于质量较大的颗粒,由于惯性作用仍力图沿原方向运 动,这些颗粒可能因撞击在膜边缘或膜孔入口附近的孔壁上而被截留。 3.扩散沉积:由于非常小的颗粒具有强烈的布朗运动倾向,颗粒通过 膜孔时在孔道从而被截留。微滤膜孔径越小,微小颗粒与膜壁碰撞的 概率越大,颗粒越容易产生扩散沉积;气体流速越小 ,颗粒在孔道 中停留的时间越长,颗粒越容易产生扩散沉积。中容易因布朗运动而 与孔壁碰撞,