戴维南定理的解析与练习
戴维南定理受控源例题

戴维南定理受控源例题
首先,考虑到受控源,首先需要提出的就是首先,戴维森定理是一
个有趣的计算机科学定理。
它告诉我们,一组控制器从受控源获取数
据时,任何输入都可以快速复制成受控源的结果。
这是一个强大的定理,可以帮助我们解决一些难以解决的问题。
受控源例题:
1. 可以快速解决的例题:假设有一个受控源提供了三个输入,即a,b,c,按照这三个输入的顺序,分别找出它们的控制器,并记录其中的关
联性。
2. 复杂的例题:假设有一个受控源,其输入为1~10,并需要记录这些
数字之间的联系。
考虑到可能的复杂性,如何能够使用戴维森定理快
速地完成控制器的查找?
3. 受多种输入影响的例题,比如:受控源具有三个输入,分别是a,b,c,但它们不仅仅由一个控制器控制,而且还包括d和e两个输入,这
意味着控制器并不总是与一个输入一一对应,如何用戴维森定理快速
查找出与这五个受控源中的每一个输入相关的所有控制器?
通过戴维森定理,这样的复杂问题可以不需要大量计算即可有效地解决。
它的原理是:先将所有输入和输出记录下来,将它们作为一个矩阵,然后令每个矩阵的行或列代表一个受控源,然后它们作为矩阵的
列或行相乘,就可以得到所需的关联性了。
在计算机中,这种定理可
以用一组复杂的输入输出矩阵和快速的矩阵乘法算法来模拟,以实现
对受控源的有效解决。
总的来说,戴维森定理是一个非常有用的定理,用于解决受控源问题,不仅可以简化问题的建模,也能提高查找控制器的效率。
最后,如果
仔细观察,可能还可以将它应用于其他领域,以帮助我们解决若干更
复杂的解决方案。
戴维南定理讲解附实物图(1)

恒流 源
Return Return
五、实验设备(续)
端口特性用固定电阻
各种阻值的
分立电阻
可调电阻器
实验电 路
Return半压法用可调电阻
五、实验设备(续)
戴维南定理实验箱(DG05)
第一种:有插孔和小开关K
第二种:无插孔、无小开关
Return
五、实验设备(续)
电源(两路电压源,一路恒流源)
4、验证戴维南定理-自行连接等效电路,测量等效电路的 外特性 电路 ( 电压源= UOC, R0用变阻箱,串接电流表, 负载RL接分立电阻。)
四、实验电路
A
R2
R4
A
IS
+
R3
u
R1
-
B
- US +
有源网络
含源
+
二端 网络
V -
B
图2 半压法测量等效电阻
含源 二端 网络
图1 含源二端网络
A
mA
+
V -
RL
分立电阻(Ω):30,51,200,510,…
UOC
R0
+
等效
网络
-
mA
RL
+
V -
RL (Ω):30,51,200,510,…
ห้องสมุดไป่ตู้
B
图3 含源二端网络负载实验
图4 戴维南等效电路 负载实验
五、实验设备
分合闸按钮
实验台电源总开关
五、实验设备(续)
分合闸按钮
实验台电源总开关
五、实验设备(续)
稳压电 源(2路)
一、实验目的
1、验证戴维南定理的正确性,加深对该定理的理解。 2、掌握测量含源二端网络等效参数的一般方法。
戴维宁定理七种例题

戴维宁定理七种例题
戴维南定理(或译为戴维宁定理),是由法国科学家L・C•戴维南于1883年提出的一个电学定理。
其内容是:—个线性有源二端网络,对外电路来说,可以用一个电压源和电阻的串联组合电路来等效。
这个电压源的电压,就是此二端网络的开路电压,这个串联电阻就是从此二端网络两端看进去,网络内部所有独立电源均置零以后的等效电阻。
戴维南定理是最常用的电路简化方法之一,主要用于电路的分析和计算,是电学专业基础课程《电工旨出》的重要内容。
§3-4 戴维南定理和诺顿定理例题

§3-4 戴维南定理和诺顿定理求图示电路中通过12Ω电阻的电流i 。
将原电路从a、b 处断开,求左端部分的戴维南等效电路。
解:Ω6ΩΩ20Ω20Ω10Ω10V 15Ω5aioc 10201515201020101215155V33u =⨯-⨯++=⨯-⨯=-Ω33.13=30400=30200=2×10+2010×20=eqR将移出的支路与求出的戴维南等效电路进行连接Ω6Ω12ieqR ocu 解(续).eq 560096A612612612i R -=⨯=-⨯+++Ω20Ω20Ω10Ω10Ω5abeq求图示单口网络的戴维南等效电路。
解:开路电压su 11i 1i α2R a eqR 方法1:外加电源法求(αααs 2oc 122s11u R u i R R u R R ==-=-11i 2R 10i a 001i i =-()0eq 21u R αR i ==-()()()0102002021u αi i R αi i R αi R=+=-+=-有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)解(续)eqR 方法2:短路电流法求s u 2i 1R 1i α1i 2R sc1s2sc12==+R u i i i i 1sc =i αi ()ssc 11αu i αR =-()()2soc 1eq 2ssc 111R αu u R R αRαu i αR -===--方法3:VCR 确定法解(续)s11u i i R =-s u 11i 1i α2R a +-ui ()12u αi i R =-()2s 211R u αu αR iR =---eqR ocu b求图示电路的诺顿等效电路。
4V 2kΩ3k Ωx 40001u +-xu 解:分别求短路电流和等效电阻。
由于0=x u ,所以mA 8.0=3000+20004=sc i 4V 2k Ω3k Ω4000x u sc-xu +Ωk 10=8.08==sc oc eq i u R 求开路电压oc x oc 40001×2000+4==u u u V 8=ocu eqR sci解:求出BD以左的戴维南等效电路。
戴维宁定理七种例题

戴维宁定理例题例1 运用戴维宁定理求下图所示电路中的电压U0图1剖析:断开待求电压地址的支路(即3Ω电阻地址支路),将剩下一端口网络化为戴维宁等效电路,需恳求开路电压U oc和等效电阻R eq。
(1)求开路电压U oc,电路如下图所示由电路联接联络得到,U oc=6I+3I,求解得到,I=9/9=1A,所以U oc=9V(2)求等效电阻R eq。
上图电路中含受控源,需求用第二(外加电源法(加电压求电流或加电流求电压))或第三种(开路电压,短路电流法)办法求解,此刻独立源应置零。
法一:加压求流,电路如下图所示,依据电路联接联络,得到U=6I+3I=9I(KVL),I=I0´6/(6+3)=(2/3)I0(并联分流),所以U=9´(2/3)I0=6I0,R eq=U/I0=6Ω法二:开路电压、短路电流。
开路电压前面已求出,U oc=9V,下面需恳求短路电流I sc。
在求解短路电流的进程中,独立源要保存。
电路如下图所示。
依据电路联接联络,得到6I1+3I=9(KVL),6I+3I=0(KVL),故I=0,得到I sc=I1=9/6=1.5A(KCL),所以R eq=U oc/I sc=6Ω终究,等效电路如下图所示依据电路联接,得到留心:核算含受控源电路的等效电阻是用外加电源法仍是开路、短路法,要详细疑问详细剖析,以核算简练为好。
戴维南定理典型例子戴维南定理指出,等效二端网络的电动势E等于二端网络开路时的电压,它的串联内阻抗等于网络内部各独立源和电容电压、电感电流都为零时,从这二端看向网络的阻抗Zi。
设二端网络N中含有独立电源和线性时不变二端元件(电阻器、电感器、电容器),这些元件之间可以有耦合,即可以有受控源及互感耦合;网络N的两端ɑ、b接有负载阻抗Z(s),但负载与网络N内部诸元件之间没有耦合,U(s)=I(s)/Z(s)。
当网络N中所有独立电源都不工作(例如将独立电压源用短路代替,独立电流源用开路代替),所有电容电压和电感电流的初始值都为零的时候,可把这二端网络记作N0。
大学物理_戴维南定理

解:标出开路电压uoc的参考方向,
uoc (10) (2A 4e t A) 10V (5) (4e t A) (30 60et )V
Ro 10 5 15
例3、求图(a)单口网络的戴维南等效电路。
u
12 18V 12 V 解: uoc 12 6
'
"
例1、求图(a)所示单口网络的戴维南等效电路。 i
解:在端口标明开路电压uoc参考方向,注意到i=0,
u oc 1V (2) 2A 3V
将单口网络内电压源短路,电流源开路,得图(b)
Ro 1 2 3 6
例2、 求图(a)所示单口网络的戴维南等效电路。
49
T— 变换(Y—△变换) (不考)
① ①
一、引例 I
30V
① 30
+ _
20 ② 8 15
50
3 ④
③
②
①
③ ②
③
I
+
30V
R1
R2
②
R3
③
_
8
④
3
二、无源三端网络的等效 u12 _ + i i2 1
① ②
①
i1 + u1 _
③
i2 u2
②
+ u13
+
_
③
+
i3 u23 _
说明:
并非任何含源线性电阻单口网络都能找到戴维 南等效电路或诺顿等效电路。 当R0=0时,没有诺顿等效电路;
当R0= ,没有戴维南等效电路。
例3、 求图(a)所示单口网络向外传输的最大功率。
解:求uoc,按图(b)网孔电流参考方向,
戴维南定理的解析与练习

戴维宁定理一、知识点:1、二端(一端口) 网络的概念:二端网络:具有向外引出一对端子的电路或网络。
无源二端网络:二端网络中没有独立电源。
有源二端网络:二端网络中含有独立电源。
2、戴维宁(戴维南)定理任何一个线性有源二端网络都可以用一个电压为 U OC 的理想电压源和一个电阻 R0 串联的等效电路来代替。
如图所示:等效电路的电压 U OC 是有源二端网络的开路电压,即将负载 R L 断开后 a 、b 两端之间的电压。
等效电路的电阻 R0 是有源二端网络中所有独立电源均置零(理想电压源用短路代替,理想电流源用开路代替)后 , 所得到的无源二端网络 a 、b 两端之间的等效电阻。
二、例题:应用戴维南定理解题:戴维南定理的解题步骤:1.把电路划分为待求支路和有源二端网络两部分,如图 1 中的虚线。
2.断开待求支路,形成有源二端网络(要画图) ,求有源二端网络的开路电压 UOC 。
3.将有源二端网络内的电源置零,保留其内阻(要画图) ,求网络的入端等效电阻 Rab。
4.画出有源二端网络的等效电压源,其电压源电压 US=UOC (此时要注意电源的极性),内阻 R0=Rab 。
5.将待求支路接到等效电压源上,利用欧姆定律求电流。
例 1:电路如图,已知 U1=40V, U2=20V, R1=R2=4, R3=13 ,试用戴维宁定理求电流I3。
解: (1) 断开待求支路求开路电压UOCU U 40 20I = 1 2 = = 2.5 AR + R 4 +41 2UOC = U2 + I R2 = 20 +2.5 4 =30V或: UOC = U1 – I R1 = 40 –2.5 4 = 30VUOC 也可用叠加原理等其它方法求。
(2) 求等效电阻 R0将所有独立电源置零(理想电压源用短路代替,理想电流源用开路代替)R RR = 1 2 = 20 R + R1 2(3) 画出等效电路求电流 I3U OC 30I = = = 2 A3 R + R 2 +130 3例 2:试求电流 I1解: (1) 断开待求支路求开路电压 UOCUOC = 10 – 3 1 = 7V(2) 求等效电阻 R0R0 =3(3) 画出等效电路求电流 I3 a327V _ b 解得: I1 = 1. 4 A【例 3】 用戴维南定理计算图中的支路电流 I 3。
戴维南定理实验报告思考题

戴维南定理实验报告思考题实验报告思考题:戴维南定理实验背景:戴维南定理是一个涉及三角形的重要定理,它揭示了三角形内心、外心、垂心、重心之间的关系。
本次实验通过绘制三角形和对应圆心,并计算各个圆心坐标来了解戴维南定理的应用。
实验步骤:1.使用直尺和圆规绘制一个任意三角形ABC;2.通过交点、垂线等方法求出三角形ABC的内心、外心、垂心、重心;3.测量并记录三角形ABC的三个内角大小,及各边长;4.根据公式计算出内心、外心、垂心、重心的坐标;5.将计算结果填入表格中并进行比较。
实验结果及分析:1.根据测量结果,三角形ABC的三个内角大小分别为58度、75度、47度,各边长分别为6cm、8cm、10cm;2.通过计算,内心的坐标为(5.06,3.29),外心的坐标为(5.75,3.13),垂心的坐标为(5.10,7.39),重心的坐标为(6.14,4.39);3.按照戴维南定理,内心、重心、外心、垂心四点满足向量关系:3OG=2ON+NH;4.实验结果表明,四个圆心的坐标满足戴维南定理的向量关系,在误差范围内验证了该定理的正确性,有益于了解三角形的内部结构和性质。
思考题:1.探究内心、外心、垂心、重心的物理意义及对应性质;2.试着证明戴维南定理及相关性质;3.尝试推广戴维南定理的应用领域,例如如何将它应用于解决实际问题。
4.总结三角形基础知识及应用中的常见误区,并提出自己的看法反思。
结论:通过实验验证,戴维南定理是一个成立的三角形定理,它揭示了内心、外心、垂心、重心之间的向量关系,有利于深入理解三角形的内部结构和性质,值得探究和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
戴维宁定理
一、知识点:
1、二端(一端口)网络的概念:二端网络:具有向外引出一对端子的电路或网络。
无源二端网
络:二端网络中没有独立电源。
有源二端网络:二端网络中含有独立电源。
2、戴维宁(戴维南)定理任何一个线性有源二端网络都可以用一个电压为联的等效电路来代替。
如图所示:U OC 的理想电压源和一个电阻R0 串
L 等裁巴路J
等效电路的电压U OC是有源二端网络的开路电压,即将负载R-断开后a、b两端之间
的电压。
等效电路的电阻R o是有源二端网络中所有独立电源均置零(理想电压源用短路代替, 理想电流源用开路代替)后,所得到的无源二端网络a、b两端之间的等效电阻。
二、 例题:应用戴维南定理解题: 戴维南定理的解题步骤: 1•把电路划分为待求支路和有源二端网络两部分,如图 1中的虚线。
2•断开待求支路,形成有源二端网络(要画图) ,求有源二端网络的开路电压 UOG 3•将有源二端网络内的电源置零,保留其内阻(要画图) ,求网络的入端等效电阻 Rab 。
4•画出有源二端网络的等效电压源,其电压源电压 US=UOC (此时要注意电源的极性), 内阻 R0=Rab=
5•将待求支路接到等效电压源上,利用欧姆定律求电流。
例1:电路如图,已知 5= 40V , U2=20V ,R1=R2=4,R3=13,试用戴维宁定理求电流 b 。
解:(1)断开待求支路求开路电压
UOC U 1 U 2 40 20 4 4
2.5A
UOC =U2 + IR2 = 20 + 4 = 30V
或:UOC = U1 -I R1 = 40 - 4 30V UOC 也可用叠加原理等其它方法求。
(2) 求等效电阻R0 将所有独立电源置零(理想电压源
用短路代替,理想电流源用开路代替) R R
^~R L
2 R R 2 ]:师
画出等效电路求电流I 3 U OC R 。
R 3 2 13
例2:试求电流I i
解:(1)断开待求支路求开路电压UOC
UOC = 10 -3 1 = 7V
(2) 求等效电阻R0
R0 =3
⑶画出等效电路求电流I3
3
I i
7V
解得:11 = 1.4 A 【例3】用戴维南定理计算图中的支路电流I
3
厶十氏20+5
将a、b间开路,求等效电源的内阻R0
或 ^-r^-f^jij^-so+s^a-ioov
② 等效电源的内阻
R O 可由图1-58(c)求得
因此
尽=卫_=亟=迪 氏乜2D+5
③对a 和b 两端讲, 【例4】 电路如图所示,R=Q,试用戴维南定理求电阻
R 中的电流I
解:图1-59(a)的电路可等效为图
1-59(b)的电路。
将a 、b 间开路,求等效电源的电动势
E ,即开路电压 U abo 。
应用结点电压法求 a 、b 间开路时a
和b 两点的电位,即 15 12 一亠+亠亠
庐_ 2^10 lxlO a 2x10'
上_ [ ] ]
一
2x 10J 1x10^ 2x10' F-(Z, -6-4.25-L^V
于是
R i 和R^是并联的,由图
1-58(a)可等效于图1-58(d) 所以
4+e 型_=皿
将a 、b 间开路,求等效电源的内阻
R 0 -35/31 (A )) R o =3K Q 丘二 1 75
(25+2^1?
3、试用戴维南定理计算图示电路中6欧电阻中的电流1。
()
-20V +
题3图
4、如图中已知US1=140V US2=90V R1=20欧姆R2=5欧姆R3=6欧姆,用戴维宁定律计算电流I 3 值(10A)
5、计算图示电路中的电流I。
(用戴维南定理求解)(2A )R3
題4图
6、计算图示电路中的电流I。
(用戴维南定理求
解)(-1A)
7、计算图示电路中的电流I。
(用戴维南定理求解) ()
7、用戴维南定理计算图中的支路电流I3。
( 10A)
8、电路如图所示,R=Q,试用戴维南定理求电阻R中的电流I。
( mA )
4-------------
9、用戴维南定理求下图所示电路中的电流I (2A)。