反比例函数动点问题

合集下载

反比例函数动点问题

反比例函数动点问题

反比例函数动点问题通常涉及到一些几何和代数的知识。

以下是一个典型例题的分析:
已知A、B是反比例函数y=k/x(k>0,x≠0)的图像上的两点,当点A在第一象限时,与坐标轴围成的矩形AEOF的面积为3,则点B 与坐标轴围成的矩形的面积是()。

A. 3
B. -3
C. 6
D. 无法确定
我们可以根据题意进行推理。

由于点A在第一象限,所以矩形AEOF 的面积可以表示为|k| = 3。

同时,由于点B在反比例函数的图像上,与x轴和y轴围成一个矩形,其面积也为|k|。

但是这个矩形的面积的具体数值无法确定,因为它与点A的坐标有关。

因此,正确答案是D. 无法确定。

希望这个例子能够帮助你理解反比例函数动点问题的一般思路和方法。

如果你有更多的例题需要分析,欢迎继续提问。

专题66 反比例函数中的动点最值问题(解析版)

专题66 反比例函数中的动点最值问题(解析版)

例题精讲【例1】.如图,直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为________解:当x=0时,y=×0+4=4,∴点B的坐标为(0,4);当y=0时,x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C的坐标为(﹣3,2),点D坐标为(0,2).作点C关于x轴的对称点C′,连接C′D交x轴于点P,此时PC+PD的值最小,如图所示.∵点C的坐标为(﹣3,2),∴点C′的坐标为(﹣3,﹣2).设直线C′D的解析式为y=kx+b(k≠0),将C′(﹣3,﹣2),D(0,2)代入y=kx+b得:,解得:,∴直线C′D的解析式为y=x+2.当y=0时,x+2=0,解得:x=﹣,∴点P的坐标为(﹣,0),即点P的坐标为(﹣1.5,0).变式训练【变1-1】.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB 的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小解:设点P的坐标为(x,),∵PB⊥y轴于点B,点A是x轴正半轴上的一个定点,∴四边形OAPB是个直角梯形,∴四边形OAPB的面积=(PB+AO)•BO=(x+AO)•=+=+•,∵AO是定值,∴四边形OAPB的面积是个减函数,即点P的横坐标逐渐增大时四边形OAPB的面积逐渐减小.故选:C.【变1-2】.如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点M在以C(2,0)为圆心,半径为1的⊙C上,N是AM的中点,已知ON长的最大值为,则k的值是.解:方法一、联立,∴,∴,∴A(),B(),∴A与B关于原点O对称,∴O是线段AB的中点,∵N是线段AM的中点,连接BM,则ON∥BM,且ON=,∵ON的最大值为,∴BM的最大值为3,∵M在⊙C上运动,∴当B,C,M三点共线时,BM最大,此时BC=BM﹣CM=2,∴(,∴k=0或,∵k>0,∴,方法二、设点B(a,2a),∵一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,∴A与B关于原点O对称,∴O是线段AB的中点,∵N是线段AM的中点,连接BM,则ON∥BM,且ON=,∵ON的最大值为,∴BM的最大值为3,∵M在⊙C上运动,∴当B,C,M三点共线时,BM最大,此时BC=BM﹣CM=2,∴=2,∴a1=或a2=0(不合题意舍去),∴点B(,),∴k=,故答案为:.【例2】.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x 轴上,则PM+PN的最小值是2.解:∵正方形OABC 的边长是6,∴点M 的横坐标和点N 的纵坐标为6,∴M (6,),N (,6),∴BN =6﹣,BM =6﹣,∵△OMN 的面积为10,∴6×6﹣×6×﹣×6×﹣×(6﹣)2=10,∴k =24,∴M (6,4),N (4,6),作M 关于x 轴的对称点M ′,连接NM ′交x 轴于P ,则NM ′的长=PM +PN 的最小值,∵AM =AM ′=4,∴BM ′=10,BN =2,∴NM ′===2,故答案为2.变式训练【变2-1】.已知在平面直角坐标系中有两点A (0,1),B (﹣1,0),动点P 在反比例函数y =的图象上运动,当线段PA 与线段PB 之差的绝对值最大时,点P 的坐标为(1,2)或(﹣2,﹣1).解:如图,设直线AB的解析式为y=kx+b,将A(0,1)、B(﹣1,0)代入,得:,解得:,∴直线AB的解析式为y=x+1,直线AB与双曲线y=的交点即为所求点P,此时|PA﹣PB|=AB,即线段PA与线段PB 之差的绝对值取得最大值,由可得或,∴点P的坐标为(1,2)或(﹣2,﹣1),故答案为:(1,2)或(﹣2,﹣1).【变2-2】.如图,一次函数y1=mx+n(m≠0)的图象与双曲线y2=(k≠0)相交于A(﹣1,2)和B(2,b)两点,与y轴交于点C,与x轴交于点D.(1)求双曲线的解析式;(2)经研究发现:在y轴负半轴上存在若干个点P,使得△CPB为等腰三角形.请直接写出P点所有可能的坐标.解:(1)∵点A(﹣1,2)在双曲线y2=(k≠0)上,∴k=﹣1×2=﹣2,∴反比例函数解析式为y2=﹣,(2)∵点B在双曲线y2=﹣上,∴2b=﹣2,∴b=﹣1,∴B(2,﹣1),将点A(﹣1,2),B(2,1)代入一次函数y1=mx+n(m≠0)中,得,∴,∴一次函数的解析式为y=﹣x+1;令x=0,则y=1,∴C(0,1),设P(0,p)(p<0),∵B(2,﹣1),∴BC==2,BP=,CP=1﹣p,∵△CPB为等腰三角形,∴①当BC=BP时,2=,∴p=1(舍)或p=﹣3,∴P(0,﹣3),②当BC=CP时,2=1﹣p,∴p=1﹣2,∴P(0,1﹣2),③当BP=CP时,=1﹣p,∴p=﹣1,∴P(0,﹣1),故满足条件的点P的坐标为(0,﹣3)或(0,1﹣2)或(0,﹣1).1.如图,点N是反比例函数y=(x>0)图象上的一个动点,过点N作MN∥x轴,交直线y=﹣2x+4于点M,则△OMN面积的最小值是()A.1B.2C.3D.4解:设点N的坐标为(,m),则点M的坐标为(2﹣m,m)(m>0),∴MN=﹣(2﹣m)=m+﹣2,=MN•m=m2﹣m+3=(m﹣2)2+2,∴S△OMN∴当m=2时,△OMN面积最小,最小值为2.故选:B.2.如图,在△ABC中,AB=AC=a,∠BAC=18°,动点P、Q分别在直线BC上运动,且始终保持∠PAQ=99°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为()A.B.C.D.解:∵AB=AC=a,∠BAC=18°,∴∠ABC=∠ACB=(180°﹣18°)=81°,∴∠ABC=∠APB+∠PAB=81°,∵∠PAQ=99°,∠BAC=18°,∴∠PAB+∠QAC=99°﹣18°=81°,∴∠APB=∠QAC,同理可得∠PAB=∠AQC,∴△APB∽△QAC,∴=,即=,整理得,y=,∵x、y都是边的长度,是正数,∴y与x之间的函数关系用图象表示是反比例函数在第一象限内的部分,纵观各选项,只有A符合.故选:A.3.如图,已知A、B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过点P作PM ⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为()A.B.C.D.解:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC×(l﹣at),因为l,OC,a均是常数,所以S与t成一次函数关系.故排除C.故选:A.4.已知点A是双曲线y=在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为一边作等边△ABC.随着点A的运动,点C的位置也不断变化,但始终在一个函数的图象上运动,则这个函数的表达式为y=﹣.解:设A(a,),∵点A与点B关于原点对称,∴OA=OB,∵△ABC为等边三角形,∴AB⊥OC,OC=AO,∵AO=,∴CO=,过点C作CD⊥x轴于点D,则可得∠AOD=∠OCD(都是∠COD的余角),设点C的坐标为(x,y),则tan∠AOD=tan∠OCD,即=,解得:y=﹣a2x,在Rt△COD中,CD2+OD2=OC2,即y2+x2=3a2+,将y=﹣a2x代入,(a4+1)x2=3×可得:x2=,故x=,y=﹣a2x=﹣a,则xy=﹣3,故可得:y=﹣(x>0).故答案为:y=﹣(x>0).5.如图,点P是双曲线C:y=(x>0)上的一点,过点P作x轴的垂线交直线AB:y=x﹣2于点Q,连接OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△POQ面积的最大值是3.解:∵PQ⊥x轴,∴设P(x,),则Q(x,x﹣2),∴PQ=﹣x+2,=(﹣+2)•x=﹣(x﹣2)2+3,∴S△POQ∵﹣<0,∴△POQ面积有最大值,最大值是3,故答案为3.6.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,2),将线段AB绕点A顺时针旋转90°得到线段AC,反比例函数y=(k≠0,x>0)的图象经过点C.已知点P是反比例函数y=(k≠0,x>0)图象上的一个动点,则点P到直线AB距离最短时的坐标为(,).解:(1)设直线AB的解析式为y=ax+b,将点A(1,0),点B(0,2)代入得,解得,∴直线AB为y=﹣2x+2;∵过点C作CD⊥x轴,∵线段AB绕点A顺时针旋转90°得到线段AC,∴△ABO≌△CAD(AAS),∴AD=OB=2,CD=OA=1,∴C(3,1),∴k=3,∴y=;设与AB平行的直线y=﹣2x+h,联立﹣2x+h=,∴﹣2x2+hx﹣3=0,当△=h2﹣24=0时,h=2或﹣2(舍弃),此时点P到直线AB距离最短,解方程﹣2x2+2x﹣3=0得x==,∴P(,),故答案为P(,).7.如图,在平面直角坐标系中,点A,B在反比例函数y=(k≠0)的图象上运动,且始终保持线段AB=4的长度不变.M为线段AB的中点,连接OM.则线段OM长度的最小值是(用含k的代数式表示).解:如图,因为反比例函数关于直线y=x对称,观察图象可知:当线段AB与直线y=x 垂直时,垂足为M,此时AM=BM,OM的值最小,∵M为线段AB的中点,∴OA=OB,∵点A,B在反比例函数y=(k≠0)的图象上,∴点A与点B关于直线y=x对称,∵AB=4,∴可以假设A(m,),则B(m+4,﹣4),∴(m+4)(﹣4)=k,整理得k=m2+4m,∴A(m,m+4),B(m+4,m),∴M(m+2,m+2),∴OM===,∴OM的最小值为.故答案为.8.如图,点A是反比例函数y=在第一象限的图象上的一点,过点A作AB⊥y轴于点B.连接AO,以点A为圆心,分别以AB,AO为半径作直角扇形BAC和OAD,并连接CD,则阴影部分面积的最小值是2π+2.解:如图,过点D作DE垂直于CA的延长线于点E,则∠AED=90°,由题意可知,AB=AC,AO=AD,∠BAC=∠DAO=90°,∵AB⊥y轴,∴∠ABO=90°,∴∠BAO+∠OAE=90°,∠DAE+∠OAE=90°,∴∠BAO=∠DAE,∴△BAO≌△EAD(AAS),∴DE=OB.∵点A是反比例函数y=在第一象限的图象上的一点,∴OB•AB=4,∴S△AOB=OB•AB=2,∴S△ACD=AC•DE=OB•AB=2,∴S阴影=S△ACD+S扇形OAD=2+=2+∵(AB﹣OB)2≥0,∴AB2﹣2AB•OB+OB2≥0,∴AB2+OB2≥2AB•OB,∴S阴影≥2+×2AB•OB=2+2π.故答案为:2+2π.9.如图,点A是反比例函数y=(k>0)图象第一象限上一点,过点A作AB⊥x轴于B 点,以AB为直径的圆恰好与y轴相切,交反比例函数图象于点C,在AB的左侧半圆上有一动点D,连接CD交AB于点E.记△BDE的面积为S1,△ACE的面积为S2,连接BC,△ACB是等腰直角三角形,则若S1﹣S2的值最大为1,则k的值为4+4.解:如图连接BC、O′C,作CH⊥x轴于H.由题意⊙O′与反比例函数图象均关于直线y=x对称,∴点A、C关于直线y=x对称,设A(m,2m)则C(2m,m),∴BO′=CH=m,BO′∥CH,∴四边形BHCO′是平行四边形,∵BH=CH,∠BHC=90°,∴四边形BHCO′是正方形.∴∠ABC=45°,∴△ACB是等腰直角三角形,∵S1﹣S2=S△DBC﹣S△ACB,△ABC的面积是定值,∴△DBC的面积最大时,S1﹣S2的值最大,∴当DO′⊥BC时,△DBC的面积最大,∴m•(m+m)﹣•2m•m=1,∴m2=2(+1),∵k=2m2,∴k=4+4,故答案为:等腰直角三角形,4+4.10.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A 点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,P为x轴上一点,求使PA+PB的值最小时点P的坐标.解:(1)设A点的坐标为(a,b),则由,得ab=2=k,∴反比例函数的解析式为;(2)由条件知:两函数的交点为,解得:,,∴A点坐标为:(2,1),作出A点关于x轴对称点C点,连接BC,P点即是所求则点C(2,﹣1),∵B(1,2),设直线BC的解析式为:y=kx b,解得:,∴直线BC的解析式为:y=﹣3x+5,当y=0时,x=,∴点P(,0).11.如图,正比例函数y=2x的图象与反比例函数y=的图象交于A、B两点,过点A作AC垂直x轴于点C,连接BC,若△ABC面积为2.(1)求k的值(2)x轴上是否存在一点D,使△ABD是以AB为斜边的直角三角形?若存在,求出点D的坐标,若不存在,说明理由.解:(1)∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=2÷2=1,又∵A是反比例函数y=图象上的点,且AC⊥x轴于点C,∴△AOC的面积=|k|,∴|k|=1,∵k>0,∴k=2.故这个反比例函数的解析式为y=;(2)x轴上存在一点D,使△ABD为直角三角形.将y=2x与y=联立成方程组得:,解得:,,∴A(1,2),B(﹣1,﹣2),∵△ABD是以AB为斜边的直角三角形∴∠ADB=90°,如图3,∵O为线段AB的中点,∴OD=AB=OA,∵A(1,2),∴OC=1,AC=2,由勾股定理得:OA==,∴OD=,∴D(,0).根据对称性,当D为直角顶点,且D在x轴负半轴时,D(﹣,0).故x轴上存在一点D,使△ABD以AB为斜边的直角三角形,点D的坐标为(,0)或(﹣,0).12.如图,一次函数y=x+2的图象与反比例函数y=的图象交于点A(1,a),B两点.(1)求反比例函数的解析式及点B的坐标;(2)在x轴上找一点C,使|CA﹣CB|的值最大,求满足条件的点C的坐标及△ABC的面积.解:(1)∵直线y=x+2经过点A(1,a),∴a=3,∵反比例函数y=经过A(1,3),∴k=3,∴y=,由,解得或,∴B(﹣3,﹣1).(2)作点B关于x轴的对称点B′,连接AB′,延长AB′交x轴于点C,点C即为所求;∵A(1,3),B′(﹣3,1),∴直线AB′的解析式为y=x+,∴C(﹣5,0),=S△CBB′+S△BB′A=×2×2+×2×4=6.∴S△ABC13.如图,一次函数y=2x﹣3的图象与反比例函数y=的图象相交于点A(﹣1,n),B 两点.(1)求反比例函数的解析式与点B的坐标;(2)连接AO、BO,求△AOB的面积;(3)点D是反比例函数图象上的一点,当∠BAD=90°时,求点D的坐标.解:(1)∵点A(﹣1,n)在一次函数y=2x﹣3的图象上,∴n=﹣5,∴点A(﹣1,﹣5),∵点A(﹣1,﹣5)在反比例函数的图象上,∴k=﹣1×(﹣5)=5,∴;联立,解得:,,∴点;(2)设y=2x﹣3与y轴的交点为点E,则点E(0,﹣3),∴OE=3,=S△AOE+S△BOE=×3×1+×3×=;∴S△AOB(3)设点,如图,分别过点D,B作y轴的平行线DM,BN,过点A作MN⊥DM于M,交BN于N,则MN⊥BN,∴∠M=∠N=90°,∴∠DAM+∠ADM=90°,∵∠BAD=90°,∴∠BAN+∠DAM=90°,∴∠BAN=∠ADM,∴△BAN∽△ADM,∴=,即=,解得:a1=﹣10,a2=﹣1(舍),∴.14.如图,直线y=2x+3与y轴交于A点,与反比例函数y=(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).(1)求反比例函数的解析式;(2)点D(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)∵BC⊥x轴于点C,且C点的坐标为(1,0),∴在直线y=2x+3中,当x=1时,y=2+3=5,∴点B的坐标为(1,5),又∵点B(1,5)在反比例函数y=上,∴k=1×5=5,∴反比例函数的解析式为:y=;(2)将点D(a,1)代入y=,得:a=5,∴点D坐标为(5,1)设点D(5,1)关于x轴的对称点为D′(5,﹣1),过点B(1,5)、点D′(5,﹣1)的直线解析式为:y=kx+b,可得:,解得:,∴直线BD′的解析式为:y=﹣x+,根据题意知,直线BD′与x轴的交点即为所求点P,当y=0时,得:﹣x+=0,解得:x=,故点P的坐标为(,0).15.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(x>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该反比例函数的解析式和点E的坐标.(2)设过(1)中的直线EF的解析式为y=ax+b,直接写出不等式ax+b<的解集.(3)当k为何值时,△AEF的面积最大,最大面积是多少?解:(1)∵四边形OABC为矩形,OA=3,OC=2,∴AB=2,BC=3,∵F为AB的中点,∴点F坐标为(3,1),∵点F在反比例函数y=(x>0)的图象上,∴k=3×1=3,∴反比例函数解析式为y=,∵点E在BC上,∴E点纵坐标为2,在y=中,令y=2,可求x=,∴E点坐标为(,2);(2)不等式ax+b<的解集即直线在反比例函数下方时对应的自变量的取值范围,由(1)可知点E、F两点的横坐标分别为、3,∴不等式ax+b<的解集为:0<x<或x>3;(3)由题意可知点E的纵坐标为为2,点F的横坐标为3,且E、F在反比例函数y=(x>0)的图象上,∴可设E(,2),F(3,),∴AF=,CE=,∴BE=BC﹣CE=3﹣,=AF•BE=••(3﹣)=﹣k2+=﹣(k﹣3)2+,∴S△AEF∵﹣<0,是关于k的开口向下的抛物线,∴S△AEF有最大值,最大值为,∴当k=3时,S△AEF即当k的值为3时,△AEF的面积最大,最大面积为.16.如图,直线OA:y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A 点,过A点作轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.解:(1)设点A的坐标为(a,b),则,解得:k=2.∴反比例函数的解析式为y=.(2)联立直线OA和反比例函数解析式得:,解得:.∴点A的坐标为(2,1).设A点关于x轴的对称点为C,则C点的坐标为(2,﹣1),连接BC较x轴于点P,点P即为所求.如图所示.设直线BC的解析式为y=mx+n,由题意可得:B点的坐标为(1,2),∴,解得:.∴BC的解析式为y=﹣3x+5.当y=0时,0=﹣3x+5,解得:x=.∴P点的坐标为(,0).17.已知:如图,一次函数y=﹣2x+10的图象与反比例函数y=的图象相交于A、B两点(A在B的右侧),点A横坐标为4.(1)求反比例函数解析式及点B的坐标;(2)观察图象,直接写出关于x的不等式﹣2x+10﹣>0的解集;(3)反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.解:(1)把x=4代入y=﹣2x+10得y=2,∴A(4,2),把A(4,2)代入y=,得k=4×2=8.∴反比例函数的解析式为y=,解方程组,得,或,∴点B的坐标为(1,8);(2)观察图象得,关于x的不等式﹣2x+10﹣>0的解集为:1<x<4或x<0;(3)存在,理由:①若∠BAP=90°,过点A作AH⊥OE于H,设AP与x轴的交点为M,如图1,对于y=﹣2x+10,当y=0时,﹣2x+10=0,解得x=5,∴点E(5,0),OE=5.∵A(4,2),∴OH=4,AH=2,∴HE=5﹣4=1.∵AH⊥OE,∴∠AHM=∠AHE=90°.又∵∠BAP=90°,∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,∴∠MAH=∠AEM,∴△AHM∽△EHA,∴,即,∴MH=4,∴M(0,0),可设直线AP的解析式为y=mx,则有4m=2,解得m=,∴直线AP的解析式为y=x,解方程组,得,,∴点P的坐标为(﹣4,﹣2).②若∠ABP=90°,同理可得:点P的坐标为(﹣16,﹣).综上所述:符合条件的点P的坐标为(﹣4,﹣2)、(﹣16,﹣).18.反比例函数(k为常数.且k≠0)的图象经过点A(1,3),B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,①求满足条件的点P的坐标;②求△PAB的面积.解:(1)把A(1,3)代入y=得,k=3,∴反比例函数的关系式为:y=;把B(3,m)代入y=得,m=1,∴点B的坐标为(3,1);(2)①如图所示,作点B关于x轴的对称点B′,则B′(3,﹣1),连接AB′交x轴于点P,此时PA+PB最小.设直线AB′的关系式为y=kx+b,把A(1,3),B′(3,﹣1)代入得,,解得,,∴直线AB′的关系式为y=﹣2x+5,当y=0时,x=,即:P(,0),也就是,OP=,②S△P AB=S梯形ABNM﹣S△AMP﹣S△BPN=(1+3)×2﹣(﹣1)×3﹣(3﹣)×1=.19.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A (1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)①在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;②在x轴上找一点M,使|MA﹣MB|的值为最大,直接写出M点的坐标.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=3,∴A(1,3),把点A(1,3)代入反比例y=,得k=3,∴反比例函数的表达式y=,解得或,故B(3,1).(2)作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小∴D(3,﹣1)设直线AD的解析式为y=mx+n,则,解得,∴直线AD的解析式为y=﹣2x+5,令y=0,则x=,∴P点坐标为(,0);(3)直线y=﹣x+4与x轴的交点即为M点,此时|MA﹣MB|的值为最大,令y=0,则x=4,∴M点的坐标为(4,0).20.如图,四边形ABCD是正方形,点A的坐标是(0,1),点B的坐标是(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点,两函数图象的另一个交点E的坐标是(m,3).(1)分别求出一次函数与反比例函数的解析式.(2)求出m的值,并根据图象回答:当x为何值时,一次函数的值大于反比例函数的值.(3)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD的面积,求点P坐标.解:(1)∵点A的坐标为(0,1),点B的坐标为(0,﹣2),∴AB=1+2=3,∵四边形ABCD为正方形,∴BC=AB=3,∴C(3,﹣2),把C(3,﹣2)代入y=,得k=3×(﹣2)=﹣6,∴反比例函数解析式为y=﹣;把C(3,﹣2),A(0,1)代入y=ax+b,得,解得,∴一次函数解析式为y=﹣x+1;(2)∵反比例函数y=﹣的图象过点E(m,3),∴m=﹣2,∴E点的坐标为(﹣2,3);由图象可知,当x<﹣2或0<x<3时,一次函数落在反比例函数图象上方,即当x<﹣2或0<x<3时,一次函数的值大于反比例函数的值;(3)设P(t,﹣),∵△AOP的面积恰好等于正方形ABCD的面积,∴×1×|t|=3×3,解得t=18或t=﹣18,∴P点坐标为(18,﹣)或(﹣18,).21.如图,点A是反比例函数y=(x>0)的图象上的一个动点,AC⊥x轴于点C;E是线段AC的中点,过点E作AC的垂线,与y轴和反比例函数的图象分别交于点B、D两点;连接AB、BC、CD、DA.设点A的横坐标为m.(1)求点D的坐标(用含有m的代数式表示);(2)判断四边形ABCD的形状,并说明理由;(3)当m为何值时,四边形ABCD是正方形?并求出此时AD所在直线的解析式.解:(1)∵点A的横坐标为m,∴点A的纵坐标为,∵E是AC的中点,AC⊥x轴,∴E(m,),∵BD⊥AC,AC⊥x轴,∴BD∥x轴,∴点B,E,D的纵坐标相等,为,∴点D的横坐标为2m,∴D(2m,);(2)四边形ABCD是菱形,∵B(0,),E(m,),D(2m,),∴EB=ED=m,∵AE=EC,∴四边形ABCD是平行四边形,∵BD⊥AC,∴平行四边形ABCD是菱形;(3)∵平行四边形ABCD是菱形,∴当AC=BD时,四边形ABCD是正方形,∴2m=,∴m=2,或m=﹣2(舍),∴A(2,4),D(4,2),设直线AD的解析式为y=kx+b,∴,∴,∴直线AD解析式为y=﹣x+6,∴当m=2时,四边形ABCD是正方形,此时直线AD解析式为y=﹣x+6.22.如图,一次函数y=﹣x+2的图象与两坐标轴分别交于A,B两点,与反比例函数y=交于点C、D,且点C坐标为(﹣2,m).(1)求反比例函数的解析式;(2)若点M在y轴正半轴上,且与点B,C构成以BC为腰的等腰三角形,求点M的坐标.(3)点P在第二象限的反比例函数图象上,若tan∠OCP=3,求点P的坐标.解:(1)∵点C(﹣2,m)在一次函数y=﹣x+2的图象上,∴m=﹣(﹣2)+2,解得:m=4,∴C(﹣2,4),将C(﹣2,4)代入y=,得k=﹣8,∴反比例函数为y=﹣;(2)如图1,过点C作CH⊥y轴于H,在直线y=﹣x+2中,当x=0时,则y=2,∴B(0,2),由(1)知,C(﹣2,4),∴BC==2,当BM=BC=2时,OM=2+2,∴M(0,2+2),当BC=MC时,点C在BM的垂直平分线,∴M(0,6),综上所述,点M的坐标为(0,2+2)或(0,6)(3)作OQ⊥PC于Q,过Q作HG⊥x轴于G,CH∥x轴,交HG于H,则△CHQ∽△QGO,∴,∵tan∠OCP=3,∴,设CH=x,则GQ=3x,HQ=4﹣3x,∴OG=3HQ=12﹣9x=x+2,解得x=1,∴Q(﹣3,3),∴直线CQ的解析式为y=x+6,∴x+6=﹣,解得x1=﹣2,x2=﹣4,∵点P与C不重合,∴P(﹣4,2).。

反比例函数上的点平移规律

反比例函数上的点平移规律

反比例函数上的点平移规律
反比例函数上的点平移规律指的是,对于一个反比例函数y=k/x,当x的值发生平移时,对应的y的值也会发生相应的平移。

具体而言,对于反比例函数y=k/x,若将x的值平移a个单位,则对应的y的值会平移1/a个单位。

例如,若原来的函数为y=2/x,在x=2处取值为1,若将x的值平移1个单位变为3,则此时在x=3处取值为2/3,即y的值向右平移了1/2个单位。

这种平移规律同样也适用于反比例函数的图像。

反比例函数的图像是一条双曲线,若将其沿x轴平移a个单位,则图像会沿y轴平移1/a个单位。

例如,若原来的反比例函数图像为y=2/x,则其图像在x=2处交于y轴,若将其沿x轴平移1个单位变为y=2/(x-1),则此时在x=3处交于y轴,即图像向上平移了1/2个单位。

反比例函数上的点平移规律是数学中很重要的一个概念,它不仅仅适用于反比例函数,也适用于其他函数。

在实际应用中,平移规律也有很多应用,例如在图像处理中,将图像进行平移可以达到很好的效果。

- 1 -。

反比例函数(面积、动点)专项训练一 第1课时(解析版)

反比例函数(面积、动点)专项训练一 第1课时(解析版)

【热身训练】要求:快速完成!并写出方法小结或感悟!1.已知两点P 1(x 1,y 1)、P 2(x 2,y 2)在反比例函数3y x=的图象上,当021>>x x 时,下列结论正确的是A .120y y <<B .210y y <<C .120y y <<D .210y y <<答案:A解析:反比例函数3y x=的图象在一、三象限,在每一个象限内,y 随x 的增大而减小,所以,当021>>x x 时,有120y y <<2.(2013•铁岭)如图,点P 是正比例函数y=x 与反比例函数y=在第一象限内的交点,PA ⊥OP 交x 轴于点A ,△POA 的面积为2,则k的值是 . =y=S =k=1((3.(2013•淄博)如图,矩形AOBC 的面积为4,反比例函数的图象的一支经过矩形对角线的交点P ,则该反比例函数的解析式是 。

矩形×(矩形.((交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).(1)求反比例函数的关系式;(2)将直线y=x﹣2向上平移后与反比例函数图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的函数关系式.5.(2013•十堰)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.y=(,判断出四边形(上,;OA==CB=y==【问题解决】例.如图,已知四边形ABCD 是平行四边形,BC =2AB ,A ,B两点的坐标分别是(-1,0),(0,2),C ,D 两点在反比例函数)0(<=x x k y 的图象上,则k 的值等于 . 答案:-12 解析:如图,过C 、D 两点作x 轴的垂线,垂足为F 、G ,CG 交AD于M 点,过D 点作DH ⊥CG ,垂足为H ,∵CD ∥AB ,CD=AB ,∴△CDH ≌△ABO (AAS ),∴DH=AO=1,CH=OB=2,设C (m ,n ),D (m -1,n -2),则mn =(m -1)(n -2)=k ,解得n=2-2m ,BC AB BC =2AB , 解得:m =-2,n =6,所以,k =mn =-122.(2013•莆田)如图,直线l :y=x+1与x 轴、y 轴分别交于A 、B 两点,点C 与原点O 关于直线l 对称.反比例函数y=的图象经过点C ,点P 在反比例函数图象上且位于C 点左侧,过点P 作x 轴、y 轴的垂线分别交直线l 于M 、N 两点.(1)求反比例函数的解析式;(2)求AN•BM的值.求得:得:,即;,﹣﹣AN=(﹣),﹣(﹣且DM⊥DN.作MF⊥AB于点F,NE⊥AB于点E.(1)特殊验证:如图1,若AC=BC,且D为AB中点,求证:DM=DN,AE=DF;(2)拓展探究:若AC≠BC.①如图2,若D为AB中点,(1)中的两个结论有一个仍成立,请指出并加以证明;②如图3,若BD=kAD,条件中“点M在BC边上”改为“点M在线段CB的延长线上”,其它条件不变,请探究AE与DF的数量关系并加以证明.,即,即,,∴;,∴,∴,即由①同理可得:又∵。

备战中考数学反比例函数(大题培优 易错 难题)及答案解析

备战中考数学反比例函数(大题培优 易错 难题)及答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,反比例函数y= 的图象与一次函数y= x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.【答案】(1)解:k=4,S△PAB=15.提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,把x=4代入y= x,得到点B的坐标为(4,1),把点B(4,1)代入y= ,得k=4.解方程组,得到点A的坐标为(﹣4,﹣1),则点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.设直线AP的解析式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,求得直线AP的解析式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC= OC•AR+ OC•PS= ×3×4+ ×3×1= ,∴S△PAB=2S△AOP=15;(2)解:过点P作PH⊥x轴于H,如图2.B(4,1),则反比例函数解析式为y= ,设P(m,),直线PA的方程为y=ax+b,直线PB的方程为y=px+q,联立,解得直线PA的方程为y= x+ ﹣1,联立,解得直线PB的方程为y=﹣ x+ +1,∴M(m﹣4,0),N(m+4,0),∴H(m,0),∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,∴MH=NH,∴PH垂直平分MN,∴PM=PN,∴△PMN是等腰三角形;(3)解:∠PAQ=∠PBQ.理由如下:过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),直线AQ的解析式为y=px+q,则有,解得:,∴直线AQ的解析式为y= x+ ﹣1.当y=0时, x+ ﹣1=0,解得:x=c﹣4,∴D(c﹣4,0).同理可得E(c+4,0),∴DT=c﹣(c﹣4)=4,ET=c+4﹣c=4,∴DT=ET,∴QT垂直平分DE,∴QD=QE,∴∠QDE=∠QED.∵∠MDA=∠QDE,∴∠MDA=∠QED.∵PM=PN,∴∠PMN=∠PNM.∵∠PAQ=∠PMN﹣∠MDA,∠PBQ=∠NBE=∠PNM﹣∠QED,∴∠PAQ=∠PBQ.【解析】【分析】(1)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP 与y轴交于点C,如图1,可根据条件先求出点B的坐标,然后把点B的坐标代入反比例函数的解析式,即可求出k,然后求出直线AB与反比例函数的交点A的坐标,从而得到OA=OB,由此可得S△PAB=2S△AOP,要求△PAB的面积,只需求△PAO的面积,只需用割补法就可解决问题;(2)过点P作PH⊥x轴于H,如图2.可用待定系数法求出直线PB的解析式,从而得到点N的坐标,同理可得到点M的坐标,进而得到MH=NH,根据垂直平分线的性质可得PM=PN,即△PMN是等腰三角形;(3)过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),运用待定系数法求出直线AQ的解析式,即可得到点D的坐标为(c﹣4,0),同理可得E(c+4,0),从而得到DT=ET,根据垂直平分线的性质可得QD=QE,则有∠QDE=∠QED.然后根据对顶角相等及三角形外角的性质,就可得到∠PAQ=∠PBQ.2.如图,已知抛物线y=﹣x2+9的顶点为A,曲线DE是双曲线y= (3≤x≤12)的一部分,记作G1,且D(3,m)、E(12,m﹣3),将抛物线y=﹣x2+9水平向右移动a个单位,得到抛物线G2.(1)求双曲线的解析式;(2)设抛物线y=﹣x2+9与x轴的交点为B、C,且B在C的左侧,则线段BD的长为________;(3)点(6,n)为G1与G2的交点坐标,求a的值.(4)解:在移动过程中,若G1与G2有两个交点,设G2的对称轴分别交线段DE和G1于M、N两点,若MN<,直接写出a的取值范围.【答案】(1)把D(3,m)、E(12,m﹣3)代入y= 得,解得,所以双曲线的解析式为y= ;(2)2(3)解:把(6,n)代入y= 得6n=12,解得n=2,即交点坐标为(6,2),抛物线G2的解析式为y=﹣(x﹣a)2+9,把(6,2)代入y=﹣(x﹣a)2+9得﹣(6﹣a)2+9=2,解得a=6± ,即a的值为6± ;(4)抛物线G2的解析式为y=﹣(x﹣a)2+9,把D(3,4)代入y=﹣(x﹣a)2+9得﹣(3﹣a)2+9=4,解得a=3﹣或a=3+ ;把E(12,1)代入y=﹣(x﹣a)2+9得﹣(12﹣a)2+9=1,解得a=12﹣2 或a=12+2;∵G1与G2有两个交点,∴3+ ≤a≤12﹣2 ,设直线DE的解析式为y=px+q,把D(3,4),E(12,1)代入得,解得,∴直线DE的解析式为y=﹣ x+5,∵G2的对称轴分别交线段DE和G1于M、N两点,∴M(a,﹣ a+5),N(a,),∵MN<,∴﹣ a+5﹣<,整理得a2﹣13a+36>0,即(a﹣4)(a﹣9)>0,∴a<4或a>9,∴a的取值范围为9<a≤12﹣2 .【解析】【解答】解:(2)当y=0时,﹣x2+9=0,解得x1=﹣3,x2=3,则B(﹣3,0),而D(3,4),所以BE= =2 .故答案为2 ;【分析】(1)把D(3,m)、E(12,m﹣3)代入y= 得关于k、m的方程组,然后解方程组求出m、k,即可得到反比例函数解析式和D、E点坐标;(2)先解方程﹣x2+9=0得到B(﹣3,0),而D(3,4),然后利用两点间的距离公式计算DE的长;(3)先利用反比例函数图象上点的坐标特征确定交点坐标为(6,2),然后把(6,2)代入y=﹣(x ﹣a)2+9得a的值;(4)分别把D点和E点坐标代入y=﹣(x﹣a)2+9得a的值,则利用图象和G1与G2有两个交点可得到3+ ≤a≤12﹣2 ,再利用待定系数法求出直线DE的解析式为y=﹣ x+5,则M(a,﹣ a+5),N(a,),于是利用MN<得到﹣ a+5﹣<,然后解此不等式得到a<4或a>9,最后确定满足条件的a的取值范围.3.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.4.如图,Rt△ABO的顶点A是双曲线y= 与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO= .(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.【答案】(1)解:设A点坐标为(x,y),且x<0,y>0,则S△ABO= •|BO|•|BA|= •(﹣x)•y= ,∴xy=﹣3,又∵y= ,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)解:由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC= OD•(|x1|+|x2|)= ×2×(3+1)=4.【解析】【分析】两解析式的k一样,根据面积计算双曲线中的k较易,由公式=2S△ABO,可求出k;(2)求交点就求两解析式联立的方程组的解,可分割△AOC为S△ODA+S△ODC,即可求出.5.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.【答案】(1)解:作AD⊥x轴于D,如图,在Rt△OAD中,∵sin∠AOD= = ,∴AD= OA=4,∴OD= =3,∴A(﹣3,4),把A(﹣3,4)代入y= 得m=﹣4×3=﹣12,所以反比例函数解析式为y=﹣;把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,把A(﹣3,4)、B(6,﹣2)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2(2)解:当y=0时,﹣x+2=0,解得x=3,则C(3,0),所以S△AOC= ×4×3=6(3)解:当x<﹣3或0<x<6时,一次函数的值大于反比例函数的值【解析】【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣3,4),再把A点坐标代入y= 可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.6.如图,已知矩形OABC中,OA=3,AB=4,双曲线y= (k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD(1)求k的值和点E的坐标;(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P 的坐标,若不存在,请说明理由.【答案】(1)解:∵AB=4,BD=2AD,∴AB=AD+BD=AD+2AD=3AD=4,∴AD= ,又∵OA=3,∴D(,3),∵点D在双曲线y= 上,∴k= ×3=4;∵四边形OABC为矩形,∴AB=OC=4,∴点E的横坐标为4.把x=4代入y= 中,得y=1,∴E(4,1);(2)解:(2)假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m.∵∠APE=90°,∴∠APO+∠EPC=90°,又∵∠APO+∠OAP=90°,∴∠EPC=∠OAP,又∵∠AOP=∠PCE=90°,∴△AOP∽△PCE,∴,∴,解得:m=1或m=3,∴存在要求的点P,坐标为(1,0)或(3,0).【解析】【分析】(1)由矩形OABC中,AB=4,BD=2AD,可得3AD=4,即可求得AD的长,然后求得点D的坐标,即可求得k的值,继而求得点E的坐标;(2)首先假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m,由∠APE=90°,易证得△AOP∽△PCE,然后由相似三角形的对应边成比例,求得m的值,继而求得此时点P的坐标.7.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.8.已知二次函数的图象经过三点(1,0),(-3,0),(0,).(1)求该二次函数的解析式;(2)若反比例函数图像与二次函数的图像在第一象限内交于点 , 落在两个相邻的正整数之间,请写出这两个相邻的正整数;(3)若反比例函数的图像与二次函数的图像在第一象限内的交点为A,点A的横坐标为满足,试求实数的取值范围。

2023年九年级中考数学频考点突破--反比例函数动态几何问题

2023年九年级中考数学频考点突破--反比例函数动态几何问题

2023年中考数学频考点突破--反比例函数动态几何问题1.如图,在第一象限内有一点A(4,1),过点A作AB⊥x轴于B点,作AC⊥y轴于C点,点N为线段AB上的一动点,过点N的反比例函数y=nx交线段AC于M点,连接OM,ON,MN.(1)若点N为AB的中点,则n的值为;(2)求线段AN的长(用含n的代数式表示);(3)求⊥AMN的面积等于14时n的值.2.如图,一次函数y=2x−2的图与y轴分别交于点A,且反比例函数y=4x的图象在第一象限内的交点为M.(1)求点M的坐标.(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由。

3.如图,在矩形ABCD中,已知点A(2,1),且AB=4,AD=3,把矩形ABCD的内部及边上,横、纵坐标均为整数的点称为靓点,反比例函数y=kx(x>0)的图象为曲线L.(1)若曲线L过AB的中点.①求k的值.②求该曲线L下方(包括边界)的靓点坐标.(2)若分布在曲线L上方与下方的靓点个数相同,求k的取值范围.4.如图,点A,B在x轴上,以AB为边的正方形ABCD在x轴上方,点C的坐标为(1,4),反比例函数y=kx(k≠0)的图象经过CD的中点E,F是AD上的一个动点,将△DEF沿EF所在直线折叠得到△GEF.(1)求反比例函数y=k x(k≠0)的表达式;(2)若点G落在y轴上,求线段OG的长及点F的坐标.5.如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数y=k x(k≠0)的图象交于一、三象限内的A、B两点,直线AB与x轴交于点C,点B的坐标为(− 2,n).(1)求反比例函数的解析式;(2)求△AOB的面积;(3)在x轴上是否存在一点P,使△AOP是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(√3,1)在反比例函数y=k x 的图象上.(1)求反比例函数y=kx的表达式;(2)在x轴上是否存在一点P,使得S⊥AOP=12S⊥AOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由.7.如图,Rt△ABC中,∠ACB=90∘,顶点A,B都在反比例函数y=k x(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA 时,点E恰为AB的中点,若∠AOD=45∘,OA=2√2.(1)求反比例函数的解析式;(2)求∠EOD的度数.8.如图,直线y=2x+6与反比例函数y=kx(k>0)的图象交于点A(1,m),与x轴交于点B.平行于x轴的直线y=n(0<n<8)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)当n为何值时,△BMN的面积最大?9.如图,在平面直角坐标系xOy中,双曲线y1=k x与直线y2=mx+n交于点A,E,AE交x轴于点C,交y轴于点D,AB⊥x轴于点B,C为OB中点.若D点坐标为(0,﹣2),且S⊥AOD=4(1)求双曲线与直线AE的解析式;(2)写出E点的坐标;(3)观察图象,直接写出y1≥y2时x的取值范围.10.如图,将一张Rt△ABC纸板的直角顶点放在C(2,1)处,两直角边BC,AC分别与x,y轴平行( BC>AC),纸板的另两个定点A,B恰好是直线y1=kx+5与双曲线y2=m x(m> 0)的交点.(1)求m和k的值;(2)将此Rt△ABC纸板向下平移,当双曲线y2=mx(m>0)与Rt△ABC纸板的斜边所在直线只有一个公共点时,求Rt△ABC纸板向下平移的距离.11.如图,在平面直角坐标系中,正六边ABCDEF的对称中心P在反比例函数y=k x(k>0,x>0)的图象上,边CD在x轴上,点B在y轴上.已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理由.(2)若该反比例函数图象与DE交于点Q.求点Q的横坐标.12.如图1,在平面直角坐标系中,直线AB与反比例函数y=k x(x>0)的图象交于点A (1,3)和点B (3,n),与x轴交于点C,与y轴交于点D.(1)求反比例函数的表达式及n的值;(2)将⊥OCD沿直线AB翻折,点O落在第一象限内的点E处,EC与反比例函数的图象交于点F.①请求出点F的坐标;②在x轴上是否存在点P,使得⊥DPF是以DF为斜边的直角三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.13.如图,已知直线OA与反比例函数y=mx(m≠0)的图像在第一象限交于点A.若OA=4,直线OA与x轴的夹角为60°.(1)求点A的坐标;(2)求反比例函数的解析式;(3)若点P是坐标轴上的一点,当△AOP是直角三角形时,直接写出点P的坐标.14.已知正比例函数y1=ax的图象与反比例函数y2=6−ax的图象交于A,B两点,且A点的横坐标为﹣1.(1)试确定上述正比例函数和反比例函数的表达式.(2)根据图象回答,当x取何值时,反比例函数的值大于正比例函数的值.(3)点M(m,n)是反比例函数图象上一动点,其中0<n<3,过点M作MD⊥y轴交x轴于点D,过点B作BC⊥x轴交y轴于点C,交直线MD于点E,当四边形OMEB面积为3时,请判断DM 与EM大小关系并给予证明.15.如图,在平面直角坐标系中,一次函数y1=−x+2与反比例函数y2=k x(x<0)相交于点B,与x轴相交于点A,点B的横坐标为-2.(1)求k的值;(2)直接写出当x<0且y1<y2时,x的取值范围;=k x(x<0)的(3)设点M是直线AB上的一点,过点M作MN//x轴,交反比例函数y2图象于点N.若以A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.16.如图,一次函数y=﹣x+4的图象与反比例y=k x(k为常数,且k≠0)的图象交于A(1,a),B 两点.(1)求反比例函数的表达式及点B的坐标;(2)①在x轴上找一点P,使P A+PB的值最小,求满足条件的点P的坐标;②在x轴上找一点M,使|MA﹣MB|的值为最大,直接写出M点的坐标.答案解析部分1.【答案】(1)2(2)解:由(1)可知:x A=x B=x N=4,∵点N在y=nx上,∴y N=nx N=n4,∴AN=AB-BN= 1−n 4,故线段AN的长为1−n 4(3)解:由(2)可知:AN= 1−n 4,∵点A(4,1),AC⊥y轴,交y=nx于点M,∴y A=y M=1,AC=x N=4,则x M=ny M=n,即CM=x M=n,∴AM=AC-CM=4-n,∵AC⊥y轴,AB⊥x轴,∴四边形OBAC为矩形,∴⊥A=90°,∴S⊥AMN= 12×AN×AM = 12(1−n4)×(4−n)= 18n2−n+2,又⊥AMN的面积等于1 4,∴18n2−n+2=14,解得:n=4±√2,又AN= 1−n4>0,∴n<4,∴n=4−√2,故n的值为4−√2【知识点】反比例函数图象上点的坐标特征;反比例函数-动态几何问题【解析】【解答】解:(1)∵A(4,1),AB⊥x轴于点B,交y=nx于点N,∴x A=x B=x N=4,AB=1,又∵点N为AB中点,∴BN= 12AB=12,即y N=12,∴n=x N×y N=4× 12=2,故n=2;【分析】(1)根据题意求出x A=x B=x N=4,AB=1,再求出y N= 12,最后计算求解即可;(2)根据题意求出y N=nx N=n4,再求出AN=AB-BN= 1−n4,即可作答;(3)根据题意求出y A=y M=1,AC=x N=4,再求出四边形OBAC为矩形,最后利用三角形的面积公式计算求解即可。

反比例函数与动点问题

反比例函数与动点问题
Q点可 以在第二象 限或第 四象限 ,
Q( , 一 2 ) 或 (一 , 2 ) . Βιβλιοθήκη z ・’,

当 = 时 , , , = 一 ; 当 = 一 孚 日 寸 ' y =
・ . .
・ . .
P ( 孚 , 一 叫 一 T , .

②若 LO P Q=LA B O, 则△ P Q O ' - " AB O A .
求 出 点 Q 的 坐标 , 如果不存在 , 请 说 明理 由. 解
・ .
( 1 ) ‘ . ‘ Y=k x过 (一1 , 2 ) , . ‘ . k =一 2 , 即Y = 一2 x .
解由 尸 点 在 反 比 例 函 数 y = 一 ÷ 的 图 像 上 可 设 P ( , y ) .

升 ( 甘肃省陇 南市武都 区滨 江学校 , 甘肃 陇 南 7 4 6 0 0 0 )
【 基金项 目】 甘肃省 “ 十三五 ” 教 育科学规 划 2 0 1 6年度
《 初 中数 学 动 点 问题 分 析 研 究》课 题 ( 课题立 项号: G s
[ 2 0 1 6 ] G H B 0 6 5 3 ) 成果.
数 y = 与 反 比 例 函 数 y = 詈图 像 上 的 一
个 交 点.

( 1 ) 求这 两个函数的解析式 ;
A 一 1 一
图 2
中 0( 0 , 0 ) , A( 0 , 2 ) , ( 1 , 0 ) , 点 P是 反

比例 函数 Y=一 图像 上的一个动点 , 过 点 P作 P Q上 轴, 垂足 为 Q, 若 以点 0,

‘ , , = 詈 且 过 ( 一 1 , 2 ) , . ‘ = 一 2 , 即 , , = 一 2 .

反比例函数图象上的动点问题

反比例函数图象上的动点问题

反比例函数图像上的动点问题——反比例函数复习一、开门见山揭示课题二、复习过程演绎(一)问题1教学出示右图:如图,坐标系内有一点A(2,4),有一反比例函数图像经过A点。

则它的函数关系式是什么?(学生口答)变:过A作AD⊥x轴于D,连结OA,则S△AOD=___.学生口答。

(预设两种:S△AOD=12OD×AD=4, S△AOD=12×8)师:你是怎么知道的?总结:①把点的坐标转化为线段的长,往往是解决直角坐标系中有关图形计算的手段(预设1);变1:若C是图像上的一个动点,也构造这样的直角三角形COF,则面积为多少?你的理由?S△AOD=12︳k︳(根据学生回答,引出C为动点)师:提问:连结AC,在这个图形中,你还能找出其他面积相等的部分吗?(学生在工作单上试做)学生回答:(1)S△AOM =S梯MDFC;S△AOC =S△ADFC板书(移动几何画板观看)变2:若C点坐标为(4,2),求S△AOC生说师写过程(板书转化思想)变3:S△AOC=6,求C点坐标学生试做。

优生板演。

毕。

师:请大家仔细看黑板上同学所做题目。

请给与评价。

有哪些地方值得你欣赏的?哪些地方你觉得要修正的?(老师根据学生所言,共同规范书写过程)板书分类思想阶段评价(二)出示问题2变4:延长AO交图像于点B,则B点坐标为多少?(口答)师:你的理由?(中心对称图形)延长CO、AO交图像的另一分支于点E、B,连结AF、BF,四边形AEBC是什么4)特殊四边形?理由?提问:四边形AEBC变5:点C求此时点C的坐标;有可能是菱形吗?你有理由吗?三、总结:谈谈本节课的收获。

“两种解题方法:求面积,一般性图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

·、
'
一. 求函数解析式。

例1. 如图1,P是反比例函数图象在第二象限上的一点,且矩形PEOF的面积为3。

求这个反函数的解析式。

图1 图2
二. 求面积
例2.图2中正比例函数和反比例函数的图象相交于A、B两点,分别以A、B两点为圆心,画与y轴相切的两个圆,若点A的坐标为(1,2),求图中两个阴影面积的和。


三. 特殊点组成图形的面积
例3. 如图3,反比例函数x
8
y -
=与一次函数2x y +-=的图象相交于A 、B 两点。

(1)求A 、B 两点的坐标;(2)求AOB ∆的面积。

图3 图4


四. 探讨面积的变化
例4. 如图4,x y =和)0m (mx y >=的图象与)0k (x
k
y >=
的图象分别交于第一象限内的两点A ,C ,过A ,C 分别向x 轴作垂线,垂足分别为B ,D ,若直角三角形AOB 与直角三角形COD 的面积分别为2
1、S S ,
则1S 与2S 的关系为( )
A. 21S S >
B. 21S S =
C. 21S S <
D. 与k ,m 的值无关
五. 求参数的值
例5. 如图5,已知反比例函数x
12
y =
的图象和一次函数7kx y -=的图象都经过点P (m ,2)。

(1)求这个一次函数的解析式;(2)如果等腰梯形ABCD 的顶点A 、B 在这个一次函数图象上,顶点C 、D 在这
个反比例函数图象上,两底AD ,BC 与y 轴平行,且A 和B 的横坐标分别为a 和a+2,求a 的值。

`
图5

一、反比例函数与特殊四边形结合
1.如图1,已知双曲线y =
x
k
(k >0)与直线y =k ′ x 交于A ,B 两点,点A 在第一象限.试解答下列问题:
(1)若点A 的坐标为(4,2)则点B 的坐标为_____________;若点A 的横坐标为m ,则点B 的坐标可表示为_____________;
(2)如图2,过原点O 作另一条直线l ,交双曲线y =x
k
(k >0)于P ,Q 两点,点P 在第一象限. ①说明四边形APBQ 一定是平行四边形;
②设点A ,P 的横坐标分别为m ,n ,四边形APBQ 可能是矩形吗可能是正方形吗若可能,直接写出m ,n 应满足的条件;若不可能,请说明理由.

| ¥
y
x
B
C
D
α

1 1
2.我们容易发现:反比例函数的图象是一个中心对称图形.你可以利用这一结论解决问题.
如图,在同一直角坐标系中,正比例函数的图象可以看作是:将x 轴所在的直线绕着原点O 逆时针旋转α度角后的图形.若它与反比例函数y =
x
3
的图象分别交于第一、三象限的点B 、D ,已知点A (-m ,0)、C (m ,0)(m 是常数,且m >0).
(1)直接判断并填写:不论α取何值,四边形ABCD 的形状一定是_____________; (2)①当点B 为(p ,1)时,四边形ABCD 是矩形,试求p 、α和m 的值;
\
②观察猜想:对①中的m 值,能使四边形ABCD 为矩形的点B 共有..
几个(不必说理)
(3)试探究:四边形ABCD B 点坐标;若不能,说明理由.
%
¥。

二、反比例函数与相似三角形结合
3.如图,一次函数y =ax +b 的图象与反比例函数y =
x
k
的图象交于A 、B 两点,与x 轴交于点C ,与y 轴交于点D ,已知OA =10,tan ∠AOC =31
,点B 的坐标为(m ,-2).
(1)求反比例函数的解析式;
(2)求一次函数的解析式;
(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.:


4.如图,是反比例函数y =-x 2和y =-x 8在第二象限中的图像,点A 在y =-x
8的图像上,点A 的横坐标为m (m <0),AC ∥y 轴交y =-
x 2的图像于点C ,AB 、CD 均平行于x 轴,分别交y =-x 2、y =-x 8的图像于点B 、D .
(1)用m 表示A 、B 、C 、D 的坐标;(2)求证:梯形ABCD 的面积是定值;(3)若△ABC 与△ACD 相似,求m 的值.
<
@
三、反比例函数与翻折结合
5.如图,四边形OABC 是面积为4的正方形,函数y =x k (x >0)的图象经过点B . (1)求k 的值;(2)将正方形OABC 分别沿直线AB 、BC 翻折,得到正方形MABC ′、NA ′BC .设线段MC ′、
NA ′分别与函数y =x
k (x >0)的图象交于点E 、F ,求线段EF 所在直线的解析式. ;
~
6.如图1,在平面直角坐标系中,四边形AOBC 是矩形,点C 的坐标为(4,3),反比例函数y =x k (k >0)的图象与矩形AOBC 的边AC 、BC 分别相交于点E 、F ,将△CEF 沿EF 对折后,C 点恰好落在OB 上. `
(1)求证:△AOE 与△BOF 的面积相等; (2)求反比例函数的解析式;
(3)如图2,P 点坐标为(2,-3),在反比例函数y =x
k 的图象上是否存在点M 、N (M 在N 的左侧),使得以O 、P 、M 、N 为顶点的四边形是平行四边形若存在,求出点M 、N 的坐标;若不存在,请说明理由.
~

'
课后练习
1.如图,已知直线y =-2x +b 与双曲线y =
x k (k >0且k ≠2)相交于第一象限内的两点P (1,k )、Q (2
2 b ,y 2). (1)求点Q 的坐标(用含k 的代数式表示);
(2)过P 、Q 分别作坐标轴的垂线,垂足为A 、C ,两垂线相交于点B .是否存在这样的k 值,使得△OPQ 的面积等于△BPQ 面积的二倍若存在,求k 的值;若不存在,请说明理由.(P 、Q 两点请自己在图中标明) 、

]

2.在平面直角坐标系中,函数y =x
m (x >0,m 是常数)的图象经过点A (1,4)、点B (a ,b ),其中a >1.过点A 作x 轴的垂线,垂足为C ,过点B 作y 轴的垂线,垂足为D ,AC 与BD 相交于点M ,连结AD 、DC 、CB 与AB .
(1)求m 的值;(2)求证:DC ∥AB ;(3)当AD =BC 时,求直线AB 的函数解析式

&
3.如图,一次函数y =kx -7的图象与反比例函数y =-x
12的图象交于A (m ,2)、B 两点. (1)求一次函数的解析式和点B 的坐标;
(2)等腰梯形CDEF 的顶点C 、D 在反比例函数的图象上,顶点E 、F 在一次函数的图象上,DE ∥CF ∥y 轴,且C 、D 的横坐标分别为a 、a -2,求a 的值.

[
4.如图,直线y =21x +b 分别与x 轴、y 轴相交于A 、B ,与双曲线y =x k (其中x >0)相交于第一象限内的点P (2,y 1),作PC ⊥x 轴于C ,已知△APC 的面积为9.(1)求双曲线所对应的函数关系式;(2)在
(1)中所求的双曲线上是否存在点Q (m ,n )(其中m >0),作QH ⊥x 轴于H ,当QH >CH 时,使得△QCH 与△AOB 相似若存在,请求出Q 点坐标;若不存在,请说明理由.。

相关文档
最新文档