DSP(数字信号处理)实验报告5
实验五数字滤波器幅频特性的测试

实验三 低通、高通滤波器的幅频特性一、实验目的㈠ 进一步熟悉DSP 实验系统的结构、组成及使用方法。
㈡ 了解数字低通、高通滤波器的特点,学习数字滤波器幅频特性的测量方法。
㈢ 观察数字滤波器频响特性的周期延拓性。
二、实验原理㈠ 用DSP 实验系统实现数字滤波器一个线性时不变离散系统,或者说一个数字系统可以用系统函数来表示:∑∑=-=--=N i ii Ni ii z a zb z H 101)(也可以用差分方程表示: ∑∑==-+-=Ni iN i ii n y a i n x b n y 1)()()(由以上两个公式中,当i a 至少有一个不为0时,表达的是一个IIR 数字滤波器;当i a 全都为0时,表达的是一个FIR 数字滤波器。
FIR 数字滤波器可以看成是IIR 数字滤波器i a 全都为0时的一个特例。
通常,我们把FIR 滤波器的系统函数表示为 H Z h n Zn N n()()==--∑01其差分方程表示为y n h i x n i i N ()()()=-=-∑01例如:已知一个用双线性变换法设计的三阶低通IIR 数字滤波器,采样频率F s =4KHz,其3dB 截止频率为1KHz,它的传递函数2321333121)(----++++=zz z z z H 为了用数字信号处理实验系统实现这个滤波器,我们对上式还需进行处理,将其化成一般表示式232123213333.0116667.05.05.016667.031161212161)(--------++++=++++=z z z z z zz z z H 由上式可知,传递函数的各系数为16667.00=b 5.01=b 5.02=b 16667.03=b 01=a 3333.02-=a 03=a相应的差分方程为)2(3333.0)3(16667.0)2(5.0)1(5.0)(16667.0)3()2()1()3()2()1()()(3213210---+-+-+=-+-+-+-+-+-+=n y n x n x n x n x n y a n y a n y a n x b n x b n x b n x b n y将以上差分方程的计算过程及采样频率Fs 、电路阶数N =3编写成TMS320Cxx 执行程序,输入实验系统,即可实现这个IIR 数字低通滤波器。
dsp原理与应用实验报告总结

dsp原理与应用实验报告总结DSP(Digital Signal Processing)数字信号处理是利用数字技术对信号进行处理和分析的一种方法。
在本次实验中,我们探索了DSP的原理和应用,并进行了一系列实验以验证其在实际应用中的效果。
以下是对实验结果的总结与分析。
实验一:数字滤波器设计与性能测试在本实验中,我们设计了数字滤波器,并通过性能测试来评估其滤波效果。
通过对不同类型的滤波器进行设计和实现,我们了解到数字滤波器在信号处理中的重要性和应用。
实验二:数字信号调制与解调本实验旨在通过数字信号调制与解调的过程,了解数字信号的传输原理与方法。
通过模拟调制与解调过程,我们成功实现了数字信号的传输与还原,验证了调制与解调的可行性。
实验三:数字信号的傅里叶变换与频谱分析傅里叶变换是一种重要的信号分析方法,可以将信号从时域转换到频域,揭示信号的频谱特性。
本实验中,我们学习了傅里叶变换的原理,并通过实验掌握了频谱分析的方法与技巧。
实验四:数字信号的陷波滤波与去噪处理陷波滤波是一种常用的去除特定频率噪声的方法,本实验中我们学习了数字信号的陷波滤波原理,并通过实验验证了其在去噪处理中的有效性。
实验五:DSP在音频处理中的应用音频处理是DSP的一个重要应用领域,本实验中我们探索了DSP在音频处理中的应用。
通过实验,我们成功实现了音频信号的降噪、均衡和混响处理,并对其效果进行了评估。
实验六:DSP在图像处理中的应用图像处理是另一个重要的DSP应用领域,本实验中我们了解了DSP在图像处理中的一些基本原理和方法。
通过实验,我们实现了图像的滤波、边缘检测和图像增强等处理,并观察到了不同算法对图像质量的影响。
通过以上一系列实验,我们深入了解了DSP的原理与应用,并对不同领域下的信号处理方法有了更深刻的认识。
本次实验不仅加深了我们对数字信号处理的理解,也为日后在相关领域的研究与实践提供了基础。
通过实验的结果和总结,我们可以得出结论:DSP作为一种数字信号处理的方法,具有广泛的应用前景和重要的实际意义。
dsp实验报告

DSP 实验课大作业实验报告题目:在DSP 上实现线性调频信号的脉冲压缩,动目标显示和动目标检测 (一)实验目的:(1)了解线性调频信号的脉冲压缩、动目标显示和动目标检测的原理,及其DSP 实现的整个流程;(2)掌握C 语言与汇编语言混合编程的基本方法。
(3)使用MATLAB 进行性能仿真,并将DSP 的处理结果与MATLAB 的仿真结果进行比较。
(二)实验内容: 1. MATLAB 仿真设定信号带宽为B= 62*10,脉宽-6=42.0*10τ,采样频率为62*10Fs =,脉冲重复周期为-4T=2.4*10,用MATLAB 产生16个脉冲的线性调频信号,每个脉冲包含三个目标,速度和距离如下表:对回波信号进行脉冲压缩,MTI ,MTD 。
并且将回波数据和频域脉压系数保存供DSP 使用。
2.DSP 实现在Visual Dsp 中,经MATLAB 保存的回波数据和脉压系数进行脉压,MTI 和MTD 。
(三)实验原理 1.脉冲压缩原理在雷达系统中,人们一直希望提高雷达的距离分辨力,而距离分辨力定义为:22c cR Bτ∆==。
其中,τ表示脉冲时宽,B 表示脉冲带宽。
从上式中我们可以看出高的雷达分辨率要求时宽τ小,而要求带宽B大。
但是时宽τ越小雷达的平均发射功率就会很小,这样就大大降低了雷达的作用距离。
因此雷达作用距离和雷达分辨力这两个重要的指标变得矛盾起来。
然而通过脉冲压缩技术就可以解决这个矛盾。
脉冲压缩技术能够保持雷达拥有较高平均发射功率的同时获得良好的距离分辨力。
在本实验中,雷达发射波形采用线性调频脉冲信号(LFM),其中频率与时延成正比关系,因此我们就可以将信号通过一个滤波器,该滤波器满足频率与时延成反比关系。
那么输入信号的低频分量就会得到一个较大的时延,而输入信号的高频分量就会得到一个较小的时延,中频分量就会按比例获得相应的时延,信号就被压缩成脉冲宽度为1/B的窄脉冲。
从以上原理我们可以看出,通过使用一个与输入信号时延频率特性规律相反的滤波器我们可以实现脉冲压缩,即该滤波器的相频特性与发射信号时共轭匹配的。
DSP实验报告

姓名:班级:自动化15 学号:2015实验一数据存储实验一实验目的1。
掌握TMS320F2812程序空间的分配;2。
掌握TMS320F2812数据空间的分配;3。
能够熟练运用TMS320F2812数据空间的指令。
二实验步骤与内容实验步骤1.在进行DSP实验之前,需先连接好仿真器、实验箱及计算机,连接方法如下所示:2.F2812CPU板的JUMP1的1和2脚短接,拨码开关SW1的第二位置ON;其余OFF3.E300底板的开关SW4的第2位置ON,其余位置OFF.其余开关设置为OFF.4.上电复位在硬件安装完成后,确认安装正确、各实验部件及电源连接无误后,启动计算机,接通仿真器电源,此时,仿真器上的指示灯应点亮,否则DSP开发系统与计算机连接存在问题。
5.运行CCS程序1)待计算机启动成功后,实验箱220V电源置“ON",实验箱上电2)启动CCS5.5,工作环境的路径选择:E:\E300Program\E300TechV-2812\normal ;6.成功运行CCS5.5程序后,出现如下图所示界面:7.右键点击Project Explorer窗口下的工程文件“e300_01_mem”,选择“Open Project"命令打开该工程,如下图所示,可以双击才看左侧源文件;8.点击菜单栏Project/Build All命令编译整个工程,编译完成后点击按钮进入仿真模式,完全进入后如下图所示:9.用“View"下拉菜单中的“Memory/Browser”查看内存单元,参数设置如下图:注意:下面的参数设置都是以16进制。
此时可以观测到以0x003F9020为起始地址的存储单元内的数据;10.单击按钮,开始运行程序,一段时间后,单击按钮,停止程序运行,0x003F9020H~ 0x3F902FH单元的数据的变化,如下图所示:11.关闭Memory Browser窗口,点击按钮,退出仿真模式。
数字信号处理实验报告

数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。
在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。
本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。
实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。
通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。
实验设置如下:1. 设置采样频率为8kHz。
2. 生成一个正弦信号:频率为1kHz,振幅为1。
3. 生成一个方波信号:频率为1kHz,振幅为1。
4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。
这体现了正弦信号和方波信号在时域上的不同特征。
实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。
在实际应用中,信号的采样和重构对信号处理的准确性至关重要。
实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。
2. 设置采样频率为8kHz。
3. 对正弦信号进行采样,得到离散时间信号。
4. 对离散时间信号进行重构,得到连续时间信号。
5. 将重构的信号通过DAC输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。
这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。
DSP实验报告――离散信号的产生及运算(精)

离散信号的产生(chǎnshēng)及运算报告一、实验(shíyàn)目的:1、复习(fùxí)和巩固数字信号处理中离散信号的产生和运算2、学习和掌握(zhǎngwò)用MATLAB产生离散信号的方法3、学习(xuéxí)和掌握用MATLAB对离散信号进行运算二、实验原理:1.用MATLAB函数产生离散信号信号是数字信号处理的最基本内容。
没有信号,数字信号处理就没了工作对象。
MATLAB7.0内部提供了大量的函数,用来产生常用的信号波形。
例如,三角函数(sin,cos),指数函数(exp),锯齿波函数(sawtooth), 随机数函数(rand)等。
1 产生被噪声污染的正弦信号用随机数函数产生污染的正弦信号。
2 产生单位脉冲序列和单位阶跃序列按定义,单位脉冲序列为单位阶跃序列为。
3 矩形脉冲信号:在MATLAB 中用rectpuls 函数来表示,其调用形式为:y=rectpuls(t,width,用以产生一个幅值为1,宽度为width,相对于t=0 点左右对称的矩形波信号,该函数的横坐标范围(fànwéi)由向量t 决定,是以t=0 为中心向左右各展开width/2 的范围,width 的默认值为1。
例:以t=2T(即t-2×T=0为对称中心的矩形脉冲信号(xìnhào)的MATLAB 源程序如下:(取T=1)t=0:0.001:4;T=1;ft=rectpuls(t-2*T,2*T;plot(t,ft;grid on; axis([0 4 –0.5 1.5];4 周期性矩形波(方波)信号在MATLAB 中用square 函数来表示,其调用形式为:y=square(t,DUTY,用以产生一个周期为2π、幅值为±1 的周期性方波信号,其中的DUTY参数表示占空比,即在信号的一个周期中正值(zhènɡ zhí)所占的百分比。
数字信号处理实验报告

一、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握离散时间信号的基本运算和变换方法。
3. 熟悉数字滤波器的设计和实现。
4. 培养实验操作能力和数据分析能力。
二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。
本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。
2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。
3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。
4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。
三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。
(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。
2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。
(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。
3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。
(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。
4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。
(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。
四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。
matlab dsp实验报告

MATLAB DSP实验报告介绍本实验报告将详细介绍在MATLAB环境下进行数字信号处理(DSP)的实验步骤和相关方法。
我们将通过逐步思考的方式,帮助读者理解和学习DSP的基本概念和技术。
实验环境和工具在进行DSP实验之前,我们需要准备以下环境和工具:1.MATLAB软件:确保已安装并配置好MATLAB软件,可以在MATLAB Command窗口中输入命令。
2.信号处理工具包:在MATLAB中,我们可以使用信号处理工具箱(Signal Processing Toolbox)来进行DSP实验和分析。
确保该工具箱已被安装并加载。
实验步骤下面是进行DSP实验的一般步骤:步骤一:加载信号首先,我们需要加载待处理的信号。
这可以通过在MATLAB中使用load命令加载一个音频文件或生成一个模拟信号实现。
例如,我们可以加载一个名为signal.wav的音频文件:load signal.wav步骤二:信号预处理在进行DSP之前,通常需要对信号进行预处理。
这可能包括去噪、滤波、均衡等操作。
例如,我们可以使用滤波器对信号进行降噪:filtered_signal = filter(filter_coefficients, signal);步骤三:信号分析一旦信号经过预处理,我们可以开始进行信号分析。
这可能涉及频域分析、时域分析、谱分析等。
例如,我们可以通过计算信号的快速傅里叶变换(FFT)获得其频谱:spectrum = fft(filtered_signal);步骤四:特征提取在信号分析之后,我们可以根据需要提取信号的特征。
这些特征可能包括幅度、频率、相位等。
例如,我们可以计算信号的能量:energy = sum(abs(filtered_signal).^2);步骤五:信号重构在完成信号分析和特征提取后,我们可以根据需要对信号进行重构。
这可能包括滤波、修复损坏的信号等。
例如,我们可以使用滤波器对信号进行重构:reconstructed_signal = filter(filter_coefficients, filtered_signal);步骤六:结果评估最后,我们需要评估重构后的信号和原始信号之间的差异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科学生实验报告
学号124090314 姓名何胜金
学院物电学院专业、班级12电子
实验课程名称数字信号处理(实验)
教师及职称杨卫平
开课学期第三至第四学年下学期填报时间2015 年 4 月20 日
云南师范大学教务处编印
二、实验内容
【例1.5.1】
已知周期信号x(t)=cos(10*pi*t)+2sin(18*pi*t),计算其频谱。
0=2*pi rad/s,周期T=1;最高次谐频为9*0=18*pi rad/s,所以N≥(2*9+1=19),程序如下:二、实验内容
【例1.5.1】
已知周期信号x(t)=cos(10*pi*t)+2sin(18*pi*t),计算其频谱。
0=2*pi rad/s,周期T=1;最高次谐频为9*0=18*pi rad/s,所以N≥(2*9+1=19),程序如下:
%example 1_5_1…… clc,clear,close all T0 = 1; N = 19; T = T0/N; t = 0:T:T0;
x = cos(2*pi*5*t) +2*sin(2*pi*9*t); Xm = fft(x,N);
f = (-(N - 1)/2:(N - 1)/2)/N/T; stem(f,abs(fftshift(Xm))); xlabel('f(Hz)');
ylabel('f(Magnitube)'); title('幅度谱');
1. 利用FFT分析信号)(e)(2tutxt
2.分析周期信号)π18sin(2)π10cos()(tttx fft函数计
10。