油田余热换热装置腐蚀结垢机理及防护措施
换热器结垢腐蚀四大原因及防腐六大措施!

换热器结垢腐蚀四大原因及防腐六大措施!化工厂换热器在换热过程中都存在着结垢堵塞和腐蚀问题,影响化工厂安全生产,针对换热器结垢和腐蚀的原因和危害,小7总结了常见的结垢和腐蚀处理措施,为解决换热器结垢和腐蚀问题提供借鉴!换热器在化工生产中占有重要地位,而换热器机组结垢腐蚀,导致传热不够而被迫停车清洗或者换热器的更换,严重时会影响安全生产的进行,更会增加企业运行的成本。
结垢原因1颗粒污垢悬浮于流体的固体微粒在换热表面上的积聚,一般是由颗粒细小的泥沙、尘土、不溶性盐类、胶状物、油污等组成。
当含有这些物质的水流经换热器表面时,容易形成污垢沉积物,形成垢下腐蚀,为某些细菌生存和繁殖提供温床。
当防腐措施不当时,最终导致换热表面腐蚀穿孔而泄漏。
2生物污垢除海水冷却装置外,一般生物污垢均指微生物污垢。
循环水系统中最常见的微生物主要是铁细菌、真菌和藻类。
铁细菌能把溶于水中的Fe2 转化为不溶于水的Fe2O3 的水合物,在水中产生大量铁氧化物沉淀以及建立氧浓差腐蚀电池,腐蚀金属。
且循环水系统中的藻类常在水中形成金属表面差异腐蚀电池而导致沉积物下腐蚀。
块状的还会堵塞换热器中的管路,减少水的流量,从而降低换热效率。
3结晶污垢在冷却水循环系统中,随着水分的蒸发,水中溶解的盐类(如重碳酸盐)的浓度增高,部分盐类因过饱和而析出,而某些盐类则因通过换热器传热表面时受热分解产生沉淀。
这些水垢由无机盐组成、结晶致密,被称为结晶水垢。
3腐蚀污垢具有腐蚀性的流体或者流体中含有腐蚀性的杂质对换热表面腐蚀而产生的污垢。
腐蚀程度取决于流体中的成分、温度及被处理流体的pH 值等因素。
通常,冷却管中的污垢冷却管一般为紫铜管和黄铜管,金属腐蚀主要是较高温度下(40~50℃)的氧腐蚀,污垢以铜或铜合金腐蚀产物和钙镁沉淀物为主,从而造成大量腐蚀污垢。
4凝固污垢流体在过冷的换热面上凝固而形成的污垢。
例如当水低于冰点而在换热表面上凝固成冰。
温度分布的均匀与否对这种污垢影响很大。
油井腐蚀结垢机理及治理措施浅析

1 腐蚀类型及成因1.1 腐蚀类型及腐蚀现状腐蚀的对象主要是油田开发过程中的金属设备,包括油井的井筒、油管和油杆等。
腐蚀可以分为物理腐蚀和化学腐蚀两种类型。
物理腐蚀一般是指金属物质在高温条件下发生熔化或者溶解,导致设备的损坏。
化学腐蚀是金属物质与某些酸性溶液接触并发生一些列化学反应,造成金属表面性质的改变。
物理腐蚀发生的情况较少,一般来说,油井的腐蚀主要是由化学腐蚀作用造成的。
随着开发开采的不断进行,井下设备,例如油井的油管、油杆和井筒都会遭受不同程度的腐蚀,导致其出现穿孔和断裂的情况。
以大港油田采油三厂专采作业区为例,发现泵杆接箍偏磨腐蚀断裂,通过捞杆发现,接箍处出现断裂,并且泵杆有腐蚀、偏磨的现象。
官912井在第120根以下泵杆全部出现腐蚀结垢碳化现象。
1.2 腐蚀成因机理及控制因素在油田开发开采过程中,造成油井腐蚀的原因复杂。
有井筒、油管等自身材质的因素,还有周围环境的因素。
本次研究,主要讨论周围环境对油井的腐蚀。
首先,在开发过程中,会产生一些酸性气体,例如二氧化碳和硫化氢,这类气体与地下水接触,可以形成具有强腐蚀性的酸性溶液,与油井的金属材质接触,造成油井的化学腐蚀。
其次,高矿化度的地层水会对油井造成不同程度的腐蚀。
高矿化度地层水中含有大量的氯离子,氯离子具有很强的穿透能力,可以破坏金属保护膜,造成金属的腐蚀。
研究表明,矿物度越高,腐蚀的速率越快,腐蚀的程度越大。
2 腐蚀治理措施2.1 腐蚀治理措施类型在地下水溶液长期接触的过程中,油井的金属设备易遭受腐蚀,在金属材质的表面涂非金属保护层,可以有效隔离金属和周围酸性腐蚀溶液环境,进而达到防腐蚀的作用。
耐腐蚀的非金属物质,例如油漆、沥青和一些高分子材料如塑料、橡胶等,都可以作为较好的保护屏障。
金属材质的耐腐蚀性有差异,但是受经济和技术等因素的制约,油井的设备不可能全部采用耐腐蚀材质的金属,因此,可以将耐腐蚀的金属材质,例如某些合金材料,覆盖于油管的表面。
油田结垢机理及防治技术参考文档

碳酸钙的溶解度随着温度的升高和C02的分压降低而减 小,后者的影响尤为重要。因为在系统内的任何部位,压 力降低都可能产生碳酸钙沉淀。
Ca2++2HC03══CaC03↓+C02↑+H20
结垢机理
如果系统内压力降低 ,溶液中 C02 减少,促使反应向右 进行,导致CaCO3沉淀。硫酸钙(CaS04 ·2H20)的溶解度随着温 度的升高而增 大,可是当达到35℃一40℃ 以上时,溶解度 又随温度的升 高而减小。硫酸钙的溶解度随压 力升高而增 大,这完全是 物理效应。
(3)避免不相容的水混合
防垢技术
不相容的水是指两种水混合时,沉淀出不溶性产物。不 相容性产生的原因是一种水含有高浓度的成垢阳离子,如 Ca2+、Ba2+、Sr2+等,另一种水含高浓度成垢阴离子,如 C032-、HC03-或SO42-。当这两种水混合,离子的最终浓 度达到过饱和状态,就产生沉淀,导致垢的生成。
结垢的分布规律与过去仅以热力学理论为基础所进行 的物理模拟和数值模拟不尽相同,地层中发现有大量与 粘土伴生的硫酸钙、硫酸钡垢。一般距油井井筒50~ 330米。
马岭油田水化学特征与结垢关系
产 层 水 型 总矿(g/l)
水特征及可能生成矿物
环河水 Na2SO4 洛河层水 Na2SO4
延4+5 Y6 Y7 Y9
在地面站,也常因不同层位的生产井来水混合而结CaS04垢,主要结 垢部位在收球筒及总机关处。
余热锅炉积灰和腐蚀机理与防范措施

余热锅炉积灰和腐蚀机理与防范措施姓名:XXX部门:XXX日期:XXX余热锅炉积灰和腐蚀机理与防范措施余热锅炉是余热回收的主要手段之一,其特点为热负荷不稳定、烟气中含尘量大、烟气有腐蚀性。
下面,简述积灰和腐蚀形成的机理,以及积灰和腐蚀的防范。
1.积灰形成的机理余热锅炉受热面上的积灰一般可分为松散性、粘附性和粘结性三种。
(1)松散性的积灰。
由于分子引力和静电引力的作用而形成,主要发生在低温区的锅炉受热面上,一般是小于200mm的微小颗粒,大部分是10~50μm。
它往往在管子背部形成,只有在烟速很小或烟尘颗粒很细时才会在管子的正面形成。
这种积灰会大大恶化传热效果,但很容易用机械清灰法除掉。
(2)粘附性的积灰。
主要是在烟尘中含有较多低熔点金属元素的情况下形成,这些金属元素的氧化物或硫化物,在高温烟气中大都呈气态,烟温降低时即形成凝结物,变成粘附性较强的物质。
它对管子表面附着力很强,易积成封闭性的灰环,如不施加外力一般不会自行脱落。
但因质地较松软,即使积灰厚度增加也不会结成硬壳,通过振打吹扫即可清除。
(3)粘结性的积灰。
产生在高温区和“过渡温区”。
当烟气对管子横向冲刷时,主要在管子的正面形成,会引起烟气阻力迅速增加,直到烟道完全堵塞被迫停炉为止。
粘结性积灰是烟尘颗粒呈熔融状态或呈粘性状态所引起的,也可能是活性固体颗粒与烟气中某些成分起化学反应,在积灰的沉积层上发生了二次物理化学过程而形成。
这种积灰危害第 2 页共 5 页很大,需要认真研究并加以处理。
2.腐蚀形成的机理余热锅炉的腐蚀一般分为低温腐蚀和高温腐蚀。
低温腐蚀的特点是均匀性腐蚀,它使管壁厚度逐渐减薄以至破裂;高温腐蚀的特点是局部溃疡性腐蚀,它使管子因管壁穿孔而破坏。
(1)低温腐蚀。
当进入余热锅炉的烟气中含有较多二氧化硫时,其中一部分会进一步转化为三氧化硫,并与烟气中水蒸汽结合而生成硫酸。
当锅炉受热面壁温低于所生成的硫酸露点时,硫酸就在管壁上凝结而产生腐蚀,称为低温腐蚀。
浅析换热设备腐蚀结垢与防护措施

浅析换热设备腐蚀结垢与防护措施摘要:换热设备作为能量传递的基础,对工业生产有着重要影响。
在生产运行过程中,由于介质腐蚀、冲蚀、积垢、结垢等原因,造成换热设备的腐蚀结垢,使换热能力下降,换热效率降低,甚至损坏设备。
本文对换热设备腐蚀结垢的机理及原因进行了分析,并结合生产运行中出现的腐蚀结垢问题,提出防护措施建议。
关键词:换热设备腐蚀结垢防护措施换热设备是工业生产的重要设备,在石油、化工、动力、能源、冶金、航空、车辆、制冷和食品等领域被广泛使用,是保证加工过程正常顺利运行不可缺少的关键设备之一,也是重要的节能设备。
管壳式换热器是化工生产中应用最广泛的一种换热设备,其结构简单,坚固,制造容易,材料范围广泛,处理能力可变范围大,适应性强。
一、典型腐蚀形态及腐蚀机理1.硫化物腐蚀形态及机理硫的质量分数在0.5%以下时腐蚀性较弱,在0.5~1.0%时腐蚀性增强。
不同介质所产生的腐蚀形态也不同,可分为高温硫腐蚀和低温硫腐蚀。
常见的一些硫化物的腐蚀性有如下规律:二硫化物>烷基硫>硫化氢>硫醇>元素硫和噻吩。
低温湿H2S-HCN-HCI-H2O腐蚀是碳钢在碱性含硫介质中所发生的。
腐蚀过程包括以下两个方面:在金属与腐蚀产物膜的界面处存在钢氧化的电荷转移阻力;Fe2+与H0通过腐蚀产物膜进行扩散的过程。
这两个方面在腐蚀过程中是相互促进的。
2.局部腐蚀形态及机理金属的局部腐蚀包括坑蚀、缝隙腐蚀、晶间腐蚀和应力腐蚀开裂等。
在钝化金属和合金的坑蚀过程中,由于局部金属的溶解导致了空穴在钝化的表面区域形成。
为了进一步了解金属坑蚀的敏感性,常利用电化学方法对其进行研究。
通过铁在硫酸溶液中的腐蚀-钝化过程,可以证明金属坑蚀过程中钝化膜破裂的非线性动力学现象,这种现象与坑蚀产生的机理和动力学密切相关。
二、换热设备结垢及产生的危害1.换热设备结垢的危害污垢是指在换热面上沉积的一层固态物质。
换热设备结垢是传热中较难解决的问题之一,其结果可以导致传热效率下降,严重时可以造成换热管的完全堵塞和生产过程的非计划停产与维修,给工厂带来巨大的经济损失。
换热器结垢腐蚀四大原因及防腐六大措施!

换热器结垢腐蚀四大原因及防腐六大措施!化工厂换热器在换热进程中都存在着结垢阻塞和腐蚀疑问,影响化工厂安全出产,关于换热器结垢和腐蚀的要素和损害,小7总结了多见的结垢和腐蚀处理办法,为处理换热器结垢和腐蚀疑问供给学习!(图一)HAZOP会议精选内容一:为什么要做Hazop安全分析?你真的知道原因吗换热器在化工出产中占有首要方位,而换热器机组结垢腐蚀,致使传热不行而被逼泊车清洁或许换热器的替换,严峻时会影响安全出产的进行,更会增加公司作业的本钱。
结垢要素(图二)全球2016实体店阵亡名单!中国近百家关闭!1颗粒尘垢悬浮于流体的固体微粒在换热外表上的积累,通常是由颗粒细微的泥沙、尘土、不溶性盐类、胶状物、油污等构成。
当富含这些物质的水流经换热器外表时,简略构成尘垢沉积物,构成垢下腐蚀,为某些细菌生计和繁衍供给温床。
当防腐办法不其时,终究致使换热外表腐蚀穿孔而走漏。
2生物尘垢除海水冷却设备外,通常生物尘垢均指微生物尘垢。
循环水体系中最多见的微生物首要是铁细菌、真菌和藻类。
铁细菌能把溶于水中的Fe2+ 转化为不溶于水的Fe2O3 的水合物,在水中发作很多铁氧化物沉积以及树立氧浓差腐蚀电池,腐蚀金属。
且循环水体系中的藻类常在水中构成金属外表区别腐蚀电池而致使沉积物下腐蚀。
块状的还会阻塞换热器中的管路,削减水的流量,然后下降换热功率。
3结晶尘垢在冷却水循环体系中,跟着水分的蒸腾,水中溶解的盐类(如重碳酸盐)的浓度增高,有些盐类因过饱和而分出,而某些盐类则因经过换热器传热外表时受热分化发作沉积。
这些水垢由无机盐构成、结晶细密,被称为结晶水垢。
3腐蚀尘垢具有腐蚀性的流体或许流体中富含腐蚀性的杂质对换热外表腐蚀而发作的尘垢。
腐蚀程度取决于流体中的成分、温度及被处理流体的pH 值等要素。
通常,冷却管中的尘垢冷却管通常为紫铜管和黄铜管,金属腐蚀首要是较高温度下(40~50℃)的氧腐蚀,尘垢以铜或铜合金腐蚀商品和钙镁沉积物为主,然后构成很多腐蚀尘垢。
石化装置防垢防腐蚀相关知识和解决方案

石化装置防垢防腐蚀相关知识和解决方案摘要结垢、腐蚀严重影响企业的正常生产。
为了解决结垢、腐蚀问题,现在常用的方法是化学法,但是它成本高、工艺复杂,有效期比较短,而且会对设备不同程度的二次污染.为了减少清垢次数,节省作业成本,并减少化学药剂对设备的二次污染,从而研究电化学法防垢、防腐技术。
电化学法防垢、防腐技术是利用活性强的金属的水合作用,对设备流体催化处理,从而起到防垢、防腐作用.电化学防垢、防腐的研究,为解决企业生产中的结垢腐蚀问题开辟了一个新的途径。
什么是垢?有哪几种垢?1. 水垢:主要成分碳酸盐(较软)硫酸盐(较硬)硅酸盐(较硬)。
2。
煤焦油垢:主要成分为含碳的有机物和部分有机物与无机物的混合物。
3。
锈垢:主要成分为金属的堆积物。
4. 尘垢:主要成分为自然界中各种杂质颗粒,油脂等液珠长期形成的堆积物.5。
物料垢:主要成分为设备中的工作介质,是由于工作条件的变化等原因导致的工作介质在设备上的沉积,这样的污垢是成分.结构最复杂的垢质,是最难清洗的.例如,氧化铝料槽的"锅巴"。
6。
混合垢:在一台设备内同时结有上述两种以上垢物的混合体。
液体、垢质较复杂。
7. 油垢:主要成分是油类物质。
8. 胶垢:主要成分是胶类物质。
什么是水垢?天然水中含有大量的金属离子和非金属离子,其中钙盐和镁盐等具有反溶解性,即其溶解度随着水温升高而下降.因此,水加热到35 ℃以上时就会开始解析出针状结晶体并牢固地附着在容器壁上,逐渐形成厚厚的一层,这就是水垢。
水垢有何危害?水垢是万恶之源,且长期困扰着人类。
它使热效下降,能源浪费,管道堵塞,甚至会发生锅炉爆炸等恶性事故。
因此设备中的水垢必须清除.传统的除垢方法(化学药物法、离子交换法等)均不能彻底根除水垢,只能延缓结垢的时间。
据统计,到1990 年我国每年由于结垢所浪费的煤炭占总用量的1/3;每年由于结垢而报废的锅炉达数万台,每年除垢费用达数亿元,即使发达国家对此亦无良策.各种换热器结垢的原因是什么?换热器管程或壳程走生水的一面,生水没有经过软化处理造成的.凝汽式汽轮机组凝汽器结垢的问题和危害是什么?企业的凝汽式汽轮机在运行中经常会遇到真空逐渐下降的问题,尤其夏季,凝汽器真空对汽轮机运行的经济性影响较大,如其它条件不变,真空度每变化1%,汽轮机的汽耗率平均变化1%~2%。
石油化工换热器腐蚀原因及防腐措施

石油化工换热器腐蚀原因及防腐措施摘要:石油化工生产包括很多的工艺流程,有些工艺流程存在着不同形式的换热,这就需要换热器来完成这一操作。
借助换热器可以把热量从温度较高的流体传递给温度较低的流体,从而满足工艺需求。
为了从根本上解决腐蚀问题,就得了解发生腐蚀的真正原因,然后对症下药,高效利用防腐措施。
关键词:石油化工;换热器;腐蚀原因;防腐措施引言随着我国综合国力的不断提升,国家工业技术水平呈现蓬勃发展态势,对石油资源的依赖程度相对增大,各类石油开采及生产设备得到了广泛应用。
板式换热器是石油化工生产中的重要能量交换设备,主要负责对化工厂中流体的冷却作用,即:将较高温度的流体热量通过内部的传热介质传递至冷流体部分,从而达到降低流体温度的目的,属于热交换设备中的一种。
由于水资源的经济性,目前,非特殊换热器设备基本采用水作为循环冷却媒介,导致换热器中由于长时间高温作业而出现不同程度的污垢或水垢的沉积;加上换热器的工作环境复杂,换热器的材质基本是由钢材进行焊接而成,钢材长时间在高温高压环境下进行生产作业,钢材上的冷热交换频率较多,致使90%以上换热器均是由于内部或外部腐蚀造成了其结构失效,严重腐蚀后将给石化业的高效生产及安全作业构成严重威胁。
采用更加先进的防护技术来降低板式换热器腐蚀问题,成为当前石化企业重点考虑及研究的方向。
1石油化工行业加氢装置换热器运行中的常见故障1.1设备的密封故障石油化工行业所使用的加氢装置换热器接触的氢气和石油这类反应介质有着明显的易燃、易爆特点,并且反应环境的温度和压力数值明显高于外界气压,在生产过程中不允许出现任何泄漏问题。
密封结构设计作为加氢装置换热器结构设计的重要环节之一,也是故障发生最为频繁的环节。
密封故障具体可以分为内泄漏和外泄漏两种类型,又以内泄漏故障发生频率最高。
内部的密封泄漏故障主要是因为加氢装置换热器受到腐蚀和焊接质量问题的影响,导致换热管与固定管板的连接处、浮头的密封处出现了开裂或者破坏的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
油田余热换热装置腐蚀结垢机理及防护措施
油田余热换热装置腐蚀结垢机理及防护措施
摘要:油田余热换热装置在油田生产中起着至关重要的作用。
然而,腐蚀和结垢问题给其运行带来了极大的困扰。
本文对油田余热换热装置的腐蚀和结垢机理进行了探讨,并提出了相应的防护措施,以期能够降低装置运行中的损失,提高其使用寿命。
一、引言
在油田生产中,油田余热换热装置扮演着至关重要的角色。
该装置可以通过回收和利用油田产生的余热,以提高能源利用效率。
然而,由于油田产生的热能和介质本身的特性,油田余热换热装置容易出现腐蚀和结垢问题,严重影响其正常运行和使用寿命。
因此,了解其腐蚀和结垢机理,并采取有效的防护措施,对于提高设备的使用寿命和经济效益具有重要意义。
二、腐蚀机理
1. 化学腐蚀:油田余热换热装置经常与含有酸性成分的介质
接触,容易发生化学腐蚀。
酸性介质会与金属产生化学反应,形成金属离子或金属化合物,进而腐蚀设备。
另外,介质中的氧和水也能加速金属的腐蚀速度。
2. 电化学腐蚀:油田介质的电导率较高,容易形成腐蚀
电池,加剧设备的腐蚀。
例如,当金属表面存在阳极和阴极区域时,阳极会发生氧化反应,阴极则会发生还原反应,从而产生电流,加速金属的腐蚀速度。
三、结垢机理
1. 水垢:水中存在的溶解固体物质在高温下会析出形成水垢。
这些水垢可以来自水中溶解的钙、镁、硫酸盐等物质。
水垢的
形成会减弱热传导能力,降低换热效率,从而影响装置的运行。
2. 油垢:油田介质中含有大量的油脂和胶体颗粒,这些
物质容易附着在管道表面上形成油垢。
油垢的形成不仅减缓了热传导速度,还降低了换热效率,增加了设备的能耗。
四、防护措施
1. 物理防护:合理设计和安装防护设备,如沉淀器、过滤器、过滤网等,能够有效阻止颗粒物质进入装置内部,减少结垢发生的可能性。
2. 化学防护:采用化学处理剂或添加剂,例如缓蚀剂、
抑制剂等,将其添加到介质中,能够减缓金属的腐蚀速度。
但需要注意选择合适的添加剂,避免对油田生产造成其他不良影响。
3. 清洗与维护:定期对油田余热换热装置进行清洗和维护,如高压水冲洗、化学清洗等,能够清除设备表面的结垢和油垢,保持其畅通和正常换热效率。
4. 材料选择:合理选择耐腐蚀和耐高温的材料,如不锈钢、镍基合金等,能够降低设备表面的腐蚀速度,延长使用寿命。
五、结论
油田余热换热装置的腐蚀和结垢问题是影响其正常运行和使用寿命的重要因素。
本文对其腐蚀和结垢机理进行了分析,并针对不同机理提出了相应的防护措施。
通过物理防护、化学防护、清洗与维护以及材料选择等手段,可以降低设备腐蚀和结垢的发生率,提高设备的使用寿命和经济效益。
然而,防护措施的选择和应用需根据具体情况进行评估和实施,以确保其效果和安全性
本文通过对油田余热换热装置腐蚀和结垢问题的分析,提出了相应的防护措施。
通过物理防护、化学防护、清洗与维护以及材料选择等手段,可以有效降低设备腐蚀和结垢的发生率,提高设备的使用寿命和经济效益。
然而,防护措施的选择和应用需要根据具体情况进行评估和实施,以确保其效果和安全性。
因此,在实际应用中还需要进行进一步的研究和优化措施的实施。
总之,通过正确有效的防护措施可以解决油田余热换热装置的腐蚀和结垢问题,保证其正常运行和延长使用寿命。