勒贝格积分作业
勒贝格测度举例

勒贝格测度举例勒贝格测度(LebegueMeasure)是一种快速、精确的测量单位,它是由法国数学家凯斯勒贝格(Henri Lebegue)首创的,并于1909年发表。
它的计算方式是在数理逻辑的基础上,通过给定的几何体的多维量度,来进行定量的、准确的测量。
勒贝格测度的基本原理勒贝格测度的基本原理是将一个几何体分割成若干小块,并通过对每一个小块的计算来获得这个体积或面积的总量。
在实际应用中,勒贝格测度可分为两个主要部分:(1)测量无限维几何体在测量无限维几何体时,勒贝格测度可将这个无限几何体分割到无限多次方的多维空间中,每一次分割后可以获得一个定义的体积或面积,最终可以将这些体积或面积的总数量计算出来。
(2)测量有限维几何体在测量有限维几何体时,勒贝格测度可将这个有限几何体分割到有限多次方的多维空间中,每一次分割后可以获得一个定义的体积或面积,最终可以将这些体积或面积的总数量计算出来。
勒贝格测度的应用勒贝格测度的应用广泛,可以用来测量概率、统计、地理学等领域中的几何体,也可以用来测量数学空间的大小。
(1)概率领域勒贝格测度已经在概率领域中广泛应用,在它的范围内,概率可以被定义为勒贝格测度的面积或体积。
它可以通过对几何体进行精密分析,计算出概率分布的准确性。
(2)统计领域勒贝格测度也在统计领域中得到了广泛的应用。
它可以用来准确测量不同集合的体积和面积,从而确定准确的条件概率分布,并可以更精确地估计统计抽样的量级和样本数量。
(3)地理学领域勒贝格测度也可以用来测量地球表面上不同地区的体积和面积,从而可以在决策过程中更加准确地准确表示地理空间中的空间分布关系。
(4)数学空间领域最后,勒贝格测度还可以用来测量数学空间中特定类型几何体的大小,比如多维球体、圆锥体等等,从而可以更准确地测量出这些几何体的体积或面积,提供更加准确的数学解答。
结论勒贝格测度是一种快速且精确的测量工具,它不仅可以用来测量无限维、有限维几何体的体积和面积,还可以用于概率、统计、地理学和数学空间等领域中的定量分析。
第八讲 勒贝格积分的极限定理及应用

第8讲勒贝格控制收敛定理及应用一、勒贝格控制收敛定理问题 ()d ()d (lim l d im ).b b bk k a a a k k f x x f x x f x x →∞→∞==⎰⎰⎰ lim ()(),k k f x f x →∞=若能否推出极限运算与积分运算只有在很强的条件下(一致 收敛)才能交换二者次序——黎曼积分的局限性定理 (勒贝格控制收敛定理)1){(},n k k f x E ∞=⊆是上的可测函数列设若注 定理中控制函数的可积性是必不可少的.(2) ,, ()(),() a.e. ,()k k f x F x x E F x E ∈≤∈存在使得对任意的(),()(),k f x f x E ∈则且(1) lim ()(),a.e. .k k f x f x x E →∞=∈lim ()d ()d .k E E k f x x f x x →∞=⎰⎰[0,),E =+∞设考虑反例 函数序列[0,]1, [0,]()(),1,2,0, k k x k f x x k x kχ∈⎧===⎨>⎩{}()(),()1,a.e. ,k f x F x F x E ≥控制的函数必须{}()()1,k f x E f x ≡显然在上处处收敛于()F x E L 则在上不是可积的.()f x E L 在上也不可积的.k y x O推论1 (勒贝格有界收敛定理)注 推论1中的条件(3)不能缺少.0,(),a.e. ,(2) k M f x M x E >≤∈存在常数 控制函数的可积性 (3) ().m E <+∞ 1){(},n k k f x E ∞=⊆是上的可测函数列设若(1) lim ()(),a.e. .k k f x f x x E →∞=∈(),()(),k f x f x E ∈则且lim ()d ()d .k E E k f x x f x x →∞=⎰⎰推论2 (逐项积分)1()()(1,2,), ()d ,i i E i u x E i u x x ∞=∈=<+∞∑⎰ 且设有则1(1)();i i u x E ∞=∑ 在上几乎处 处收敛 (2)()(),f x E ∈其和函数且1()d .i i E u x x ∞==∑⎰1()()d d E E i i x u x f x x ∞=⎡⎤=⎢⎥⎣⎦⎰⎰∑例1 分析 [0,1],lim ()0,n n x f x →∞∈=则对有[]0,1,x ∈当时由于[]0,111sup |()0|sin12n n n x f x f n β∈⎛⎫=-≥= ⎪⎝⎭0,→二、应用举例1220lim()sin d .1n nx R nx x n x →∞+⎰求极限先积分后求极限实难进行, 故需交换次序.解 22()sin ,[0,1]1n nx f x nx x n x=∈+令 ()0,[0,1].n f x x →∈即[]{()}0,1.n f x ⇒在上不一致收敛00.10.20.30.40.50.60.70.80.91-0.2-0.100.10.20.30.40.5x (10 x/(1+100 x 2)) sin(10 x)22()sin ,[0,1]1n nx f x nx x n x =∈+1n =2n =3n =非一致收敛的几何直观验证勒贝格控制收敛定理221()(),[0,1].122n nx nx f x F x x n x nx ∆≤≤==∈+注意到 由R 积分和L 积分的关系, 以及勒贝格控制收敛定理有22[0,1]lim ()sin d 1n nx L nx x n x →∞=+⎰22[0,1]()sin d 1lim n nx L nx x n x →∞⎛⎫= ⎪+⎝⎭⎰[0,1]()0d 0.L x ==⎰1220lim()sin d 1n nx R nx x n x →∞+⎰求函数列积分的极限问题1) 若利用R 积分理论来求, 则需验证函数列在积分区间[a , b ]上的一致收敛性.则利用R 积分与L 积分的关系, 以及勒贝格控制收敛定理.[,]()([,]),()([,]),()()d ()()d .b a b a f x a b f x a b L f x x R f x x ∈∈=⎰⎰若则且 2) 若函数列在区间上不一致收敛, R 积分理论失效亦是如此,直接利用逐项积分性质毋庸置疑。
勒贝格 Lebesgue 定理

勒贝格定理
注:若f ( x), g( x)在[a,b]上可积,f ( x)与g( x)可以复合, f ( g( x))在[a,b]上也不一定可积.
例如:R(
x)为[0,1]上黎曼函数,取f
(u)
1, u 0, u
f ( qk ) 0 pk
存在无理数序列
k
,
lim
k
k
x, lim k
f
(k )
lim
k
k
=x
f ( x)在[0,1]不连续点集D( f ) 0,1,
D( f )是区间,不是零测集,f ( x)在[0,1] 有界,所以f 在[0,1]上不可积.
勒贝格定理应用
例4
判断函数在0,1
可积性.f
(
x)
1 x
0 f ( x) 1,函数有界.
y 1
o 1 1 1 1
1x
543 2
f
( x)在[0,1]上有界并且其不连续点集D(
f
)
1
n
n
2, 3,
{0},
D( f )是可数集,所以是零测集,所以f 在[0,1]上可积.
勒贝格定理应用
例2 判断下面函数在[0,1]上可积性
y
f
(
x
)
sgn
勒贝格定理
推论
1) 如果f 在a,b可积 f 0 ,则1/ f 在a,b可积; 2) 如果f , g在a,b可积,则fg在a,b可积; 3) 如果f 在a,b可积,则f 在任何子区间c,d a,b可积; 4) 如果f , g在a,b可积 g 0,则f / g在a,b可积;
实分析答案

∈X (x)|
: |f (x)| > m})
> =
αµ}()∪=∞ n=01. {又x
α ∈
<m X:
+ ϵ, 故 |f (x)|
µ({x ∈ X : |f (x)| >
>
m+
1 n
})
=
0.
m + ϵ}) = 0, 于是我们取
E = µ({x ∈ X : |f (x)| > m}), 则 sup{|f (x)| : x ∈ X\E} ≤ m, 进而 M ≤ m.
任意给定的 ϵ > 0, 对 (1) 和 (2) 中的 Aϵ 和 δϵ, 由Egoroff 定理, ∃ B ⊂ Aϵ 使得 µ(Aϵ\B) < ϵ 且
{fn} 在 B 上一致连续. 即存在 N ∈ N, 当 n > N 时,可以使得 µ({x : |fn − f | >}) < δϵ 且 {fn}
3. 若 f ∈ Lp(X, A , µ) 对一切的 p ∈ [1, ∞) 成立, 则
∥f
∥∞
=
lim ∥f
p→∞
∥p.
证明. 设 f 是任意的可测函数, 则对任意 M < ∥f ∥∞, 有 E = {x ∈ X : |f (x)| ≥ M } 是正测度
集. 这样
(∫
)1
∥f ∥p =
|f |pdµ
2.设 µ 是定义在 σ 代数 A 上的非负的有限可加集函数(即 A, B ∈ A , A ∩ B ⇒ µ(A ∪ B) = µ(A) + µ(B)). 证明, 若 {An}∞ n=1 是 A 的一个两两不相交的集列, 则
∑ ∞ µ({An}∞ n=1) ≥ µ(An).
勒贝格积分

勒贝格积分(2007-09-03 00:39:01)转载▼标签:分类:科普知识/探索数学积分是“和”的概念。
即将东西加起来。
所以积分早期是从面积,路程等计算中发展起来。
比如计算面积,将X轴的区间分成若干小区间,将小区间的高度(Y值)乘以小区间的长度,然后加起来。
用极限法就可以求得精确的面积。
这是传统的积分概念(黎曼积分)。
勒贝格从另一个角度来考虑积分概念,导致勒贝格积分和测度概念。
比如计算面积,可以将小区间的高度(Y值)乘以对应的所有小区间的长度的和(测度),然后加起来。
又比如现有硬币:25,25,10,5,10,1,5,25。
用黎曼积分来求和:25+25+10+5+10+1+5+25 =106。
用勒贝格积分来求和:25*3+10*2+5*2+1=106。
结果是一样。
但对于一些“坏”函数,结果是不一样。
比如在X轴[0,1]闭区间上定义函数:Y=1,当X是无理数;Y=0,当X是有理数。
求该函数覆盖的面积。
黎曼积分无法定义,因为任意小的区间都包含无理数和有理数。
用勒贝格积分来求和: 1*1+0*0 = 1。
[0,1]闭区间的长度(测度)是1;有限点集的长度(测度)是0;无限可数点集(如,有理数)的长度(测度)是0。
而[0,1]闭区间的长度(测度) = 有理数集的长度 + 无理数集的长度。
所以,[0,1]闭区间的无理数集的长度(测度) 是1。
这就解释了上述计算结果。
由此可见,勒贝格积分比黎曼积分广义。
很多数学概念和思想就是从貌似相同的概念和思想中推导出来。
这启发我们在做研究时应从不同角度来考虑一些现有概念和理论,有时可能导致新的概念和理论。
勒贝格积分计算例题

以下是一个关于勒贝格积分的计算例题:
设函数f(x)是E上的可积函数,对于E上的任意可测子集A,有∫A f(x) dλ = 0。
我们需要证明f(x) = 0,对E上的任意点x都成立。
证明:
首先,我们注意到对于任意的正整数n,集合En = {x ∈ E | f(x) > 1/n}是可测的。
这是因为f(x)的值大于1/n的点,必然落在某个开区间中,这个开区间是可测的。
因此,En 是E的可测子集。
由题设条件,对于任意的正整数n,我们有∫En f(x) dλ = 0。
同时,我们知道当n → ∞时,En → E(因为f(x) > 1/n的点越来越少,最终都落在了E 中)。
现在我们考虑以下极限:
lim n → ∞ ∫En f(x) dλ
这个极限等于∫E f(x) dλ(由控制收敛定理)。
但是,我们已经知道对于任意的正整数n,∫En f(x) dλ = 0。
因此,我们可以得出结论:∫E f(x) dλ = 0。
最后,由于f(x)是E上的可积函数,所以它必然是几乎处处等于0的。
也就是说,除了一个零测度的集合外,对于所有的x ∈ E,都有f(x) = 0。
第四章勒贝格积分

第四章 勒贝格积分本章介绍勒贝格积分理论.定义勒贝格积分有多种方法,本处采用从非负简单函数到非负可测函数,然后到一般可测函数的方法逐步建立勒贝格积分理论.§1 非负简单函数的勒贝格积分定义1 设n R E ⊂是可测集,)(x ϕ是E 上的非负简单函数,即E x x c x nk E k k∈=∑=,)()(1χϕ,其中 nk k E E 1==,k E 是互不相交的可测集,k c 是非负实数(1≤k ≤n ),记⎰∑==Enk kk mEc dx x 1)(ϕ称⎰Ex dx x )()(ϕϕ为在E 上的勒贝格积分.显然,当⎰==Edx x mE 0)(,0ϕ时.下面的定理1说明非负简单函数的勒贝格积分值与其表示无关.定理1 设)(),(x x ψϕ是可测集E 上的非负简单函数,如果E x x x ∈=),()(ψϕ,则⎰⎰=EEdx x dx x )()(ψϕ证明 设E x x a x nk E k k∈=∑=,)()(1χϕ,nk k k E E n k a 1),1(0==≤≤≥,E k 是互不相交的可测集,又E x x b x jF mj j ∈=∑=),()(1χψ,mj j j j F F E m j b 1,),1(0==≤≤≥是互不相交的可测集. 因为在E 上,)()(x x ψϕ=,所以对任何k 和),1,1(m j n k j ≤≤≤≤ 总有)()(j k j j k k F E m b F E m a ⋂=⋂,于是∑∑∑∑====⎪⎪⎭⎫ ⎝⎛⋂=⋂=nk m j j k k k nk k nk k k F E m a E E m a mE a 1111)()()()(1111j k m j nk j j kmj kn k F E m b F Em a ⋂=⋂∑∑∑∑=====∑=mj j j mF b 1即⎰⎰=EEdx x dx x )()(ψϕ .定理2 设)(),(x x ψϕ是E 上的非负简单函数,则 (1)对任何非负实数c,有⎰⎰=EEdx x c dx x c )()(ϕϕ ;(2) ()⎰⎰⎰+=+EEEdx x dx x dx x x )()()()(ψϕψϕ ; (3)若,),()(E x x x ∈≤ψϕ则⎰⎰≤EEdx x dx x )()(ψϕ ,特别地,mE x dx x E⋅≤⎰)(max )(ϕϕ ;(4)若A 、B 是E 的两个不相交的可测子集,则⎰⎰⎰+=⋃BABA dx x dx x dx x )()()(ϕϕϕ .证明 仅证(2)式,其余作为习题.设 E x x a x ni A i i ∈=∑=)()(1χϕ,,)()(1E x x b x mj B j j∈=∑=χψ其中}{},{),1,1(0,j i j i B A m j n i b a ≤≤≤≤≥均为互不相交的可测集列,且 n i mj j i B A E 11====.易知jiB A n i mj i i b a x x ⋂==∑∑+=+χψϕ11)()()(所以())()()()(11j i Eni mj j iB A m b adx x x ⋂+=+⎰∑∑==ψϕ=)()(1111j i ni m j i j i ni mj i B A m b B A m a ⋂+⋂∑∑∑∑=====∑∑∑∑====⎪⎭⎫⎝⎛⋂+⎪⎪⎭⎫ ⎝⎛⋂m j n i j i j j i m j ni i B A m b B A m a 1111)()(=⎰⎰∑∑+=+==EEmj j j i n i i dx x dx x mB b mA a )()(11ψϕ定理3 设})({)},({x x n n ψϕ是E 上单调增的非负简单函数列,如果E x x x n n n n ∈=∞→∞→)(lim )(lim ψϕ,那么 ⎰⎰∞→∞→=En n En n dx x dx x )(lim )(lim ψϕ .证明 不妨设)(lim x n n ϕ∞→在E 上几乎处处有限,因为)}({x n ψ在E 上单调增,所以对任何自然数m ≥1,有)(lim )(lim )(x x x n n n n m ϕψψ∞→∞→=≤ .令 )}(),(m in{)(x x x f n m n ϕψ=,则非负简单函数列)}({x f n 收敛,且,)()(lim E x x x f m n n ∈=∞→ψ当+∞<mE 时,由Egoroff 定理,0>∀ε,存在可测集)(),()(,\,∞→<→→n x x f E E mE E m n ψεεεε上在使,于是存在N ≥1,当n>N 时,对一切εE E x \∈,)()()(x x f x n n m ϕεεψ+≤+<从而dx x dx x n E E m E E ))(()(\\ϕεψεε+≤⎰⎰dx x mE E n ⎰+≤)(ϕε因此, dx x mE dx x En E E n m⎰⎰∞→+≤)(lim )(\ϕεψε另外, )(m ax )(m ax )(x mE x dx x m m E m ψεψψεε⋅<≤⎰故 dx x dx x dx x m E m E E E m)()()(\ψψψεε⎰⎰⎰+=dx x mE x n En m )(lim ))((max ϕψε⎰∞→++<令0→ε,),1()(lim )(≥∀≤⎰⎰∞→m dxx dx x En n Emϕψ当+∞=mE 时,存在可测集列)1(,,,},{121≥+∞<=⊂⊂⊂⊂∞=k mE E E E E E E k k k k k 使.由上述证明知,对每个k ≥1, ⎰⎰⎰∞→∞→≤≤En n E n n E m dx x dx x dx x kk)(lim )(lim )(ϕϕψ .记 Tj j j Tj F j m F F E E x x a x j 11}{,,,)()(===∈=∑其中χψ是互不相交的可测集,)1(,0T j a j ≤≤≥,则由积分定义,∑⎰==Tj k j j E m E F m a dx x k1)()( ψ ,因为 j k j k mF E F m =∞→)(lim ,所以⎰⎰∑===∞→Em E Tj j j m k dx x mF a dx x k)()(lim1ψψ,于是 ⎰⎰∞→≤En n Emdx x dx x )(lim )(ϕψ,因此⎰⎰∞→∞→≤EEn n m n dx x dx x )(lim )(lim ϕψ .同理可证相反的不等式,故⎰⎰∞→∞→=EEn n m n dx x dx x )(lim )(lim ϕψ .§2 非负可测函数的勒贝格积分定义1 设)(x f 是E 上的非负可测函数,)}({x n ϕ是E 上单调增收敛于)(x f 的非负简单函数列,记⎰⎰∞→=En En dx x dx x f )(lim )(ϕ,称 )()(x f dx x f E为⎰在E 上的勒贝格积分,或L 积分,如果⎰+∞<Edx x f )(,则称)(x f 在E 上是勒贝格可积的,或L可积,简记为)(E L f ∈.由§1定理3知,非负可测函数的勒贝格积分值与非负简单函数列)}({x n ϕ选取无关.显然,若⎰=∈=Edx x f E x x f 0)(,,0)(则;若mE =0,则对于E 上的任何非负可测函数)(x f , ⎰=Edx x f 0)( .定理1 设)(x f ,)(x g 是E 上的非负可测函数, 则 (1) 若 E x x g x f ∈≤),()(,则⎰⎰≤EEdx x g dx x f )()( ;(2) 若A 、B 是E 的可测子集,且B A ⊂,则⎰⎰≤ABdx x f dx x f )()( ;(3)若A 、B 是E 的可测子集,且φ=B A ,则⎰⎰⎰+=BA ABdx x f dx x f dx x f )()()( ;(4)若E e a x g x f 于..)()(=,则⎰⎰=EEdx x g dx x f )()( ;(5)对任何非负实数c ,⎰⎰=EEdx x f c dx x cf )()( ;(6)()⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()()()( .证明 证明由定义即得.定理2 (Levi 单调收敛定理)设)}({x f n 是E 上的非负可测函数列,满足 (1) 1,..)()(1≥≤+n E e a x f x f n n 于;(2),..)()(lim E e a x f x f n n 于=∞→则⎰⎰=∞→EEn n dx x f dx x f )()(lim .证明 因为)(x f n 是E 上非负可测函数(n ≥1),所以E x x x f n kk n ∈=∞→),(lim )()(ϕ,其中)}({)(x n k ϕ是单调增的非负简单函数列,于是⎰⎰∞→=En k k En dx x dx x f )(lim )()(ϕ ,令)}(,),(),(max {)()()2()1(x x x x k k k k k ϕϕϕψ = ,则对每个)(,1x k k ψ≥是E 上的非负简单函数,且E x x x x k ∈≤≤≤≤,)()()(21 ψψψ ,E x k n x x k n k ∈≤≤≤),1(),()()(ψϕ ,又 E x x f x f x f x f x k k k ∈=≤),()}(,),(),(max {)(21 ψ ,所以 E x k n x f x x k k n k ∈≤≤≤≤,1),()()()(ψϕ, (1) 从而dx x f dx x dx x Ek EEk n k ⎰⎰⎰≤≤)()()()(ψϕ .(2)固定n ,令∞→k ,由(1)和(2)式,有E x x f x f x x f k k k k n ∈=≤≤∞→∞→),()(lim )(lim )(ψ ,和dx x f dx x dx x f k Ek Ek k n E)(lim )(lim )(⎰⎰⎰∞→∞→≤≤ψ ,进一步,令∞→n ,则)(lim )(lim )(x x f x f k k n n ψ∞→∞→== ,及dx x dx x f k Ek En n )(lim )(lim ψ⎰⎰∞→∞→= .(3)于是,由非负可测函数勒贝格积分定义和(3)式,有⎰⎰∞→=En n Edx x f dx x f )(lim )( .定理3 (逐项积分定理)设)}({x f n 是E 上的非负可测函数列,则⎰∑⎰∑∞=∞==⎪⎭⎫⎝⎛En n E n n dx x f dx x f )()(11 .证明 由定理1,对每个n ≥1⎰∑⎰∑===⎪⎭⎫⎝⎛Ek nn E n k k dx x f dx x f )()(11令 )}({,)()(1x S x f x S n nk k n 则∑==是非负可测函数列,且 E x x S x S n n ∈≤+),()(1 ,E x x f x S n n n n ∈=∑∞=∞→1)()(lim ,由Levi 单调收敛定理知,dx x S dx x f n E n E n n )(lim )(1⎰⎰∑∞→∞==⎪⎭⎫⎝⎛ =⎰∑⎰⎪⎭⎫ ⎝⎛==∞→∞→En k k n n En dx x f dx x S 1)(lim )(lim=()⎰∑⎰∑∞==∞→=Enn k Enk n dx x f dx x f 11)(lim .推论 设{E n }是可测集列,互不相交,∞==1n n E E 如果)(x f 是E 上的非负可测函数,则⎰∑⎰∞==En E ndx x f dx x f 1)()( .证明 令)1(,),()()(≥∈=n E x x x f x f n E n χ,则 )(x f n 是E 上的非负可测函数,且 ∑∞==1)()(n n x f x f ,⎰⎰=EnEn dx x f dx x f )()( .由逐项积分定理知∑⎰⎰∑⎰∞=∞===11)()()(n EnEn n Edx x f dx x f dx x f .定理4 设)(x f 是E 上几乎处处有限的非负可测函数,),0[}{,+∞⊂+∞<n y mE ,满足)(,01∞→+∞→<<<<=n y y y y n n o其中 δ<-+n n y y 1,令,1,0],)(|[1=<≤=+n y x f y x E E n n n则)(x f 在E 上是勒贝格可积的充分必要条件是∑∞=∞<0n nn mEy ,此时⎰∑=∞=→En n n dx x f mE y )(lim 0δ .证明 不妨假设)(x f 在E 上处处有限,因为在E n 上,)0(,)(1≥<≤+n y x f y n n ,所以由定理1,对每个n ≥0,n n Enn n mE y dx x f mE y 1)(+≤≤⎰,由定理3的推论知,∑⎰⎰∞==0)()(n E Endx x f dx x f ,所以⎰∑∑∞=+∞=≤≤En n n n nn mE y dx x f mEy 010)(=∑∑∞=∞=++-01)(n n n n n n n mE y mE y y∑∞=+<0n n n mE y mE δ,因此结论成立.定理5(Fatou 定理) 设{})(x f n 是E 上的非负可测函数列,则⎰⎰∞→∞→≤En n nE n dx x f dx x f)(lim )(lim .证明 令1,),(inf )(≥∈=≥n E x x f x g k nk n ,则 g n (x)是E 上的非负可测函数,且E x x g x g n n ∈≤+),()(1,于是,由Levi 单调收敛定理知,⎰⎰⎰∞→∞→∞→==En n n E n n n Edx x g dx x g dx x f )(lim )(lim )(lim .因为 E x x f x g n n ∈≤),()(所以 dx x f dx x gEn En⎰⎰≤)()( ,从而⎰⎰∞→∞→≤En n n En dx x f dx x g )(lim )(lim ,因此,⎰⎰∞→∞→≤En n n n Edx x f dx x f )(lim )(lim .Fotou 定理中的严格不等式有可能成立,例如设⎪⎩⎪⎨⎧-∈∈=]1,0[]1,0[0]1,0[)(n x n x n x f n ,易知 )1(,1)(],1,0[,0)(lim ]1,0[≥=∈=⎰∞→n dx x f x x f n n n ,所以1)(lim 0)(lim ]1,0[]1,0[=<=⎰⎰∞→∞→x f dx x f n n n n .§3 一般可测函数的勒贝格积分定义1 设)(x f 是E 上的可测函数,如果积分⎰⎰-+EEdx x f dx x f )(,)(中至少有一个是有限值,记⎰⎰⎰-+-=EEEdx x f dx x f dx x f )()()(,则称)()(x f dx x f E为⎰在E 上的勒贝格积分.如果上式右端两个积分值均是有限的,则称)(x f 在E 上是勒贝格可积的,或称)(x f 是E 上的勒贝格可积函数.通常把区间[a ,b ]上的勒贝格积分记成dx x f a b L )()(⎰,或 dx x f ab)(⎰.定理1 设)(x f 是E 上的可测函数,则 (1))(x f 在E 上勒贝格可积的充分必要条件是)(x f 在E 上勒贝格可积,此时⎰⎰≤EEdx x f dx x f |)(||)(|;(2)若)(x f 在E 上勒贝格可积,则)(x f 在E 上几乎处处有限;(3)若)()(x g x f = ..e a 于E ,且)(x f 在E 上勒贝格可积,则)(x g 在E 上勒贝格可积,且⎰⎰=EEdx x g dx x f )()(.证明 (1))(x f 与)(x f 在E 上勒贝格可积的等价性由定义1和)()()(x f x f x f -++=即得,另外,由§2 定理1, ⎰⎰⎰⎰-+-++=+=EEEEdx x f dx x f dx x f x fdx x f )()())()((|)(|⎰⎰⎰=-≥-+EEEdx x f dx x f dx x f |)(||)()(| .(2)若)(x f 在E 上勒贝格可积,则⎰⎰+∞<+∞<-+EEdx x f dx x f )(,)( ,对任何n ≥1,记])(|[n x f x E E n ≥=,则⎰⎰⎰⋅≥=≥++EE E n nnmE n dx x f dx x f dx x f )()()( ,所以 0lim =∞→n n mE ,而n n n E E x f x E ⊂=+∞=∞= 1])(|[ ,于是 0])(|[=+∞=x f x mE ,同理可证 0])(|[=-∞=x f x mE ,因此0]|)(||[=+∞=x f x mE ,即)(x f 在E 上是几乎处处有限的.(3)因为..)()(e a x g x f =于E ,所以..)()(),()(e a x g x f x g x f --++==于E ,再由勒贝格积分定义和§2定理1知结论成立.由定理1知,对于可测函数而言,其勒贝格可积性和积分值大小与零测集无关,因而我们总可以假定可积函数是处处有限的. 定理2 设)(),(x g x f 是E 上的勒贝格可积函数,则 (1) )(,1x cf R c ∈∀在E 上勒贝格可积,且⎰⎰=EEdx x f c dx x cf )()( ;(2) )()(x g x f +在E 上勒贝格可积,且()⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()()()( .证明 (1)当0≥c 时,),())((),())((x cf x cf x cf x cf --++==于是 ⎰⎰⎰-+-=EEEdx x cf dx x cf dx x cf ))(())(()(⎰⎰-+-=EEdx x cf dx x cf )()(=()⎰⎰⎰=--+EEEdx x f c dx x f dx x f c )()()( ;当0<c 时, ()())()(),()(x cf x cf x cf x cf +--+-=-=, 所以()()⎰⎰⎰-+-=EEEdx x cf dx x cf dx x cf )()()(=()()⎰⎰+----EEdx x cf dx x cf )()(=[]⎰⎰⎰=--+-EEEdx x f c dx x f dx x f c )()()( .(2)因为|)(||)(||)()(|x g x f x g x f +≤+,所以当)(),(x g x f 在E 上勒贝格可积时,)(,)(x g x f 在E 上勒贝格可积,从而)()(x g x f +在E 上勒贝格可积,故)()(x g x f +可积.另外,由于-++-+=+))()(())()(()()(x g x f x g x f x g x f , 又 ))()(())()(()()(x g x g x f x f x g x f -+-+-+-=+ ,所以 ,))()(())()(()()()()(-+-+-++-+=-+-x g x f x g x f x g x g x f x f 从而)()())()(())()(()()(x g x f x g x f x g x f x g x f --+-+++++=+++ .于是由§2定理1(6),⎰⎰⎰-+++++EEEdx x g x f dx x g dx x f ))()(()()(=⎰⎰⎰--++++EEEdx x g dx x f dx x g x f )()())()((因此⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()())()((定理3 设函数)(x f 在E 上勒贝格可积, ∞==1n n E E ,E n 是可测集(n ≥1),且互不相交,则)(x f 在每个E n 上勒贝格可积,且dx x f dx x f Enn E⎰∑⎰∞==)()(1.证明 对每个n ≥1,)(x f 在E n 上勒贝格可积,(留作习题).因为)(x f 在E 上勒贝格可积,所以由非负可测函数积分的可数可加性,+∞<=⎰⎰∑++∞=dx x f dx x f EE n n)()(1 ,+∞<=⎰⎰∑--∞=dx x f dx x f EE n n)()(1 ,于是⎰⎰∑⎰∑-+∞=∞=-=nnnE E n E n dx x f dx x f dx x f ))()(()(11=⎰∑⎰∑-∞=+∞=-nnE n E n dx x f dx x f )()(11=⎰⎰-+-EEdx x f dx x f )()(=dx x f E)(⎰ .定理4 (勒贝格控制收敛定理) 设)(x f 、)1)((≥n x f n 是E 上的可测函数,如果(1))()(x f x f n →a . e.于E ,(2)存在E 上的勒贝格可积函数g (x ),使),()(x g x f n ≤ a. e.于E ,则)1)((),(≥n x f x f n 在E 上勒贝格可积,且⎰⎰=∞→EEn n dx x f dx x f )()(lim .证明 由(2),f (x ), f n (x )(n ≥1)在E 上勒贝格可积,且g (x )+f n (x )≥0 (n ≥1), a .e.于E . 由Fatou 定理,⎰⎰+≤+∞→∞→E n n E nn dx x f x g dx x fx g ))()((lim ))()((lim ,于是 ⎰⎰⎰⎰∞→∞→+≤+E n En En n Edx x f dx x g dx x f dx x g )(lim )()(lim )( , 从而⎰⎰⎰∞→∞→≤=E n En n n Edx x f dx x f dx x f )(lim )(lim )( .同理,由g (x )-f n (x )≥0,(n ≥1),a.e.于E 知,()⎰⎰-≤-∞→Enn Edx x fdx x f )(lim ))(( ,即⎰⎰∞→-≤-En n Edx x f dx x f )(lim )(,所以, ⎰⎰∞→≥En n Edx x f dx x f )(lim )( ,因此⎰⎰∞→=En n Edx x f dx x f )(lim )( .推论 设)(,x f mE n +∞< )1(≥n 是E 上的可测函数,如果 (1)..),()(e a x f x f n →.于E ,(2)M x f n ≤)(, a.e.于E ,(n ≥1) ,则 可积,且上在L E x f )(⎰⎰∞→=En n Edx x f dx x f )(lim )(.定理5 (积分的绝对连续性)设f (x )在E 上勒贝格可积,则对任何ε>0,存在δ>0,对E 的任何可测子集A ,当mA<δ时,ε<⎰Adx x f )(证明 不失一般性,设f (x )在E 上非负可积. 令⎩⎨⎧>≤=nx f nn x f x f x f n )()()()(,则 )1,(),()(0≥∈≤≤n E x x f x f n ,且)()(lim x f x f n n =∞→,)()(1x f x f n n +≤.因为f (x )勒贝格可积,所以对每个n ,f n (x )是勒贝格可积的,于是由Levi 单调收敛定理,有⎰⎰∞→=EEn n dx x f dx x f )(lim )( ,因此,对任意正数ε>0, 存在N ≥1,使⎰<-≤EN dx x f x f 2))()((0ε.令 N2εδ=,则对E 的任何可测子集A ,当mA<δ时,()⎰⎰⎰+-=AAN AN dx x f dx x f x f dx x f )()()()(<εεεε=+<⋅+222mA N . 定理6 设f (x )是1R E ⊂上的L 可积函数,mE<+∞,则对任何ε>0,存在R 1上的连续函数g (x ),使⎰<-Edx x g x f ε)()(.证明 令[]n x f x E E n >=)(|,则1+⊃n n E E ,且[] ∞=+∞==1)(|n n x f x E E . 因为f (x )在E 上勒贝格可积,所以f (x )在E 上几乎处处有限. 又mE <+∞,故由可测集性质,[]0)(|lim =+∞==∞→x f x mE mE n n ,因此,由积分的绝对连续性,对任何ε>0,存在N ≥1,使⎰<≤NE N dx x f NmE 4)(ε.对于E\E N ,由第三章§3定理3,存在R 1上连续函数)(x g 和闭集N N E E F \⊂,使(1)[]NF E E m N N 4\)\(ε<,(2)f (x )=g (x ), ,N F x ∈ 且,)(sup 1N x g R x ≤∈ 于是⎰⎰⎰-+-=-EE E E NNdx x g x f dx x g x f dx x g x f \)()()()()()(⎰⎰⎰---++≤NNN NE F E E E dx x g x f dx x g dx x f )(|)()(||)(|)([]N N N F E E Nm NmE \)\(24++<εεεεε=++<244.例1 证明dy y f y x a b dy y f y x abdx d )()cos()()sin(+=+⎰⎰ , 其中f (x )是[a ,b ]上的勒贝格可积函数. 证明 对任何1R x ∈,|)(|)()sin(y f y f y x ≤+所以函数 sin(x+y )f (y )在[a ,b ]上勒贝格可积,对任何0→n ε,令[])()sin()()sin(1)(y f y x y f y x y f n nn +-++=εε ,则|)(||)(|y f y f n ≤,且 )()cos()(lim y f y x y f n n +=∞→,由控制收敛定理,dy y f y x a b dy y f y x ab dx d )()cos()()sin(+=+⎰⎰. 例2证明 0101lim 2223=+⎰∞→dx x n xn n .证明 易知]1,0[,01lim2223∈=+∞→x x n xn n ,令xx g xn xn x f n 2)(,1)(2223=+=,则)1()12(2)()(222323x n x xn nx x f x g n +-+=-, 当 0)12(2,1412323>-+≤<x n nx x n时;当 时nx 410≤≤,()04122122232323232323>⎪⎭⎫⎝⎛-≥-≥-+n n x n x n nx ,所以 1],1,0[),()(0≥∈≤≤n x x g x f n ,由习题6, g (x )在[0,1]上勒贝格可积,所以由控制收敛定理,0001101lim 2223==+⎰⎰∞→dx dx x n xn n .§4 黎曼积分与勒贝格积分本节介绍黎曼积分与勒贝格积分的关系,并给出黎曼可积函数的特征性质. 定理1 设f (x )是闭区间[a ,b ]上的有界函数,如果f (x )在[a ,b ]上黎曼可积,则f (x )在[a ,b ]上勒贝格可积,且⎰⎰=bab adx x f L dx x f R )()()()( .证明 设|,)(|sup ],[x f M b a x ∈= 则0≤M<+∞.作[a ,b ]的分划D n 如下:D n : b x x a x n k n n n=<<<=)()(1)(0 , 使1+n D 比n D 更细密,并且())(0max )(1)(1∞→→-=-≤≤n x x D n j n j k j n n.记 )(sup )(inf ],[)(],[)(11x f M x f m j j j j x x x n j x x x n j --∈∈==,作简单函数[](]⎪⎩⎪⎨⎧∈∈=-)()(1)()(1)(0)(1,,)(n jn j n j n n n n x x x m x x x m x L ,n k j ≤≤2,[](]⎪⎩⎪⎨⎧∈∈=-)()(1)()(1)(0)(1,,)(n jn j n jn n n n x x x M x x x M x U ,n k j ≤≤2,易知简单函数列{L n (x )}和{U n (x )}满足 )()(1x L x L n n +≤ , )()(1x U x U n n +≥ ,],[),()()(b a x x U x f x L n n ∈≤≤ .令 )(lim )(),(lim )(x U x U x L x L n n n n ∞→∞→==,则],[),()()(b a x x U x f x L ∈≤≤ .因为对每个n ,],[,|)(|,|)(|b a x M x U M x L n n ∈≤≤,所以由有界控制收敛定理, ⎰⎰∞→=],[],[)(lim )(b a b a n n dx x L dx x L ,⎰⎰∞→=],[],[)(lim )(b a b a n n dx x U dx x U .另外,由简单函数勒贝格积分定义知,()⎰∑=-=-=],[1)(1)()(),()(b a k j n n j n j n j n nf D s x x m dx x L ,()⎰∑=-=-=],[1)(1)()(),()(b a k j n n j n j n j n nf D S x x M dx x U ,其中s (D n , f )与S(D n , f )分别是f (x )关于分别D n f (x )在[a ,b ]上黎曼可积,所以),(lim ),(lim )()(f D S f D s dx x f R n n n n ba∞→∞→==⎰ ,从而 ⎰⎰⎰==],[],[)()()()(b a b a badx x U dx x L dx x f R ,注意到 ()⎰=-≥-],[,0)()(0)()(b a dx x L x U x L x U 及于是 U (x )-L (x )=0 a .e .于[a ,b ], 因此 f (x )=U (x )=L (x ) a .e .于[a ,b ].故f (x )在[a ,b ]上L 可积,并且⎰⎰⎰==],[],[)()()()(b a b a ba dx x U dx x L dx x f L ,于是 ⎰⎰=b a dx x f L dx x f abR )()()()(.以下我们给出黎曼可积函数的充分必要条件,先给出如下引理.引理 函数f (x )在],[0b a x ∈处连续的充分必要条件是对任意ε>0,存在包含x 0的开区间I ,使f (x )在I 上的振幅.ε<-=∈∈)(inf)(sup )(],[],[x f x f I w Ib a x Ib a x f证明 由连续函数的定义即得.定理2 设f (x )为[a ,b ]上的有界函数,则f (x )在[a ,b ]上黎曼可积的充分必要条件是它的不连续点的全体是零测集,即f (x )在[a ,b ]上几乎处处连续.证明 必要性 因为f (x )黎曼可积,所以同于定理1的证明,做[a ,b ]的分划列{D n }和简单函数列{L n (x )}与{U n (x )},得知.],[),()()(b a x x U x f x L ∈≤≤, 进而],[..),()()(b a e a x f x L x U 于==,其中 )(lim )(),(lim )(x L x L x U x U n n n n ∞→∞→== .记D 是分划{D n }的所有分点所成之集,令 )}()()()(],,[|{x U x f x L x f b a x x E <>∈=或 ,E DF = ,则mF =0,下证f (x )在[a ,b ]-F 上连续.事实上,设E x D x F b a x ∉∉-∈000,,],[且则. 若f (x )在x 0处不连续,则由引理知,存在00>ε,对任何包含x 0的开区间I ,有0)(ε≥I w f . 因为D x ∉0,所以对每个n ,存在)1(00n k k k ≤≤,使())()(1000,n k n k x x x -∈,于是()0)()(100),()()(00ε≥=--n k n k f n n x x w x L x U , 而 )(lim )(),(lim )(0000x L x L x U x U n n n n ∞→∞→==,所以0)()(000>≥-εx L x U ,这与E x ∉0矛盾,故f (x )在x 0处连续. 充分性设f (x )在[a ,b ]上几乎处处连续,且|f (x )|≤M ,],[b a x ∈. 作[a ,b ]上的一列越来越细密的分划{D n },D n :b x x x a n k n n n=<<<=)()(1)(0 , 满足:())(0max )(1)(1∞→→-=-≤≤n x x D n j n j k j n n同于定理1的证明,做简单函数列{U n (x )}和{L n (x )},使1],,[,)(,)(≥∈≤≤n b a x M x L M x U n n , 并且].,[),(lim )()(lim b a x x U x f x L n n n n ∈≤≤∞→∞→下证对于f (x )的任何连续点x ,有).()(lim )(lim x f x U x L n n n n ==∞→∞→事实上,设f (x )在x 处连续,则由引理,任给0>ε,存在开区间I =(α,β),使ε<∈)(,I w I x f 且. 因为0→n D ,所以存在N ≥1,当n ≥N 时,},min{x x D n --<βα,另外,存在k 0(1≤k 0≤k n ),使[]I x x x n k n k ⊂∈-)()(100,,因此[]()ε<≤=--)(,)()()()(100I w x x w x L x U f n k n k f n n , 由ε的任意性知,).()(lim )(lim x f x L x U n n n n ==∞→∞→因为f (x )在[a ,b ]上几乎处处连续,所以].,[..)()(lim )(lim b a e a x f x L x U n n n n 于==∞→∞→又 ⎰=],[),()(b a n n f D S dx x U ,⎰=],[),()(b a n n f D s dx x L ,于是由勒贝格有界控制收敛定理, ⎰⎰==∞→∞→bab a n n n n dx x f L dx x U f D S )()()(lim ),(lim ],[,⎰⎰==∞→∞→bab a n n n n dx x f L dx x L f D s )()()(lim),(lim ],[,因此 ()0),(),(lim =-∞→f D s f D S n n n ,故f (x )在[a ,b ]上黎曼可积.例1 设⎩⎨⎧=,]1,0[1,]1,0[0)(中有理数为中无理数为x x x D 则D (x )在[0,1]上黎曼不可积.证明 因为D (x )在[0,1]上处处不连续,所以由定理2,D (x )在[0,1]上黎曼不可积. 例2 黎曼函数⎪⎩⎪⎨⎧=,]1,0[0,1)(上其它数为为任约真分数x q px qx ξ则ξ(x )在[0,1]上黎曼可积.证明 因为ξ(x )不连续点的全体为(0,1)中的有理数集,而该集合为零测集,所以由定理2,ξ(x )在[0,1]上黎曼可积.§5 重积分与累次积分在黎曼积分中,重积分可化为累次积分. 例如设D =[a ,b ]×[c ,d ], f (x ,y )是D 上的连续函数,则⎰⎰⎰⎰⎰⎰==Ddx y x f abdy c d dy y x f c d dx a b dxdy y x f ),(),(),(本节我们在勒贝格积分中建立相应的定理——即富比尼(Fubini )定理,由此看到,在勒贝格积分中重积分化为累次积分,以及积分次序的交换等问题中,勒贝格积分要求的条件比在黎曼积分时要求的条件弱得多,这再次显示了勒贝格积分的优越性. 一、富比尼定理设p 、q 是正整数,n =p +q ,此时R n 可以看成R p 和R q 的直积,即R n =R p ×R q . R n上的函数f 可以用f (x ,y )表示,其中,,q p R y R x ∈∈相应的积分可写成⎰⨯qp R R dxdy y x f ),(,称为重积分. 另一方面,固定),(,y x f R x p ∈看成q R y ∈的函数,令⎰=q Rdy y x f x F ),()(,则称[]⎰⎰⎰⎰⎰∆=p q ppqRRR R R dy y x f dx dx dy y x f dx x F ),(),()(为累次积分. 富比尼定理给出了等式⎰⎰⎰⨯=p q qp RRR R dy y x f dx dxdy y x f ),(),(成立的条件. 定理1 (Tonelli )设f (x ,y )是R p ×R q 上的非负可测函数,则 (1)对几乎所有的q p R y y x f R x ∈∈作为),(,的函数是非负可测的; (2)⎰∈=q RP R x dy y x f x F 作为),()(的函数是非负可测的;(3).),(),(⎰⎰⎰⨯=qp p q R R RRdy y x f dx dxdy y x f证明 由于非负可测函数是非负单调增简单函数列的极限,我们只需证)(x f 是R p ×R q 中可测集E 的特征函数的情形即可.以下分五种情形加以证明.情形1 E=I 1×I 2,其中I 1和I 2分别是R p 和R q 中的区间; 当1I x ∉时,f (x ,y )=0;当,1时I x ∈⎩⎨⎧∉∈=,,1),(22I y I y y x f所以对一切q p R y y x f R x ∈∈作为),(,的函数是非负可测的,并且⎰⎩⎨⎧∉∈==q R I x I x I dy y x f x F ,0,||),()(112于是 ⎰⎰⨯==p RI I I dx I dx x F 1||||||)(212 . 而⎰⨯⨯==qp R R I I mE dxdy y x f ||||),(21 ,所以⎰⎰⎰⨯=qp p q R R RRdy y x f dx dxdy y x f ),(),( .情形2 E 是开集;由开集结构知, ∞==1)(k k I E ,其中I (k) (k ≥1)是R p ×R q 中互不相交的半开半闭区间,记)(2)(1)(k k k I I I ⨯=,其中)(2)(1k k I I 和分别是R p 和R q 中的区间,令⎩⎨⎧⨯∉⨯∈=,),(0,),(1),()(2)(1)(2)(1k k k k k I I y x I I y x y x f 则 ∑∞==1),(),(k k y x f y x f .由情形1,每个f k (x ,y )满足(1)~(3),于是对一切qp R y y x f R x ∈∈作为),(,的函数是非负可测的,从而由逐项积分定理,∑∑⎰⎰⎰∞=∞====11),(),(),()(k k Rk kRRq q qdy y x f dy y x fdy y x f x F在R p 上非负可测,仍由逐项积分定理,∑⎰⎰∞=⨯⨯=1),(),(k kR R R R dxdy y x fdxdy y x f qp qp=[]∑∑⎰⎰⎰∞=∞=⨯=11),(),(k k R R k k R R pqqp dx dy y x f dxdy y x f=⎰⎰⎰∑∑⎰⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∞=∞=p p q q R RR k k k R k dx dy y x f dx dy y x f 11),(),( =[]⎰⎰⎰⎰=pp q qR RRR dy y x f dx dx dy y x f ),(),( .情形3 E 是有界闭集; 令 },1)),,((0),{(1<<⨯∈=E y x d R R y x G q p},1)),,((),{(2<⨯∈=E y x d R R y x G qp则G 1和G 2是R p ×R q 中的有界开集,且E =G 2\G 1,21G G ⊂,及,0),(),(),(12≥-=y x f y x f y x f其中f 1, f 2分别是G 1与G 2的特征函数,由情形2,f 1, f 2均满足(1)~(3),并且对一切),(,y x f R x p ∈关于p R y ∈是非负可积的,从而dy y x f dy y x f dy y x f x F q q q RRR),(),(),()(12⎰⎰⎰-==在R p 上非负可积,并且[]dy y x f dx dy y x f y x f dx dx x F q p p q pRRRRR ),(),(),()(12⎰⎰⎰⎰⎰=-= .另外,由f i (x ,y )在R p ×R q 上非负可积及情形2知(i=1,2),⎰⎰⎰⨯⨯⨯-=qp qp qp R R R R R R dxdy y x f dxdy y x f dxdy y x f ),(),(),(12=⎰⎰⎰⎰-p q p q RRRRdy y x f dx dy y x f dx ),(),(12=[]⎰⎰⎰⎰=-pq qRRRR dy y x f dx dy y x f y x f dx ),(),(),(112.情形4 E 是零测集;因为E 是零测集,所以存在递减开集列{G k },使)1(≥⊂k G E k 且)(0∞→→k mG k ,令k k G H ∞==1,则.0,=⊂mH H E 且令⎩⎨⎧∉∈=kkk G y x G y x y x f ),(0),(1),(, 则由控制收敛定理和情形2, 0=⎰⎰⨯⨯∞→=qP qp R R RR k k H dxdy y x f dxdy y x ),(lim ),(χ =[]⎰⎰⎰⎰∞→∞→=p q p qRRR R k k k k dx dy y x f dy y x f dx ),(lim ),(lim=[]⎰⎰⎰⎰=∞→pp q q R RRH R k k dy y x dx dx dy y x f ),(),(lim χ .因此,对几乎所有的p R x ∈,有⎰=q RH dy y x 0),(χ,从而对几乎所有p R x ∈,q H R y y x ∈关于),(χ几乎处处为零,但),(),(),(0y x y x y x f H E χχ≤=≤,因而对几乎所有的p R x ∈,几乎处处为零关于q R y y x f ∈),(,因此对几乎所有的p R x ∈,⎰==0),()(dy y x f x F q R ,于是⎰⎰⎰==⨯0),(),(dy y x f dx dxdy y x f q p qp R R R R .情形5 E 是一般可测集.由可测集结构知,存在有界单增的闭集列Z F k 和零测集}{,使φ=⎪⎪⎭⎫ ⎝⎛=∞= Z F Z F E k k k ,1(k ≧1),记()则的特征函数和分别为和,1≥k F Z f f k k o),(),(lim ),(),(y x f y x f y x y x f o k k E +==∞→χ.由情形3和4,)1(,≥k f f o k 满足定理(1)~(3),故由单调收敛定理和可积函数性质知),(y x f 也满足(1)~(3).至此我们证明了q p R R ⨯中任何可测集E 上的特征函数)3(~)1()(满足定理x f ,从而易知任何非负简单函数和非负可测函数都满足定理(1)~(3). 定理2 (Fubini ),设),(y x f 在q p R R ⨯上可积,则(1)对几乎所有的q R x ∈,),(y x f 作为q R y ∈ 的函数在q R 上可积; (2)⎰=q Rdy y x f x F 在),()(q R x ∈上可积;(3)⎰⎰⎰⨯=qp qpR R R R dy y x f dx dxdy y x f ),(),(.证明 因为),(),(),(y x f y x f y x f -+-=,而q P R R f f ⨯-+都是,上的非负可积函数,所以由定理1即得结论.推论 设),(y x f 在q p R R ⨯上非负可测(L 可积),则dx y x f dy dxdy y x f dy y x f dx pqqp qpR R R R R R ),(),(),(⎰⎰⎰⎰⎰==⨯ .证明 在定理1和定理2的证明中交换y x 与的位置即得结论. 二、富比尼定理的应用以下我们介绍富比尼定理在函数的卷积和分布函数方面的应用.为此先给出如下引理:引理 设上的可测函数是则上的可测函数是n n n n R R R y x f R x f 2)(,)(=⨯-. 证明 因为函数上可测在n R x f )(,所以对任何})({,1αα>∈=∈x f R x A R n 是n R y x y x g -=),(,则})(),{(a y x f R R y x n n >-⨯∈)(}),{(1A g A y x R R y x n n -=∈-⨯∈=. 为证引理,只需证明 中可测集是n R A g 21)(-. 分三种情形证明:(1)若A 为中n R Borel 集,因为n n R R g →2:是连续映射,则)(1A g -为n R 2中Borel 集,从而)(1A g -是可测集. (2)若A 是中n R 零测集,即mA=0,则存在δG 型集G ),(,0,1G g B mA mG A -===⊃令且则B 的特征函数B χn R 2是上的非负可测函数,由推论及有,0}){(==+mG y G m.0}){(),(),(),(}{2=+=====⎰⎰⎰⎰⎰⎰⎰⎰+dy y G m dxdy dx y x dy dyy x dx dxdy y x mB nnnn nnn R y G R B R R B R R B R χχχ另外,由A G ⊃知,从而所以,0))((,)()(111==⊂---A g m B G g A g )(1A g -是n R 2中可测集.(3)若A 是n R 中任一可测集,则存在,0)\(,=⊂F A m A F F 使型集σ因为知所以由集型集是)1(,Borel F σ,)2(,)(1知又由是可测集F g -)\(1F A g -是可测集,从而)\()()(111F A g F g A g ---= 是可测集.定义 设n R x g x f 是)(),(上的可测函数,如果对几乎所有的n R x ∈,积分dy y g y x f nR )()(-⎰存在,则称dy y g y x f x g f nR )()())(*(-=⎰为)()(y g x f 与的卷积.定理3 设)(x f ,)(x g 在n R 上可积,则对几乎所有的n R x ∈,))(*(x g f 存在,并且))()()(()(*dx x g dx x f dx x g f nnnR R R ⎰⎰⎰≤.证明 先设0)(≥x f ,0)(≥y g ,由引理,)()(y g y x f -在n n R R ⨯上是非负可测的,由推论,).)()()(())()((])()([))()(())(*(dy y g dx x f dydx y x f y g dydx y g y x f dxdy y g y x f dx x g f nnnnnn nnnR R R R R R R R R ⎰⎰⎰⎰⎰⎰⎰⎰⎰=-=-=-=一般情形由下式即得:dx x g Rdx x f Rdx x g f Rdx x g f Rnnnn)()())(*())(*(⎰⎰⎰⎰=≤.定理4 设n R E ⊂是可测集,)(x f 是E 上几乎处处有限的可测函数,对每个0>λ,令 }))(({)(λλ>∈=x f E x m F ,称的分布函数为)()(x f F λ,则当∞<≤p 1时,λλλd F p dx x f E p p)(0)(1-⎰⎰∞=.证明 令⎩⎨⎧≤>=,)(0,)(1),(λλλx f x f x g固定的函数是可测集合作为时x x g ),(,0λλ>})({λ>∈x f E x 的特征函数,所以由定理1,⎰⎰⎰-=λλd p x f dx dx x f p E pE10)()(().)(.),(101010λλλλλλλλλd F p dx x g d p d x g p dx p E p p E -∞-∞-∞⎰⎰⎰⎰⎰===习 题1、证明§1定理2中(1)、(3)、(4).2、证明§2定理1中(2)、(4)、(6).3、设则上可测在,)(E x f 对任何0>η,有,)(])([dx x f x f x mE E ⎰≤≥ηη4、设上在E x f )(非负可测,且⎰=0)(dx x f E,则E e a x f 于,,0)(=5、设令上可测在,0)(E x f ≥,)(,)(0)()]([n x f n x f x f x f n >≤⎩⎨⎧= 若则于,..)(E e a x f +∞<[]⎰⎰=∞→dx x f dx x f E n En )()(lim .6、设(]⎪⎩⎪⎨⎧=∈=⎪⎩⎪⎨⎧=,00,1,02)(,]1,0[,]1,0[1)(4x x xx g x x x xx f 中有理数为中无理数为证明并求可积上在,]1,0[)(),(L x g x f ⎰⎰dx x g dx x f )()(]1,0[]1,0[和.7、 设中任一点至少属于如果的可测子集是]01[,]1,0[,,,21n E E E 这n 个集合中的q个,证明必有一个集合,它的测度大于或等于nq. 8、设是上可积的充分必要条件在证明上非负可测在E x f E x f mE )(,)(,+∞<级数])([1n x f x mE n ≥∑∞=)收敛, +∞=mE 时,结论是否成立?9、设()x f 在可测集E 上L 可积,1E 是E 的可测子集,则()x f 在1E 上L 可积. 10、设+∞<mE ,()x f 在E 上有界可测,则()x f 在E 上L 可积,从而[ a ,b ]上的连续函数是L 可积的.11、设()x f ,()x g 是E 上的可积函数,则)()(22x g x f +,也在E 上可积.12、设]1,0[0为P 中康托集,⎪⎩⎪⎨⎧∈∈=阶邻接区间n x P x n x f 0100)( ,证明 3)(]1,0[=⎰dx x f .13、设()x f 在E 上L 可积,mE mE mE n E E n n n =+∞<≥⊂→∞lim ,),1(且,证明dx x f dx x f E E n n )()(lim ⎰⎰=→∞.14、设.0lim ],)([,)(,=≥=+∞<∞→n n n nmE n x f x E E L E x f mE 证明记可积上在15、设mE ≠0,()x f 在E 上L 可积,如果对于任何有界可测函数)(x ϕ,都有0)()(=⎰dx x x f Eϕ,则()x f =0,a.e.于E16、设+∞<mE ,0,,)}({⇒n n f E E x f 上证明在函数列上几乎处处有限的可测为的充要条件为 0)(1)(lim =+⎰∞→dx x f x f n n En .17、设{})(x f n 为E 上非负可测函数列,且)1()()(1≥≥+n x f x f n n ,若)()(lim x f x f n n =∞→,且存在0k ,使⎰+∞<Ek dx x f )(0,则dx x f dx x f En En )()(lim ⎰⎰=∞→ .18、设()x f 在[a ,b ]上L 可积,则对任意ε>0,存在[a ,b ]上的连续函数()x g ,使ε<-⎰dx x g x f b a )()(],[.19、若()x f 是),(+∞-∞上的L 可积函数,则0)()(lim ],[0=-+⎰→dx x f h x f b a h .。
实变函数勒贝格积分例题

实变函数勒贝格积分例题大家好!近两天去了合肥走亲戚,所以进度有所耽搁,希望大家见谅哈。
“实变函数学十遍”这句话,在我写完上一节笔记之后,就已经深刻的感受到了……实分析的难度随着我们笔记内容的推进也会不可避免的加深。
但是这门课的重要性同样是不言而喻的(至少我所有感兴趣的方向(经济,金融,统计,数据科学,数学)都要求我好好学实分析……)。
所以,这也是一个无法避开的坎,只能硬着头皮继续走下去……关于实分析和拓扑学两个系列的习题,因为自学的概念相关什么的都肯定不如老师说的要严谨认真,习题自然也肯定不如老师说的有针对性,所以初步计划是开学再统一更新这两个系列笔记的相关习题,希望大家能够耐心等待~这一节我们进入积分理论,从这一节开始探讨勒贝格积分的由来,性质和应用。
提供之前的笔记:我们开始今天的内容。
目录勒贝格积分(1)简单函数在测度有限集合上支持的有界函数一般非负函数(上)勒贝格积分(上)我们之前在数分中学过的积分都是黎曼积分,它考虑的分割对象,放到实分析中去考虑其实就是闭正方体。
上一节中我们已经提过了,在勒贝格积分中,考虑的对象就是可测集和可测函数。
所以下面所有的函数,都假定是可测函数。
那么如何引入勒贝格积分的呢?书上分了四步去讨论。
简单函数首先:考虑简单函数。
上一节中我们定义了简单函数\varphi(x)=\sum_{i=1}^{N}a_k\chi_{E_k}(x) ,其中 E_k 是测度有限的集合, a_k 是常数。
和定积分的定义不同,这个函数在集合的取法上抽象度高了很多。
而且有个麻烦的地方在于:这个简单函数的表示方法并不唯一。
这句话是什么意思?就是说,每一个简单函数,如果用特征函数的线性组合去表示,这个线性组合并不是唯一的。
常见的例子就是 0=\chi_E-\chi_E 。
你当然可以找到更多的关于 0 用特征函数的表示。
所以为了防止产生歧义,导致之后的勒贝格积分无法定义,数学家们人为规定了一种类型,作为以后我们主要的讨论对象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勒贝格积分作业
一、单项选择题
1.设+∞<mE ,)(x f 是E 上处处有限的可测函数,则( ). (A) )(x f 在E 上勒贝格可积 (B) )(x f 在E 上黎曼可积 (C) )(x f 是E 上的简单函数 (D) 以上都不对
2.设+∞<mE ,)(x f 与)(x g 都在E 上可积,则下列结论中正确的是( ). (A) )()(x g x f ⋅在E 上可积 (B)
)
()
(x g x f 在E 上可积 (C) )()(x g x f ⋅在E 上可积 (D) )()(x g x f -在E 上可积 3.设⎩⎨
⎧∈∈=0
2
\]1,0[,,
)(P x x P x x x f ,其中0P 是康托集,则
=⎰
]
1,0[d )(x x f ( ).
(A) 0 (B)
2
1 (C)
3
1
(D) 1 4.设)(x f 是E 上的可积函数,且0d )(>⎰
E
x x f ,则( ).
(A) 对E 的任何可测子集e ,有
0d )(>⎰e
x x f
(B) 存在E 的可测子集e ,使0d )(>⎰e
x x f
(C) )(x f 在E 上处处大于零 (D) 以上都不对 二、填空题
1.设+∞<mE ,则)(x f 在E 上有界可积是)(x f 在E 上有界可测的 条件.
2.若)(x f 是E 上的勒贝格可积函数,则)(x f 在E 上有限.
3.设⎪⎩⎪⎨⎧=中的无理数
是中的有理数
是]1,0[,]1,0[,)(32x x x x x f ,则=⎰]
1,0[d )(x x f .
4.设)(x f 在E 上可测,则)(x f 在E 上可积是)(x f 在E 上可积的 条件. 三、证明题
1.设由]1,0[中取出n 个可测集n E E E ,,,21Λ,假设]1,0[中任意一点至少属于这n 个集合中的q 个,试证其中必有一集合,它的测度大于或等于
n
q . 2.设)}({x f n 是E 上的非负可积函数列,若
0d )(→⎰
E
n x x f ,则0)(⇒x f n .
3.设+∞<mE ,)}({x f n 为E 上几乎处处有限的可测函数列,证明
0d )
(1)(→+
⎰E
n n x x f x f 的充分必要条件是0)(⇒x f n .
4.设)(x f 是E 上的可积函数,])([n x f E e n ≥=,证明0lim =⋅∞
→n n me n .
5.求
⎰
+∞
→1
02
2d sin 1)(lim x mx x m mx
R m
6.证明
0d 1)(lim 1
02
22
1=+⎰
∞
→x x n nx
R n
7.设)(x f 在p R 上可积,)(y g 在q R 上可积,证明)()(y g x f ⋅在q
p R R ⨯上可积,并且
)d )(()d )((d d )()(⎰⎰⎰⋅=+q
p
q
p R R R y y g x x f y x y g x f
8.设)}({x f n 是E 上一列可测函数,)()(lim x f x f n n =∞
→ a.e.于E ,而且存在E 上可
积函数)(x F ,使得)()(x F x f n ≤ a.e.于E ),2,1(Λ=n .证明)}({x f n 依测度收敛于
)(x f .。