黎曼积分与勒贝格积分
黎曼积分与勒贝格积分的联系与区别

黎曼积分与勒贝格积分的联系与区别
黎曼积分和勒贝格积分都是用来求解函数在某一区间上的定积分,但是它们的定义和性质有着很大的区别。
黎曼积分是一种传统的积分方法,它把定积分的计算问题转化
为一个求和问题,即将区间分成若干小段,然后对每一小段的函数
值乘以对应小段的长度求和来逼近定积分的值。
黎曼积分只适用于
满足黎曼可积条件的函数,也就是说,被积函数必须满足有界且在
有限区间上几乎处处连续。
勒贝格积分则是一种广义积分方法,它是将区间上的函数分解
成上下两个函数,然后利用这两个函数的极限逼近来计算定积分的值。
因为勒贝格积分的定义更加宽松,所以相比较于黎曼积分,它
能够处理诸如反常积分这样的更加复杂的积分问题。
此外,黎曼积分和勒贝格积分的性质也有所不同。
例如,黎曼
积分在加积分区间时是可交换的,而勒贝格积分则不具有这种性质。
此外,勒贝格积分对于不满足黎曼可积条件的函数,也有一定的处
理能力,而黎曼积分则无法计算这些函数的积分。
综上所述,黎曼积分和勒贝格积分都是求解定积分问题的方法,但是它们的定义和性质有很大的不同。
黎曼积分只适用于黎曼可积
的函数,而勒贝格积分则更加广泛适用于各种类型的函数。
黎曼积分与勒贝格积分的区别与联系

黎曼积分与勒贝格积分的区别与联系数学系1302班第五组07 樊萌12 韩鸿林19 兰星21 李鸿燕45 王堃51 武相伶54 许小亭57 杨莉黎曼积分与勒贝格积分的区别与联系黎曼积分和勒贝格积分定义的比较1、黎曼积分定义:设()x f 在[]b a ,上有界,对[]b a ,做分割,{}b x x x a T n =<<<==Λ10,其中令(){}i i x x x f M ∆∈=,sup ,(){}i i x x x f m ∆∈=,inf ,i i i x x x -=∆+1,()11-=-=∑i i ni i x x m s()11-=-=∑i i ni i x x M S ,若有dx s dx S bab a⎰⎰=则称()x f 在[]b a ,上黎曼可积.2、勒贝格积分定义:,0>∀δ,作M y y y m n =<<=Λ10,,其中δ<--1i i y y ,M ,m 分别为()x f 在E 上的上界和下界,令(){}i i i y x f y x E ≤≤=-1,,()n i Λ,2,1=若i ni i mE y ∑=-→110lim δ存在,则()x f 勒贝格可积.3、一般的可测函数的积分定义为:设在可测集E 上可测,若记()(){}0,m ax x f x f=+,()(){}0,m in x f x f-=-,则有()()()x f x fx f -+-=,若()dx x f E+⎰,()dx x fE_⎰不同时为∞,则()x f 在E 上的积分确定且()()()dx x f dx x f dx x f EEE-+⎰⎰⎰-=.4、 简单函数的勒贝格积分定义:设()x f 是可测集E 上的非负简单函数,于是有对E 的划分i E ,n i Λ2,1=,()x f 在i E 上的取值为i c ,则()i E ni i c x f χ∑==1,定义()x f 的勒贝格积分为()ini iEmE c dm x f ∑⎰==1,若()∞<⎰dm x f E,则称()x f 在E 上勒贝格可积.5、非负可测函数的勒贝格积分定义:取E 上的非负简单函数列()x f n ,对任意的E x ∈,()x f n 都收敛于()x f ,则()x f 在E 上勒贝格可积其积分为()()dm x f dm x f EEn n ⎰⎰=∞→lim .对一般的函数由于()()()x f x fx f -+-=,则()()()dm x f dm x f dm x f EEE⎰⎰⎰=--+.若左端的两个积分值都有限时,称()x f 在E 上勒贝格可积.勒贝格积分是对黎曼积分的推广,所以黎曼可积的函数一定勒贝格可积,但勒贝格可积的函数不一定黎曼可积.黎曼积分与勒贝格积分存在条件的比较黎曼可积的条件㈠黎曼可积的条件必要条件定义在[]b a ,上的()x f 黎曼可积的必要条件是()x f 在[]b a ,上有界.注 任何黎曼可积的函数必有界,但有界函数不一定黎曼可积. ㈡黎曼可积的充分必要条件1、设()x f 是定义在[]b a ,上的有界函数,则()x f 黎曼可积的充分必要条件为()x f 在[]b a ,上的黎曼上积分等于黎曼下积分.即设()x f 在[]b a ,上有界,{}b x x x a T n =<<<==Λ10为对[]b a ,的任一分割,其中令(){}i i x x x f M ∆∈=,sup ,(){}i i x x x f m ∆∈=,inf ,i i i x x x -=∆+1,()11-=-=∑i i ni i x x m s ,()11-=-=∑i i ni i x x M S ,n i Λ,2,1=有dx s dx S bab a⎰⎰=.2、设()x f 是定义在[]b a ,上的有界函数,则()x f 黎曼可积的充分必要条件为0>∀ξ,总存在某一分割T ,使得()i i i ini i m M w xw -=<∆∑=ξ1.3、设()x f 是定义在[]b a ,上的有界函数,则()x f 黎曼可积的充分必要条件为0>∀ξ,总存在某一分割T ,使得()()ξ<-T s T S 成立.4、定义在[]b a ,上的函数()x f 黎曼可积的充分必要条件为()x f 在[]b a ,上的一切间断点构成一个零测度集.注 这说明黎曼可积的函数时几乎处处连续的. 勒贝格可积条件1、设()x f 是定义在可测集E 上的有界函数,则()x f 在E 上勒贝格可积的充要条件为0>∀ξ,总存在E 的某一分割D ,使得ξ<∑iii mEw .2、设()x f 是定义在可测集E 上的有界函数,则()x f 在E 上勒贝格可积的充要条件为()x f 在E 上勒贝格可测.3、设()x f 在[]b a ,上的黎曼反常积分存在,则()x f 在[]b a ,上勒贝格可积的充要条件为()x f 在[]b a ,上的黎曼反常积分存在,且有()[]()⎰⎰=ba ba dx x f dm x f ,. 4、设()x f n 为E 上的可测函数列,()x f n 在E 上的极限函数几乎处处存在,且()M dx x f En <⎰,则()x f 在E 上勒贝格可积.5、设()x f 是是定义在可测集E 上的连续函数,则()x f 在E 上勒贝格可积的充要条件为()x f 在E 上勒贝格可测.黎曼积分与勒贝格积分的性质比较黎曼积分的性质1、(线性性)若()x f ,()x g 是定义在[]b a ,上黎曼可积函数,则()()x g x f +,()()x g x f -,()()x g x f 也在[]b a ,上黎曼可积.注()()()()dx x g dx x f dx x g x f b ab ab a⎰⎰⎰+=+,但()()()()dx x g dx x f dx x f x g bab ab a⎰⎰⎰≠.2、(区域可加性)设有界函数()x f 在[]c a ,,[]b c ,上都黎曼可积,则()x f 在[]b a ,上也黎曼可积,且有()()()dx x f dx x f dx x f bcc ab a⎰⎰⎰+=.3、(单调性)若()x f ,()x g 是定义在[]b a ,上黎曼可积,且()()x g x f ≤,则()()dx x g dx x f bab a⎰⎰≤.4、(可积必绝对可积)若()x f 在[]b a ,上黎曼可积,则()x f 在[]b a ,上也黎曼可积,且有()()dx x f dx x f bab a⎰⎰≤.注 其逆命题不成立.5、若()x f 在[]b a ,上黎曼可积,则在[]b a ,的任意内闭子区间[][]b a ,,⊂βα上也黎曼可积.且其积分值不会超过在[]b a ,上的积分值.6、若()x f 是[]b a ,上非负且连续的函数,若有()010=⎰dx x f ,则()x f 在[]b a ,上恒等于零.7、若()x f ,()x g 是[]b a ,上的黎曼可积函数,则()(){}x g x f M ,m ax = ,()(){}x g x f m ,m in =在[]b a ,上也黎曼可积.8、若()x f 在[]b a ,上黎曼可积,()x f 1在[]b a ,上有定义且有界,则()x f 1也在[]b a ,上黎曼可积.勒贝格积分的性质1、(有限可加性)设()x f 是有界可测集E 上的可积函数,K nk E E Y 1==,K E 等均可测且两两互不相交,则有()()()()d x x f dx x f dx x f d x f nEEEE⎰⎰⎰⎰+++=Λ21x . 2、对于给定的可测函数()x f ,()x f 与()x f 的可积性相同且()()dx x f d x f EE⎰⎰≤x . 3、(单调性)若()x f ,()x g 在E 上勒贝格可积,且()()x g x f ≤几乎处处成立,则()()d x x g d x f EE⎰⎰≤x . 4、()x f 是E 上的非负可积函数,则()x f 在E 上是几乎处处有限的.5、()x f 是E 上的非负可测函数,若()x f 在E 上几乎处处等于0,则()0x =⎰d x f E.6、(零测集上的积分)若0=mE ,则()0=⎰dx x f E.7、()x f 是E 上的勒贝格可积函数,()0≥x f 在E 上几乎处处成立,则()0x ≥⎰d x f E.8、设()x f 在E 上可测,若存在非负函数()x g 在可测集E 上勒贝格可积,()()x g x f ≤几乎处处成立,则()x f 在可测集E 上勒贝格可积.9、()x f 在可测集E 上勒贝格可积,A 是E 的可测子集,则()x f 在A 上也勒贝格可积. 且其积分值不会超过在E 上的积分值.10、设()x f 在E 上可测,则()0x =⎰d x f E的充要条件是()0=x f 在E 上几乎处处成立.11、设()x f ,()x g 均在E 上勒贝格可积,则()(){}x g x f M ,m ax =,()(){}x g x f m ,m in =也 在E 上勒贝格可积.12、若()x f 与()x g 在E 上几乎处处相等,则()x g 也可积,且()()d x x g dx x f EE⎰⎰=. 13、设()x f 在可测集E 上勒贝格可积函数,则其不定积分是绝对连续函数14、设()x f 为可测集E 上勒贝格可积函数,则存在绝对连续的函数()x g ,使得()x g 导函数在E 上几乎处处等于()x f .黎曼积分与勒贝格积分相关定理的比较与黎曼积分相关的定理⒈若函数列()x f n 在区间I 上一致收敛,且每一项都连续,则其极限函数()x f 也在I 上连续.⒉(可积性)若函数列()x f n 在区间I 上一致收敛,且每一项都连续,()()dx x f dx x f ban n nb a n ⎰⎰∞→∞→=lim lim .⒊(可微性)设()x f n 为定义在[]b a ,上的函数列,若[]b a x ,0∈为()x f n 的收敛点,且()x f n 的每一项在[]b a ,上都有连续的导数,()x f n '在[]b a ,上一致收敛,则()()()x f dxdx f dx d n n n n ∞→∞→=lim lim . ⒋有界收敛定理设()x f n 是定义在[]b a ,上的黎曼可积函数. ⑴()[]()b a x n M x f n ,,2,1∈=≤Λ.⑵()x f 是定义在[]b a ,上的黎曼可积函数.且()()x f x f n n =∞→lim .则有()()dx x f dx x f bab an n ⎰⎰=∞→lim .与勒贝格积分相关的定理⒈(勒维定理)设可测集E 上的可测函数列()x f n 满足如下条件:()()Λ≤≤≤x f x f 210,()()x f x f n n =∞→lim ,则()x f n 的积分序列收敛于()x f 的积分()()d x x f d x f En n E⎰⎰∞→=limx . ⒉(勒贝格控制收敛定理)设可测集E 上的可测函数列()x f n 满足如下条件: ⑴()x f n 的极限存在,()()x f x f n n =∞→lim .⑵存在可积函数()x g 使得()()()N n E x x g x f n ∈∈≤,,那么()x f 可积,有()()d x x f d x f En n E⎰⎰∞→=limx . ⒊设∞<mE ,E 上的可测函数列()x f n 满足如下条件: ⑴()()()N n E x x g x f n ∈∈≤,,,()x g 可积. ⑵()x f n 依测度收敛于()x f ,那么()x f 可积,有()()d x x f d x f En n E⎰⎰∞→=limx . ⒋设()x f n 是[]b a ,上的增函数列,且有()x f n n ∑∞=1在[]b a ,上收敛,则()()x f dxdx f dx d n n n n ∑∑∞=∞==⎪⎭⎫ ⎝⎛11.。
黎曼积分与勒贝格积分的区别

黎曼积分与勒贝格积分的区别积分是微积分学中的一个重要概念,用于描述曲线下面积的大小。
在实际应用中,常常会遇到黎曼积分和勒贝格积分这两种不同的积分方式。
本文将从定义、性质和应用等方面对黎曼积分与勒贝格积分进行比较,以便更好地理解它们之间的区别。
1. 定义黎曼积分是由德国数学家黎曼提出的,是微积分中最基本的积分形式。
对于一个函数f(x),在闭区间[a, b]上的黎曼积分定义为:∫[a, b] f(x) dx = lim(n→∞) Σ f(xi)Δxi其中,Σ f(xi)Δxi表示对区间[a, b]进行分割,取各子区间上任意一点xi,然后求和得到的黎曼和,当分割数n趋于无穷大时,这个黎曼和的极限就是函数f(x)在区间[a, b]上的黎曼积分。
而勒贝格积分是由法国数学家亨利·勒贝格提出的,是对黎曼积分的一种推广。
勒贝格积分的定义更加一般化,可以处理更广泛的函数类。
勒贝格积分的定义涉及到测度论的概念,需要引入测度空间的概念,因此比黎曼积分更加抽象和复杂。
2. 性质黎曼积分和勒贝格积分在性质上也有一些区别。
黎曼积分对函数的要求相对较高,需要函数在有限闭区间上有界且可积。
而勒贝格积分对函数的要求较低,只需要函数是可测的即可进行勒贝格积分。
此外,黎曼积分是通过分割区间并取极限的方式定义的,因此对分割的精细程度有一定要求,而勒贝格积分则是通过测度的概念来定义的,更加灵活和一般化。
3. 应用在实际应用中,黎曼积分和勒贝格积分各有其优势和适用范围。
黎曼积分在初等数学和物理等领域有着广泛的应用,例如计算曲线下面积、求定积分等。
而勒贝格积分则在测度论和概率论等领域有着重要的应用,能够处理更加复杂的函数和集合。
总的来说,黎曼积分是微积分中最基本的积分形式,适用于一般函数的积分计算;而勒贝格积分是对黎曼积分的推广,更加抽象和一般化,适用范围更广,能够处理更加复杂的函数和集合。
综上所述,黎曼积分和勒贝格积分在定义、性质和应用等方面存在一定的区别,各有其特点和适用范围。
黎曼积分与勒贝格积分

黎曼积分与勒贝格积分积分是微积分中重要的概念之一。
在实际问题中,我们常常需要求解一个区间内函数的面积或者体积。
这个过程就称为积分。
积分有很多种,今天我想和大家聊一聊黎曼积分和勒贝格积分。
一、黎曼积分黎曼积分最早是由德国的数学家黎曼提出的。
它是积分的一种基本形式,从历史上来看,黎曼积分是最早被人们所接受的一种积分形式。
黎曼积分的定义非常简单,假设有一个区间[a,b],f(x)是[a,b]上的一个函数,我们将区间[a,b]进行分割,得到n个小区间[a1,b1],[a2,b2],……,[an-1,bn-1],然后在每个小区间内分别取一点xi(ai≤xi≤bi),然后求出每个小区间上函数f(x)的取值和小区间长度之积的和,即∑f(xi)Δxi(i=1,2,……,n),当分割越来越细,n越来越大时,和式∑f(xi)Δxi的极限值就是函数f(x)在区间[a,b]上的黎曼积分。
黎曼积分的优点是在实际计算中比较简单,但它也有一些局限性,比如说不是所有的函数都可以积分,例如在非连续点处黎曼积分是没有定义的。
二、勒贝格积分勒贝格积分是20世纪初期法国的数学家勒贝格提出来的。
它是通过使用类似度量论的概念,对几乎处处连续的函数进行积分,从而将积分的适用范围扩展到了更广泛的函数上。
具体来说,假设有函数f(x),它在[a,b]上几乎处处连续,记E为f(x)在[a,b]上所有不连续点的集合。
我们可以在每个不连续点处定义一个容许误差,使得在这个误差以内f(x)可以任意变化,而在误差以外随着分割越来越细,误差的贡献趋近于0。
于是我们就得到了函数在[a,b]上的勒贝格积分。
勒贝格积分相对于黎曼积分而言,可以积分更多的函数,也避免了因非连续点而产生的积分误差。
但是它在实际计算上会稍稍麻烦一些。
三、总结黎曼积分和勒贝格积分是积分的两种基本形式。
黎曼积分在实际计算中比较简单,但不是所有函数都能够使用黎曼积分。
勒贝格积分是一种更加通用的积分形式,它可以积分更多的函数,但相对于黎曼积分而言,计算会有一些复杂。
勒贝格积分和黎曼积分的关系和区别

勒贝格积分的若干简介我们先学习了Riemann 积分(简称R 积分),从而慢慢引入到了勒贝格积分,因此我将在下文中分几部分来讲勒贝格积分。
首先介绍一下在有界函数围,R 积分还是存在这很大的缺陷,主要表现在以下两个方面[1]:⑴R 积分与极限可交换的条件太严。
⑵积分运算不完全是微分运算的逆运算。
⑶不适宜于无界区间:黎曼积分只能用来在有界区间对函数进行积分。
⑷缺乏单调收敛。
鉴于R 积分的上述缺陷,人们致力于对此进行改进。
1902年,法国数学家勒贝格基于可列可加的测度,成功引进了一种新的积分,即Lebesgue 积分(简称L 积分)。
那么,建立L 积分的基本思路和步骤是怎么样的呢?L 积分的思路也基本与R 积分一样先分割,作积分和,取取极限。
在重新审视R 积分和曲边梯形面积的关系时,另一个建立L 积分的思路浮现出来。
首先,为了避免可测函数不是有界函数,最后的积分值可能会出现∞-∞的不定情形的出现,在定义L 积分时第一步仅限于非负函数。
其次,注意到非负函数围成的曲边梯形的面积,对于L 积分,可以将“可测集分割”加以取代,形成所谓“简单函数”,从而过度到L 积分“横着数”的思想。
下文将详细的介绍L 积分和R 积分的区别和联系。
关于Lebesgue 积分与Riemann 积分的定义比较1.1勒贝格积分的定义[3]:定义1:设)(x f 是n R E ⊂()∞<mE 上的非负可测函数.我们定义)(x f 是E 上的Lebesgue 积分()()()sup ():()x Eh x f x E E f x dx h x dx h x ∈≤⎧⎫=⎨⎬⎩⎭⎰⎰是n R 上的非负可测简单函数},这里的积分可以是+∞;若∞<⎰Edx x f )(,则称)(x f 在E 上Lebesgue 可积的。
设)(x f 是n R E ⊂上的可测函数,若积分⎰+E dx x f )(,⎰-Edx x f )(中至少有一个是有限值,则称⎰⎰⎰-+-=EE E dx x f dx x f dx x f )()()(为)(x f 是E 上的Lebesgue 积分;当上式右端两个积分值皆为有限时,则称)(x f 是E 上是Lebesgue 可积的。
黎曼积分和勒贝格积分的联系与区别

黎曼积分和勒贝格积分的联系与区别
黎曼积分和勒贝格积分都是函数积分的一种。
它们的定义很相似,但在某些意义上有所不同。
首先,黎曼积分是指函数在某一闭区间上的积分,其公式如下:
$$\int _a^ b f(x)dx=\lim_{n\to \infty }\sum_{i=1}^nf
\left(x_i\right)\Delta x_i$$
其中,$a、b$为积分的上下限,$x_i$为每个子区间的位置,$\Delta x_i$为每个子区间的长度。
而勒贝格积分可以看作是黎曼积分的一种特殊情况,其定义如下:
其中,$x_k=a+\frac{k(b-a)}{n}$。
从定义来看,黎曼积分是考虑分割区间的情况,其子区间不一定都相同,而勒贝格积分只考虑等分子区间的情况,所以勒贝格积分只是黎曼积分的特例。
此外,在实际应用中,由于勒贝格积分只考虑子区间的等分情况,进行计算时不需要考虑子区间的长度,即$\Delta x_k$可以直接取1,因此计算量相较于黎曼积分少。
但需要注意的是,如果子区间的宽度稍有不同,勒贝格积分可能会产生较大的误差。
勒贝格积分和黎曼积分的联系与区别

勒贝格积分和黎曼积分的联系与区别摘要本文讨论勒贝格积分是与黎曼积分的联系与区别,勒贝格积分和黎曼积分积分之间有一种相依赖、相互补充、相互帮助及在特定条件下相互转化的关系,勒贝格积分在积分与极限换序的条件要求上有比黎曼积分优越的好处。
在实变函数里引入勒贝格积分是为了弥补黎曼积分的不足,可以扩大可积函数类,降低逐项积分与交换积分顺序的条件。
勒贝格积分拓广了黎曼积分的定义,使得可积性的条件要求减弱了。
它断言可测集上的有界可测函数和单调函数必勒贝格可积,这比黎曼积分中要求连续函数、单调函数的条件放松多了.它放松了黎曼积分要求函数序列的一致收敛的过强的要求。
关键词:勒贝格可黎曼可积勒贝格积分黎曼积分1、定义1。
1黎曼积分定义 设)(x f 在[]b a,上有定义1)分割分划,将()b a ,添加n —1个分点T :n n x b x x x a x =<<<<=-1210 将[]b a,分成n 个小区间[][][]n n x x x x x x ,,,12110-1x ∆ 2x ∆ n x ∆2)取近似[]()i i i i i x f t s x x ∆∀-ξξ..,,1 3)()i i ni x f ∆∑=ξ14)取极限令{}i x T ∆=max -T 的细度,若()i ni iT x f ∆∑=→10limξ存在()()∑⎰=→∆=ni iiT baxf dx x 10l i m ξ1。
2勒贝格积分定义设()x f 在有限可测集E 上有界1)n E E E 21为E 的n 个互相不相交的可测子集且 ni i E 1E ==称{}n E E E D 21=为E 的一个L —分划2)设{}n E E E D 21=,{}''2'1'D nE E E =均为E 的一个L-分划,若对''D E ∈∀存在j i j E E t s DE ⊂∈'..称D 比'D 细(D D 是'的加细)3)设{}n E E E D 21=为E 的一个L-分划,()()x f B x f b iiE x i E x i sup inf ,∈∈==称 ()i ni i mE b f D s ∑==1',在划分D 下()x f 的小和()∑==n i i i mE B f 1D,S 在划分D 下()x f 的大和2黎曼积分和勒贝格积分的联系对于定义在[]b a ,上的函数f ,如果它是黎曼可积的,则它勒贝格可积的,而且有相同的积分值,故我们平时解题算勒贝格积分时,一般先考虑该函数是否黎曼可积,如果可以,那么就先化为黎曼积分求解,因为我们在学数分时,已经熟悉了黎曼积分.对于无界函数的积分或函数在无穷区间上的积分,黎曼积分是作为广义积分来定义的,这时要求{}k E 是单调增加的可测集合列,其并为E ,若极限()dx x f KE k ⎰∞→lim存在,则f 在E 上勒贝格可积,且有()dx x f E⎰=()dx x f KE k ⎰∞→lim当k E 是矩体k I 且()x f 在每个k I 上都是有界连续函数,同时满足()dxx f KE k ⎰∞→lim〈∞时,可以通过计算黎曼积分()dx x f E⎰而得到勒贝格积分()dx x f E⎰=()dx x f KE k ⎰∞→lim而且计算方法与k I 的选择没有关系,只需保证{}k I 单调增加到并集E 。
黎曼积分与勒贝格积分的区别

黎曼积分与勒贝格积分的区别积分是微积分中的重要概念,用于求解曲线下面的面积、计算函数的平均值等。
在实际应用中,常常会遇到需要对不同类型的函数进行积分的情况。
而黎曼积分和勒贝格积分是两种常见的积分方法,它们在定义和适用范围上存在一些区别。
本文将详细介绍黎曼积分和勒贝格积分的区别。
一、黎曼积分黎曼积分是由德国数学家黎曼在19世纪提出的,是最早被广泛应用的积分方法之一。
黎曼积分的定义是通过将区间[a, b]分成若干小区间,然后在每个小区间上取一个样本点,计算函数在这些样本点处的取值与小区间长度的乘积,再将这些乘积相加得到的极限值。
黎曼积分的计算公式如下:∫[a, b] f(x) dx = lim(n→∞) Σ f(xi)Δxi其中,f(x)是被积函数,[a, b]是积分区间,n是将区间[a, b]分成的小区间的个数,xi是每个小区间上的样本点,Δxi是每个小区间的长度。
黎曼积分的优点是定义简单,易于理解和计算。
但是,黎曼积分的适用范围有限,只能对一些特定类型的函数进行积分。
对于某些函数,黎曼积分可能不存在或者无法计算。
二、勒贝格积分勒贝格积分是由法国数学家勒贝格在20世纪初提出的,是对黎曼积分的一种推广。
勒贝格积分的定义是通过将函数的定义域分成若干个可测集,然后在每个可测集上计算函数的上积分和下积分,如果上积分和下积分相等,则称该函数是勒贝格可积的,其积分值即为上下积分的公共值。
勒贝格积分的计算公式如下:∫f(x) dμ = ∫[a, b] f(x) dμ = ∫[a, b] f(x) dμ+ -∫[a, b] f(x) dμ-其中,f(x)是被积函数,[a, b]是积分区间,dμ是勒贝格测度,∫[a, b] f(x) dμ+和∫[a, b] f(x) dμ-分别是函数f(x)在积分区间上的上积分和下积分。
勒贝格积分的优点是适用范围广泛,可以对几乎所有的函数进行积分。
勒贝格积分的定义更加一般化,可以处理更复杂的函数和测度空间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)黎曼积分的定义
1.黎曼积分是建立在黎曼和的基础上的,因此简单说明黎曼和的概念。
区间[a,b]上有定义的实值函数f,关于取样分割 , 黎曼和定义为和式中的每一项是子区间长度 在 处的函数值的乘积。直观地说,就是以标记点到轴的距离为高,以分割的子区间的长的矩形的面积。
2.黎曼积分:有了黎曼和得定义,我们不难想象,黎曼积分就是当分割越来越“精细”的时候,黎曼和趋向的极限,当分割越来越细的时候,[ ]中的函数值才会与接近,矩形面积的和与“曲线下方的面积差也会越来越小。总结起来,也就是分割,取界点,做积,求和,取极限。
2. 测度 可测集
设集E ,偌对任意集X ,都有
X= (X )+ (X )
则称集E是可测集,这时把称为集E的测度,为mE。
3. 勒贝格积分:
(1)非负简单函数的积分:设E为中的一个可测集,mE<+ ,f在E上几乎处处有界, { },(i=1,2… …m.)为E的一个分化,(i≠j),而且可测, , 。上和为 ,下和为 。下积分: { ,任一个分划D },上积分 { ,任一个分划D}。若 = ,则称f在E上勒贝格积分存在,记为 。若 <+∞,则称f在E上勒贝格可积。
本文将从积分的定义,可积函数的连续性,积分的可加性,积分极限定理,牛顿—莱布尼兹公式五个方面进行分析比较,指出黎曼积分与勒贝格积分的区别。
黎曼积分是数学分析中的重要内容,勒贝格积分是实变函数论中的主要内容。就可积函数的范围来看,勒贝格积分比黎曼积分更广泛。这两种积分既有密切的联系,又有本质的区别。若函数在上黎曼可积,则它必在上勒贝格可积,且有相同的积分值,但勒贝格可积不一定黎曼可积。在教材及参考书中,有关黎曼积分与勒贝格积分的区别的内容讲的很少,也缺乏条理性和系统性,而由黎曼积分过渡到勒贝格积分,理解起来也有一定的困难。本文将从积分的定义,可积函数的连续性,积分的可加性,积分极限定理,牛顿—莱布尼兹公式五个方面进行分析比较,指出黎曼积分与勒贝格积分的区别。为便于叙述,我们只考虑上有界函数的积分。
勒贝格的主要贡献是测度和积分理论。他采用无穷个区间来覆盖点集,使许多特殊的点集的测度有了定义。在定义积分时他也采取划分值域而不是划分定义域的办法,使积分归结为测度,从而使黎曼积分的局限性得到突破,进一步发展了积分理论。他的理论为20世纪的许多数学分支如泛函分析、概率论、抽象积分论、抽象调和分析等奠定了基础。利用勒贝格积分理论,他对三角级数论也作出基本的改进。另外,他在维数论方面也有贡献。晚年他对初等几何学及数学史进行了研究。他的论文收集在《勒贝格全集》。[1]
勒贝格
(1875~1941)Lebesgue,Henri Lon
法国数学家。1875年6月28日生于博韦,1941年7月26日卒于巴黎。1894~1897年在巴黎高等师范学校学习。1902年在巴黎大学获得博士学位,从1902年起先后在雷恩大学、普瓦蒂埃大学、巴黎大学文理学院任教。1922年任法兰西学院教授,同年被选为巴黎科学院院士。
2. 现在再来看勒贝格可积函数具有什么样的性质。设f是可测集E上的连续函数,则在E上勒贝格可积的充要条件是在E上勒贝格可测。对于函数来说,可测集上的连续函数是可测函数。特别地,有限区间上的连续函数是可测函数。对于几乎处处连续的函数,它显然几乎处处等于一个连续函数,而几乎处处等于一个可测函数的函数也可测,所以一个几乎处处连续的函数在有限区间上是可测函数。从以上我们也可以看出黎曼可积则必是勒贝格可积。那么勒贝格可积函数的连续性是怎样的呢?它与黎曼可积函数的连续性的区别在哪里?我们有下面的鲁津定理:
例如黎曼函数这个函数在所有无理点处是连续的,在有理点处是不连续的。虽然在中有无穷多个有理点,即黎曼函数
X= ,当x= (p,q 为既约分数)
R(x)=
X=0 ,当x=(0,1)及(0,1)内的无理数)
仍然是黎曼可积的,且积分为0。事实上黎曼函数的全体有理数点组成一个零测度集,所以黎曼函数是黎曼可积的。
从这两种积分的定义可以看出,它们的主要区别是:黎曼积分将给定函数的定义域分小而产生的,而勒贝格积分是划分函数的值域而产生的。前者的优点是的度量容易给出,但当分法的细度充分小时,函数在上的振幅仍可能较大;后者的优点是函数在上的振幅,但一般不再是区间,而是可测集。其度量的值一般不易给出。然而就是这一点点差别,使这两种积分产生了本质的区别,使勒贝格积分具备了很多为黎曼积分所不具有的良好性质,这些性质从以下几点讨论中我们将会看得更清楚。我们将会看到,勒贝格积分比黎曼积分的应用范围更广泛,使用起来更方便。由此可见,比起黎曼积分来,勒贝格积分是向前迈了一大步。
(2)非负可测函数的积分:设f(x)是可测集E 上的非负可测函数,{ }是收敛于f(x)的非负上升简单函数列。称为f(x)在E上的勒贝格积分值,记为。若积分值有限,则称f(x)在E上勒贝格可积。
(3)设f(x)是定义于可测集E 上的可测函数,如果 不同时为∞,则称 = 是f(x)在E上的勒贝格积分值,若积分值有限,则称f(x)在E上是勒贝格可积。在E上可积的全体函数记为L(E).
若mE<+∞,f(x)集E上几乎处处有限的可测函数,则对于任意的 >0,有闭集F E,满足m(E-F)< ,而f(x)在F上是连续的。
从这个定理可以看出,在可测集E上几乎处处有限的可测函数是基本上连续的,或称为是近于连续的。因此勒贝格可积函数是近乎连续的。对应于黎曼可积函数的情形,例如狄利克雷函数
0 ,x为有理数
所以,[0,1]闭区间的无理数集的长度(测度) 是1。这就解释了上述计算结果。
由此可见,勒贝格积分比黎曼积分广义。
很多数学概念和思想就是从貌似相同的概念和思想中推导出来。这启发我们在做研究时应从不同角度来考虑一些现有概念和理论,有时可能导致新的概念和理论。
背景知识
黎曼积分的重要推广,分析数学中普遍使用的重要工具。
Y=1,当X是无理数;
Y=0,当X是有理数。
求该函数覆盖的面积。
黎曼积分无法定义,因为任意小的区间都包含无理数和有理数。
用勒贝格积分来求和: 1*1+0*0 = 1。
[0,1]闭区间的长度(测度)是1;有限点集的长度(测度)是0;无限可数点集(如,有理数)的长度(测度)是0。而[0,1]闭区间的长度(测度) = 有理数集的长度 + 无理数集的长度。
这里S(D, f ) 及s(D, f )分别是f (x) 关于分划D 的大和及小和,ωimEi是Ei上的振幅。
它与黎曼积分的主要区别在于前者是对函数的函数值区域进行划分;后者是对函数定义域进行划分。
对此Lebesgue自己曾经作过一个比喻,他说:
假如我欠人家一笔钱,现在要还,此时按钞票的面值的大小分类,然后计算每一类的面额总值,再相加,这就是Lebesgue积分思想;如不按面额大小分类,而是按从钱袋取出的先后次序来计算总数,那就是Riemann积分思想。(参见:周性伟,实变函数教学的点滴体会,《高等理科教学》,2000.1)
勒贝格积分
将给定的函数按函数值的区域进行划分,作和、求极限而产生的积分概念,就是勒贝格积分。
概念简述
定义:设f (x) 是E ∈ L q(mE < ∞) 上的有界函数,则称f (x) ∈ L(E) ,如果 对任意ε > 0,必然存在E 的分划D,使 S(D, f ) -s(D, f ) = ΣωimEi<ε ,
D(x)=
1 ,x为无理数
显然是有界函数,但在定义域上无处连续,所以不是黎曼可积的,但它是勒贝格可积的。通过上面的讨论,黎曼积分与勒贝格积分的区别也就不难看出了。分区域的可加性。黎曼积分具有有限可加性,即如果函数f在区间[a,c]和[c,d]上都可积,那么f在区间[a,b]上也可积,并且有。但黎曼积分没有可列可加性,即设f(x)在E上可积,E= ,(i≠j),每个 都可测,则有 = 。对于勒贝格积分,它不仅具有有限可加性,而且还具有可列可加性。
克服了黎曼积分的缺陷。对于这两种积分的可加性,究其原因,我们将不难理解。我们知道,黎曼积分建立在区间之上,勒贝格积分建立在勒贝格测度之上,而区间只具有有限可加性,勒贝格测度具有可数可加性,由于它们之间的密切联系,区间和勒贝格测度的性质也就反映到了相应的积分上来了。
黎曼积分
如果函数f(X)在闭区间[a,b]上定义,而(P,ζ)是这个闭区间的一个带点分割,则和σ(f;p,ζ):=Σ f(ζi)ΔXi叫做函数f在区间[a,b]上对应于带点分割(P,ζ)的积分和,其中ΔXi=Xi-X(i-1)存在这样一个实数I,如果对于任何ε>0可以找到一个δ>0,使对区间[a,b]的任何带点分割(P,ζ),只要分化P的参数λ(P)<δ,就有|I-σ(f;p,ζ)|<ε,则称函数f(X)在闭区间[a,b]上黎曼可积,而I就成为函数f(X)在闭区间[a,b]上的黎曼积分。
即采取对值域作分划,相应得到对定义域的分划(每一块不一定是区间), 使得在每一块上的振幅都很小, 即按函数值的大小对定义域的点加以归类。
积分介绍
积分是“和”的概念。即将东西加起来。所以积分早期是从面积,路程等计算中发展起来。比如计算面积,将X轴的区间分成若干小区间,将小区间的高度(Y值)乘以小区间的长度,然后加起来。用极限法就可以求得精确的面积。这是传统的积分概念(黎曼积分)。勒贝格从另一个角度来考虑积分概念,导致勒贝格积分和测度概念。比如计算面积,可以将小区间的高度(Y值)乘以对应的所有小区间的长度的和(测度),然后加起来。又比如现有硬币:25, 25,10,5,10,1,5,25。用黎曼积分来求和:25+25+10+5+10+1+5+25=106。用勒贝格积分来求和:25*3+10*2+5*2+1=106。结果是一样。但对于一些“坏”函数,结果是不一样。比如在X轴[0,1]闭区间上定义函数:
(二)勒贝格积分的定义
积分是现代数学中的一个积分的概念,它将积分运算扩展到任何测度空间中,因此我们先要了解什么是外侧度?什么是可测集?