1.4勒贝格积分和Lp空间
积分的勒贝格积分

积分的勒贝格积分积分是高等数学中一项重要的内容,被广泛用于各个领域的计算和研究中。
其中,勒贝格积分是一种被广泛采用的积分方法,其应用范围涵盖了大部分实数函数和复杂函数。
本文将结合实例,详细探讨勒贝格积分的定义、计算方法、性质及其与其他积分方法的对比等方面。
一、勒贝格积分的定义勒贝格积分是由法国数学家亨利·勒贝格发明的一种积分方法,其理论基础是将积分范围进行分割,然后计算每个小范围内的积分,最终将这些小范围内的积分加起来,得到整个积分的结果。
具体来说,勒贝格积分将被积函数划分为正函数和负函数的和,分别求出其在积分范围内的上、下积分和,然后将两者相加或相减,得到最终积分的结果。
其中,上积分指的是在积分区间范围内,被积函数处于一个上界之下的部分的积分值,而下积分则是指处于下界之上的部分的积分值。
这种分段计算的方法,不仅适用于实数函数,也适用于复杂函数,而且具有很高的计算精度和广泛的应用价值。
二、勒贝格积分的计算方法勒贝格积分的计算方法相对来说比较复杂,需要根据具体的函数形式,采用相应的积分公式进行计算。
下面将通过两个例子讲解具体的计算过程,以帮助读者更好地理解。
1、勒贝格积分的计算:计算f(x)=x在[0,1]上的勒贝格积分。
解:首先将函数f(x)划分为正函数和负函数的和,其结果为f(x)= max{0,x}-min{0,x}。
然后,分别计算max{0,x}和min{0,x}在区间[0,1]上的上、下积分。
max{0,x}在该区间上的上积分和下积分分别为:$∫_{0}^{1}max\{0,x\}dx=1/2$$∫_{0}^{1}max\{0,x\}dx=0$min{0,x}在该区间上的上积分和下积分分别为:$∫_{0}^{1}min\{0,x\}dx=0$$∫_{0}^{1}min\{0,x\}dx=-1/2$因此,f(x)在该区间上的上积分和下积分分别为:$∫_{0}^{1}f(x)dx =∫_{0}^{1}(max\{0,x\}-min\{0,x\})dx$$=∫_{0}^{1}max\{0,x\}dx-∫_{0}^{1}min\{0,x\}dx=1$2、勒贝格积分的计算:计算f(x)=sin(x)在[0,π]上的勒贝格积分。
勒贝格测度和勒贝格积分的理论与应用

勒贝格测度和勒贝格积分的理论与应用勒贝格测度和勒贝格积分是现代实分析中的重要概念,由法国数学家勒贝格(Henri Léon Lebesgue)在20世纪初提出,为了解决传统黎曼积分的一些问题。
勒贝格测度和积分在实际应用中具有广泛的重要性,涵盖了概率论、测度论、函数分析等领域。
本文将介绍勒贝格测度和勒贝格积分的理论原理,并探讨它们在各个领域中的应用。
一、勒贝格测度的概念与性质1.1 勒贝格测度的定义勒贝格测度是一种广义度量,用于度量实数集合的大小。
对于实数轴上的任意集合,勒贝格测度通过测量其长度来描述其大小。
具体而言,设E是实数轴上的一个集合,对于给定的ε>0,我们可以通过开区间的并集来逼近E,然后计算其总长度。
当这个长度无论如何逼近时,我们定义这个极限为勒贝格测度,记作m(E)。
1.2 勒贝格测度的性质勒贝格测度具有以下性质:(1)非负性:对于任意集合E,其测度满足m(E)≥0。
(2)空集的测度为零:空集的测度为m(∅)=0。
(3)可列可加性:对于可列个互不相交的集合E_1,E_2,...,其并集E的测度满足m(E)= ∑ m(E_i)。
(4)单调性:若E_1⊆E_2,则m(E_1)≤m(E_2)。
二、勒贝格积分的概念与性质2.1 勒贝格可积性勒贝格积分是一种更一般的积分概念,可以处理更广泛的函数。
与黎曼积分不同,勒贝格积分是基于勒贝格测度的。
对于实数轴上的一个函数f(x),如果存在一个可测集E,使得f(x)在E上有界,则称f(x)在E上勒贝格可积。
2.2 勒贝格积分的计算勒贝格积分的计算可以通过勒贝格积分的定义和勒贝格测度的性质来进行。
对于一个非负可测函数f(x),其勒贝格积分记为∫f(x)dx。
可以将f(x)分解为非负函数的差,然后计算每个非负函数的积分,再将结果相加。
三、勒贝格测度和积分在实际应用中的例子3.1 概率论中的应用勒贝格测度和积分在概率论中扮演着重要的角色。
概率空间中的测度被称为概率测度,勒贝格测度提供了一种统一的度量方法,能够处理连续和离散的随机变量。
实变函数lp空间简介

范数
• lp空间的范数定义为||f||_p = (∫ |f(x)|^p dx)^(1/p),其中分母 中的p是指数的倒数。
距离
• lp空间中的距离定义为d(f, g) = ||f - g||_p,其中f, g属于lp空间。
02
lp空间性质
空间完备性
Lp空间是完备的,这意味着对于任何给定的序列,如果 该序列的每个子序列都收敛于某个点,那么该序列本身 也收敛于该点。
柯西积分公式
此外,lp空间也被用于研究柯西积分公式,这是复分析中的一个基本定理,它 提供了对于复数域上的积分的一种计算方法。
04
lp空间理论发展
理论起源
理论产生的背景
实变函数理论是数学中的一个重要分支,而lp空 间作为实变函数理论中的一类特殊空间,具有广 泛的应用价值。
lp空间的定义
lp空间是Lebesgue空间的一种,其中p表示可积 函数的积分范数,是实变函数理论中的一种重要 概念。
在计算机科学中的应用案例展示及分析
总结词
lp空间在计算机科学中具有重要应用价值,可促进计算机科学的发展。
详细描述
在计算机科学中,lp空间可以应用于数据挖掘、机器学习、信号处理等领域。例如,在数据挖掘中, lp空间可以用于特征提取和分类;在机器学习中,lp空间可以用于支持向量机等模型的构建;在信号 处理中,lp空间可以用于图像处理和语音识别。
理论最新研究动态
研究热点
目前,lp空间理论的研究热点主 要集中在以下几个方面:空间的 拓扑结构、算子理论、插值理论 和应用等。
最新进展
近年来,随着计算机技术和大数 据的发展,lp空间理论在数据分 析和机器学习等领域的应用也得 到了广泛的研究和发展。
lp空间与其他空间的联系与
勒贝格积分的基本理论及其应用探析

勒贝格积分的基本理论及其应用探析一、引言勒贝格积分是微积分学中的重要概念之一,在实际问题的求解中发挥了重要作用。
本文旨在探讨勒贝格积分的基本理论,并结合实际应用进行分析。
二、勒贝格积分的定义与性质勒贝格积分是对非负函数而言的一种广义积分,它是由法国数学家亨利-勒贝格在19世纪末提出的。
勒贝格积分的定义是通过简单函数的逼近来实现的。
与黎曼积分相比,勒贝格积分具有以下特点:1. 非负性:勒贝格积分定义要求被积函数非负。
2. 收敛性:勒贝格积分定义中的逼近序列必须收敛。
3. 可测性:被积函数必须是可测函数。
三、勒贝格积分的应用探析1. 几何学中的应用勒贝格积分在几何学中具有重要应用。
例如,通过勒贝格积分可以计算曲面的面积、体积以及重心位置等。
此外,在计算物体的质心、电荷分布等问题中,勒贝格积分也可以发挥重要作用。
2. 概率论与统计学中的应用勒贝格积分在概率论与统计学中也有广泛应用。
例如,在概率密度函数的计算中,勒贝格积分可以用来计算随机变量的概率。
此外,在统计推断中,通过对概率分布函数进行勒贝格积分可以计算得到随机变量的期望值和方差等重要统计量。
3. 数值计算中的应用勒贝格积分在数值计算中也具有重要应用。
由于一些函数无法通过解析方法求积分,数值计算方法可以通过勒贝格积分的逼近来实现积分的计算。
例如,常用的数值积分方法之一的随机采样方法就是基于勒贝格积分理论。
4. 物理学中的应用勒贝格积分在物理学中也有广泛应用。
例如,在电磁场问题中,可以通过对电荷密度进行勒贝格积分来计算电场强度。
类似地,在流体力学中,可以通过对流体密度进行勒贝格积分来计算物体所受的浮力。
5. 经济学中的应用勒贝格积分在经济学中也有一些应用。
例如,在经济学中的效用函数计算中,可以通过对效用函数进行勒贝格积分来计算消费者的总效用。
此外,在确定需求曲线和供给曲线时,勒贝格积分也可以发挥重要作用。
四、勒贝格积分的优势与不足1. 优势勒贝格积分相较于黎曼积分具有更广泛的适用性,可以处理更加一般的函数。
lp空间上的勒贝格控制收敛定理

lp空间上的勒贝格控制收敛定理勒贝格控制收敛定理是数学分析中的重要定理,它是关于函数序列逐点收敛与控制收敛的关系的一个刻画。
本文将介绍勒贝格控制收敛定理的基本概念和理论结果,并通过几个具体的例子来解释和说明。
我们需要了解勒贝格控制收敛定理的基本概念。
在lp空间上,给定一个函数序列{fn},如果对于任意的ε>0,存在一个可测集合E,使得当n足够大时,对于几乎所有的x∈E,有|fn(x)-f(x)|<ε,其中f 是E上的一个可测函数,那么我们称该函数序列在lp空间上以控制收敛到f。
勒贝格控制收敛定理的表述如下:在lp空间上,函数序列{fn}逐点收敛到f的充分必要条件是存在一个可测集合E,使得|fn(x)|收敛到0,且当n足够大时,对于几乎所有的x∈E,有|fn(x)-f(x)|<ε。
为了更好地理解这个定理,我们来看一个具体的例子。
考虑一个函数序列{fn},其中fn(x)=x^n,x∈[0,1]。
我们想要研究这个函数序列在L1([0,1])上的控制收敛性质。
我们来观察函数序列{fn}的逐点收敛性。
对于任意的x∈[0,1),当n 趋向于无穷大时,x^n趋向于0,而当x=1时,x^n恒为1。
因此,函数序列{fn}在[0,1)上逐点收敛到0,在x=1处逐点收敛到1。
接下来,我们来研究函数序列{fn}在L1([0,1])上的控制收敛性质。
我们需要找到一个可测集合E,使得|fn(x)|收敛到0,且当n足够大时,对于几乎所有的x∈E,有|fn(x)-f(x)|<ε。
考虑可测集合E=[0,1),对于任意的x∈E,有|fn(x)|=|x^n|≤1,当n趋向于无穷大时,|fn(x)|收敛到0。
另外,对于几乎所有的x∈E,有|fn(x)-f(x)|=|x^n-0|=|x^n|≤ε,当n足够大时,这个不等式成立。
因此,函数序列{fn}在L1([0,1])上以控制收敛到0。
通过这个例子,我们可以看出勒贝格控制收敛定理的应用。
勒贝格积分的概念

勒贝格积分的概念勒贝格积分是数学中的一个重要概念,它是对函数在某个区间上的积分进行定义和计算的一种方法。
勒贝格积分是由法国数学家亨利·勒贝格(Henri Lebesgue)在20世纪初提出的,它是对黎曼积分的一种推广和拓展,能够更好地处理一些复杂的函数和集合。
一、勒贝格可积函数的定义在介绍勒贝格积分之前,首先需要了解什么样的函数是勒贝格可积的。
给定一个定义在闭区间[a, b]上的函数f(x),如果存在一个数I,对于任意给定的ε > 0,都存在一个分割P = {x0, x1, ..., xn},使得当这个分割的任意一种选取方式下,对应的上下和满足:S*(f, P) - S(f, P) < ε其中S*(f, P)和S(f, P)分别表示上和下达尔差分和。
如果这个数I存在且唯一,那么称函数f(x)在闭区间[a, b]上是勒贝格可积的,此时这个数I就是函数f(x)在[a, b]上的勒贝格积分,记作∫[a,b]f(x)dx。
二、勒贝格积分的性质勒贝格积分具有许多优良的性质,使得它在数学分析和实际问题中得到广泛应用。
以下是一些勒贝格积分的重要性质:1. 可积函数的有界性:勒贝格可积函数在定义区间上是有界的,即存在一个常数M,使得|f(x)| ≤ M对于所有x∈[a, b]成立。
2. 线性性质:勒贝格积分具有线性性质,即对于任意可积函数f(x)和g(x),以及任意实数α、β,有∫[a, b](αf(x) +βg(x))dx = α∫[a, b]f(x)dx + β∫[a, b]g(x)dx。
3. 单调性质:如果在闭区间[a, b]上有f(x) ≤ g(x),则∫[a,b]f(x)dx ≤ ∫[a, b]g(x)dx。
4. 加法性质:如果函数f(x)在闭区间[a, b]上可积,且在点c∈[a, b]上连续,则有∫[a, b]f(x)dx = ∫[a, c]f(x)dx + ∫[c,b]f(x)dx。
勒贝格积分的概念
勒贝格积分的概念勒贝格积分是数学中的一个重要概念,它是对函数在某个区间上的积分进行定义和计算的一种方法。
勒贝格积分是由法国数学家亨利·勒贝格于19世纪末提出的,它是黎曼积分的一种推广和扩展。
1. 勒贝格积分的定义勒贝格积分的定义是基于集合论的,它将函数的积分看作是对函数在某个区间上的值进行加权求和的过程。
具体来说,给定一个函数f(x)和一个定义在区间[a, b]上的集合E,勒贝格积分的定义如下:∫f(x)dμ = sup{∫φ(x)dμ | φ(x)是[a, b]上的简单函数,且φ(x) ≤ f(x)在E上几乎处处成立}其中,sup表示上确界,简单函数是指形如φ(x) = ΣaiχAi(x)的函数,其中ai是常数,Ai是区间[a, b]上的可测集合,χAi(x)是Ai上的特征函数。
2. 勒贝格积分的性质勒贝格积分具有许多重要的性质,使得它成为了数学分析中不可或缺的工具。
以下是一些勒贝格积分的性质:(1)线性性质:对于任意的实数a和b,以及函数f(x)和g(x),有∫(af(x) + bg(x))dμ = a∫f(x)dμ + b∫g(x)dμ。
(2)单调性质:如果在E上几乎处处有f(x) ≤ g(x),则∫f(x)dμ ≤ ∫g(x)dμ。
(3)绝对收敛性:如果∫|f(x)|dμ存在,则∫f(x)dμ也存在。
(4)有界性:如果在E上几乎处处有|f(x)| ≤ M,其中M是常数,则∫f(x)dμ存在且|∫f(x)dμ| ≤ M。
(5)积分与极限的交换:如果函数序列{f_n(x)}在E上几乎处处收敛于f(x),且存在可积函数g(x)使得|f_n(x)| ≤ g(x)在E上几乎处处成立,则有lim(n→∞)∫f_n(x)dμ = ∫f(x)dμ。
3. 勒贝格积分与黎曼积分的关系勒贝格积分是对黎曼积分的一种推广和扩展。
黎曼积分是通过将区间[a, b]划分成若干小区间,然后在每个小区间上对函数进行近似求和来定义的。
第六章,第二节 Lp-空间简介 (续)
第二节 Lp-空间简介 (续)
[∫[gn (x)] dx] ≤ ∑[∫| fkm+1 (x) fkm (x) | dx] n n m=1 E E 1 = ∑ρ( fkm+1 , fkm ) < ∑ m < 1 从而 ,进一步 m=1 2 m=1 p ,即 ∫[ lim gn (x)] dx ≤1 ,由此不难得知lim ∫[gn (x)]p dx ≤1
第二节 Lp-空间简介 (续)
我们已经知道 { (x)} 是处处不收敛到0的函数, n 现设
p,则在 ≥1
(kn )
L中,有 (E)
p
若 n (x) = fin
(x)
,
则 ρ( ,0) = [ | | p dx] dx] n n
p 1 p
∫
E
1 p
ρ(n ,0) =[∫| n | dx]
由于 n →∞ 时,显然有kn 即 n
p
p
证明:对任意 ε > 0 。记 则
Ek (ε ) = E{x || fk (, f (x) ≥ ε} x)
第二节 Lp-空间简介 (续)
ρ( fk , f ) = [∫| fk1 f | p dx] 1 pE p p ≥ [ ∫ ε dx] = ε [m(Ek (ε ))]
1 p
≥[
由于,
p
f (x) = lim fkm (x) a.ep
m
ρ( fk , f ) = [∫| fk (x) f (x) | p dx | p ≤ lim[∫| fk (x) fk (x) | p dx |
= lim ρ( fk , fkm ) ≤ ε
m→∞
第二节 Lp-空间简介 (续)
勒贝格空间
空间可以看作是L空间的特例。只要取L空间中的,测度为的计数测度,则对应的就是空间。
性质
嵌入
对偶空间
稠密子空间
一个拓扑向量空间的对偶空间是指由这个向量空间上的所有的连续线性泛函构成的泛函空间。对某个大于1的 实数p,设q是满足的唯一实数,则空间Lp(S,μ)的对偶空间Lp(S,μ)与Lq(S,μ)同构。这个关系可以通过一个 自然的同构映射展现:
Lp空间在工程学领域的有限元分析中有应用。
释义
当空间维度是无穷而且不可数的时候(没有一个可数的基底),无法运用有限维或可数维度空间的办法来定 义范数,但对于可积函数空间,仍然能够定义类似的概念。具体来说,给定可测空间(S,Σ,μ)以及大于等于1的 实数p,考虑所有从S到域(或 )上的可测函数。考虑所有绝对值的p次幂在S可积的函数,也就是集合 :
集合中的函数可以进行加法和数乘:
从不等式:|f+g|≤ 2(|f|+ |g|)可知,两个p次可积函数的和,也是一个p次可积函数。另外,容易证明 ; 闵可夫斯基不等式的积分形式说明三角不等式对成立。满足这样条件的构成一个半范数,令成为一个半赋范向量 空间。之所以是半范数,是因为满足的函数f不一定是零函数。然而可以通过一套标准的拓扑方法从这个半赋范空 间得到一个赋范空间:考虑中所有使得{\displaystyle \|f\|_{p}=0}的函数f的集合:
需要注意的是,L空间中的元素严格来说并不是具体的函数,而是一族函数构成的等价类。而当需要将L空间 元素当作函数来计算的时候,参与计算的实际是从这一族函数中抽取的一个代表函数。
特例
L空间都是巴拿赫空间,但只有当p= 2的时候,L空间是希尔伯特空间。也就是说,可以为L空间中的元素定 义内积。具体形式是:
第四章勒贝格积分
第四章 勒贝格积分本章介绍勒贝格积分理论.定义勒贝格积分有多种方法,本处采用从非负简单函数到非负可测函数,然后到一般可测函数的方法逐步建立勒贝格积分理论.§1 非负简单函数的勒贝格积分定义1 设n R E ⊂是可测集,)(x ϕ是E 上的非负简单函数,即E x x c x nk E k k∈=∑=,)()(1χϕ,其中 nk k E E 1==,k E 是互不相交的可测集,k c 是非负实数(1≤k ≤n ),记⎰∑==Enk kk mEc dx x 1)(ϕ称⎰Ex dx x )()(ϕϕ为在E 上的勒贝格积分.显然,当⎰==Edx x mE 0)(,0ϕ时.下面的定理1说明非负简单函数的勒贝格积分值与其表示无关.定理1 设)(),(x x ψϕ是可测集E 上的非负简单函数,如果E x x x ∈=),()(ψϕ,则⎰⎰=EEdx x dx x )()(ψϕ证明 设E x x a x nk E k k∈=∑=,)()(1χϕ,nk k k E E n k a 1),1(0==≤≤≥,E k 是互不相交的可测集,又E x x b x jF mj j ∈=∑=),()(1χψ,mj j j j F F E m j b 1,),1(0==≤≤≥是互不相交的可测集. 因为在E 上,)()(x x ψϕ=,所以对任何k 和),1,1(m j n k j ≤≤≤≤ 总有)()(j k j j k k F E m b F E m a ⋂=⋂,于是∑∑∑∑====⎪⎪⎭⎫ ⎝⎛⋂=⋂=nk m j j k k k nk k nk k k F E m a E E m a mE a 1111)()()()(1111j k m j nk j j kmj kn k F E m b F Em a ⋂=⋂∑∑∑∑=====∑=mj j j mF b 1即⎰⎰=EEdx x dx x )()(ψϕ .定理2 设)(),(x x ψϕ是E 上的非负简单函数,则 (1)对任何非负实数c,有⎰⎰=EEdx x c dx x c )()(ϕϕ ;(2) ()⎰⎰⎰+=+EEEdx x dx x dx x x )()()()(ψϕψϕ ; (3)若,),()(E x x x ∈≤ψϕ则⎰⎰≤EEdx x dx x )()(ψϕ ,特别地,mE x dx x E⋅≤⎰)(max )(ϕϕ ;(4)若A 、B 是E 的两个不相交的可测子集,则⎰⎰⎰+=⋃BABA dx x dx x dx x )()()(ϕϕϕ .证明 仅证(2)式,其余作为习题.设 E x x a x ni A i i ∈=∑=)()(1χϕ,,)()(1E x x b x mj B j j∈=∑=χψ其中}{},{),1,1(0,j i j i B A m j n i b a ≤≤≤≤≥均为互不相交的可测集列,且 n i mj j i B A E 11====.易知jiB A n i mj i i b a x x ⋂==∑∑+=+χψϕ11)()()(所以())()()()(11j i Eni mj j iB A m b adx x x ⋂+=+⎰∑∑==ψϕ=)()(1111j i ni m j i j i ni mj i B A m b B A m a ⋂+⋂∑∑∑∑=====∑∑∑∑====⎪⎭⎫⎝⎛⋂+⎪⎪⎭⎫ ⎝⎛⋂m j n i j i j j i m j ni i B A m b B A m a 1111)()(=⎰⎰∑∑+=+==EEmj j j i n i i dx x dx x mB b mA a )()(11ψϕ定理3 设})({)},({x x n n ψϕ是E 上单调增的非负简单函数列,如果E x x x n n n n ∈=∞→∞→)(lim )(lim ψϕ,那么 ⎰⎰∞→∞→=En n En n dx x dx x )(lim )(lim ψϕ .证明 不妨设)(lim x n n ϕ∞→在E 上几乎处处有限,因为)}({x n ψ在E 上单调增,所以对任何自然数m ≥1,有)(lim )(lim )(x x x n n n n m ϕψψ∞→∞→=≤ .令 )}(),(m in{)(x x x f n m n ϕψ=,则非负简单函数列)}({x f n 收敛,且,)()(lim E x x x f m n n ∈=∞→ψ当+∞<mE 时,由Egoroff 定理,0>∀ε,存在可测集)(),()(,\,∞→<→→n x x f E E mE E m n ψεεεε上在使,于是存在N ≥1,当n>N 时,对一切εE E x \∈,)()()(x x f x n n m ϕεεψ+≤+<从而dx x dx x n E E m E E ))(()(\\ϕεψεε+≤⎰⎰dx x mE E n ⎰+≤)(ϕε因此, dx x mE dx x En E E n m⎰⎰∞→+≤)(lim )(\ϕεψε另外, )(m ax )(m ax )(x mE x dx x m m E m ψεψψεε⋅<≤⎰故 dx x dx x dx x m E m E E E m)()()(\ψψψεε⎰⎰⎰+=dx x mE x n En m )(lim ))((max ϕψε⎰∞→++<令0→ε,),1()(lim )(≥∀≤⎰⎰∞→m dxx dx x En n Emϕψ当+∞=mE 时,存在可测集列)1(,,,},{121≥+∞<=⊂⊂⊂⊂∞=k mE E E E E E E k k k k k 使.由上述证明知,对每个k ≥1, ⎰⎰⎰∞→∞→≤≤En n E n n E m dx x dx x dx x kk)(lim )(lim )(ϕϕψ .记 Tj j j Tj F j m F F E E x x a x j 11}{,,,)()(===∈=∑其中χψ是互不相交的可测集,)1(,0T j a j ≤≤≥,则由积分定义,∑⎰==Tj k j j E m E F m a dx x k1)()( ψ ,因为 j k j k mF E F m =∞→)(lim ,所以⎰⎰∑===∞→Em E Tj j j m k dx x mF a dx x k)()(lim1ψψ,于是 ⎰⎰∞→≤En n Emdx x dx x )(lim )(ϕψ,因此⎰⎰∞→∞→≤EEn n m n dx x dx x )(lim )(lim ϕψ .同理可证相反的不等式,故⎰⎰∞→∞→=EEn n m n dx x dx x )(lim )(lim ϕψ .§2 非负可测函数的勒贝格积分定义1 设)(x f 是E 上的非负可测函数,)}({x n ϕ是E 上单调增收敛于)(x f 的非负简单函数列,记⎰⎰∞→=En En dx x dx x f )(lim )(ϕ,称 )()(x f dx x f E为⎰在E 上的勒贝格积分,或L 积分,如果⎰+∞<Edx x f )(,则称)(x f 在E 上是勒贝格可积的,或L可积,简记为)(E L f ∈.由§1定理3知,非负可测函数的勒贝格积分值与非负简单函数列)}({x n ϕ选取无关.显然,若⎰=∈=Edx x f E x x f 0)(,,0)(则;若mE =0,则对于E 上的任何非负可测函数)(x f , ⎰=Edx x f 0)( .定理1 设)(x f ,)(x g 是E 上的非负可测函数, 则 (1) 若 E x x g x f ∈≤),()(,则⎰⎰≤EEdx x g dx x f )()( ;(2) 若A 、B 是E 的可测子集,且B A ⊂,则⎰⎰≤ABdx x f dx x f )()( ;(3)若A 、B 是E 的可测子集,且φ=B A ,则⎰⎰⎰+=BA ABdx x f dx x f dx x f )()()( ;(4)若E e a x g x f 于..)()(=,则⎰⎰=EEdx x g dx x f )()( ;(5)对任何非负实数c ,⎰⎰=EEdx x f c dx x cf )()( ;(6)()⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()()()( .证明 证明由定义即得.定理2 (Levi 单调收敛定理)设)}({x f n 是E 上的非负可测函数列,满足 (1) 1,..)()(1≥≤+n E e a x f x f n n 于;(2),..)()(lim E e a x f x f n n 于=∞→则⎰⎰=∞→EEn n dx x f dx x f )()(lim .证明 因为)(x f n 是E 上非负可测函数(n ≥1),所以E x x x f n kk n ∈=∞→),(lim )()(ϕ,其中)}({)(x n k ϕ是单调增的非负简单函数列,于是⎰⎰∞→=En k k En dx x dx x f )(lim )()(ϕ ,令)}(,),(),(max {)()()2()1(x x x x k k k k k ϕϕϕψ = ,则对每个)(,1x k k ψ≥是E 上的非负简单函数,且E x x x x k ∈≤≤≤≤,)()()(21 ψψψ ,E x k n x x k n k ∈≤≤≤),1(),()()(ψϕ ,又 E x x f x f x f x f x k k k ∈=≤),()}(,),(),(max {)(21 ψ ,所以 E x k n x f x x k k n k ∈≤≤≤≤,1),()()()(ψϕ, (1) 从而dx x f dx x dx x Ek EEk n k ⎰⎰⎰≤≤)()()()(ψϕ .(2)固定n ,令∞→k ,由(1)和(2)式,有E x x f x f x x f k k k k n ∈=≤≤∞→∞→),()(lim )(lim )(ψ ,和dx x f dx x dx x f k Ek Ek k n E)(lim )(lim )(⎰⎰⎰∞→∞→≤≤ψ ,进一步,令∞→n ,则)(lim )(lim )(x x f x f k k n n ψ∞→∞→== ,及dx x dx x f k Ek En n )(lim )(lim ψ⎰⎰∞→∞→= .(3)于是,由非负可测函数勒贝格积分定义和(3)式,有⎰⎰∞→=En n Edx x f dx x f )(lim )( .定理3 (逐项积分定理)设)}({x f n 是E 上的非负可测函数列,则⎰∑⎰∑∞=∞==⎪⎭⎫⎝⎛En n E n n dx x f dx x f )()(11 .证明 由定理1,对每个n ≥1⎰∑⎰∑===⎪⎭⎫⎝⎛Ek nn E n k k dx x f dx x f )()(11令 )}({,)()(1x S x f x S n nk k n 则∑==是非负可测函数列,且 E x x S x S n n ∈≤+),()(1 ,E x x f x S n n n n ∈=∑∞=∞→1)()(lim ,由Levi 单调收敛定理知,dx x S dx x f n E n E n n )(lim )(1⎰⎰∑∞→∞==⎪⎭⎫⎝⎛ =⎰∑⎰⎪⎭⎫ ⎝⎛==∞→∞→En k k n n En dx x f dx x S 1)(lim )(lim=()⎰∑⎰∑∞==∞→=Enn k Enk n dx x f dx x f 11)(lim .推论 设{E n }是可测集列,互不相交,∞==1n n E E 如果)(x f 是E 上的非负可测函数,则⎰∑⎰∞==En E ndx x f dx x f 1)()( .证明 令)1(,),()()(≥∈=n E x x x f x f n E n χ,则 )(x f n 是E 上的非负可测函数,且 ∑∞==1)()(n n x f x f ,⎰⎰=EnEn dx x f dx x f )()( .由逐项积分定理知∑⎰⎰∑⎰∞=∞===11)()()(n EnEn n Edx x f dx x f dx x f .定理4 设)(x f 是E 上几乎处处有限的非负可测函数,),0[}{,+∞⊂+∞<n y mE ,满足)(,01∞→+∞→<<<<=n y y y y n n o其中 δ<-+n n y y 1,令,1,0],)(|[1=<≤=+n y x f y x E E n n n则)(x f 在E 上是勒贝格可积的充分必要条件是∑∞=∞<0n nn mEy ,此时⎰∑=∞=→En n n dx x f mE y )(lim 0δ .证明 不妨假设)(x f 在E 上处处有限,因为在E n 上,)0(,)(1≥<≤+n y x f y n n ,所以由定理1,对每个n ≥0,n n Enn n mE y dx x f mE y 1)(+≤≤⎰,由定理3的推论知,∑⎰⎰∞==0)()(n E Endx x f dx x f ,所以⎰∑∑∞=+∞=≤≤En n n n nn mE y dx x f mEy 010)(=∑∑∞=∞=++-01)(n n n n n n n mE y mE y y∑∞=+<0n n n mE y mE δ,因此结论成立.定理5(Fatou 定理) 设{})(x f n 是E 上的非负可测函数列,则⎰⎰∞→∞→≤En n nE n dx x f dx x f)(lim )(lim .证明 令1,),(inf )(≥∈=≥n E x x f x g k nk n ,则 g n (x)是E 上的非负可测函数,且E x x g x g n n ∈≤+),()(1,于是,由Levi 单调收敛定理知,⎰⎰⎰∞→∞→∞→==En n n E n n n Edx x g dx x g dx x f )(lim )(lim )(lim .因为 E x x f x g n n ∈≤),()(所以 dx x f dx x gEn En⎰⎰≤)()( ,从而⎰⎰∞→∞→≤En n n En dx x f dx x g )(lim )(lim ,因此,⎰⎰∞→∞→≤En n n n Edx x f dx x f )(lim )(lim .Fotou 定理中的严格不等式有可能成立,例如设⎪⎩⎪⎨⎧-∈∈=]1,0[]1,0[0]1,0[)(n x n x n x f n ,易知 )1(,1)(],1,0[,0)(lim ]1,0[≥=∈=⎰∞→n dx x f x x f n n n ,所以1)(lim 0)(lim ]1,0[]1,0[=<=⎰⎰∞→∞→x f dx x f n n n n .§3 一般可测函数的勒贝格积分定义1 设)(x f 是E 上的可测函数,如果积分⎰⎰-+EEdx x f dx x f )(,)(中至少有一个是有限值,记⎰⎰⎰-+-=EEEdx x f dx x f dx x f )()()(,则称)()(x f dx x f E为⎰在E 上的勒贝格积分.如果上式右端两个积分值均是有限的,则称)(x f 在E 上是勒贝格可积的,或称)(x f 是E 上的勒贝格可积函数.通常把区间[a ,b ]上的勒贝格积分记成dx x f a b L )()(⎰,或 dx x f ab)(⎰.定理1 设)(x f 是E 上的可测函数,则 (1))(x f 在E 上勒贝格可积的充分必要条件是)(x f 在E 上勒贝格可积,此时⎰⎰≤EEdx x f dx x f |)(||)(|;(2)若)(x f 在E 上勒贝格可积,则)(x f 在E 上几乎处处有限;(3)若)()(x g x f = ..e a 于E ,且)(x f 在E 上勒贝格可积,则)(x g 在E 上勒贝格可积,且⎰⎰=EEdx x g dx x f )()(.证明 (1))(x f 与)(x f 在E 上勒贝格可积的等价性由定义1和)()()(x f x f x f -++=即得,另外,由§2 定理1, ⎰⎰⎰⎰-+-++=+=EEEEdx x f dx x f dx x f x fdx x f )()())()((|)(|⎰⎰⎰=-≥-+EEEdx x f dx x f dx x f |)(||)()(| .(2)若)(x f 在E 上勒贝格可积,则⎰⎰+∞<+∞<-+EEdx x f dx x f )(,)( ,对任何n ≥1,记])(|[n x f x E E n ≥=,则⎰⎰⎰⋅≥=≥++EE E n nnmE n dx x f dx x f dx x f )()()( ,所以 0lim =∞→n n mE ,而n n n E E x f x E ⊂=+∞=∞= 1])(|[ ,于是 0])(|[=+∞=x f x mE ,同理可证 0])(|[=-∞=x f x mE ,因此0]|)(||[=+∞=x f x mE ,即)(x f 在E 上是几乎处处有限的.(3)因为..)()(e a x g x f =于E ,所以..)()(),()(e a x g x f x g x f --++==于E ,再由勒贝格积分定义和§2定理1知结论成立.由定理1知,对于可测函数而言,其勒贝格可积性和积分值大小与零测集无关,因而我们总可以假定可积函数是处处有限的. 定理2 设)(),(x g x f 是E 上的勒贝格可积函数,则 (1) )(,1x cf R c ∈∀在E 上勒贝格可积,且⎰⎰=EEdx x f c dx x cf )()( ;(2) )()(x g x f +在E 上勒贝格可积,且()⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()()()( .证明 (1)当0≥c 时,),())((),())((x cf x cf x cf x cf --++==于是 ⎰⎰⎰-+-=EEEdx x cf dx x cf dx x cf ))(())(()(⎰⎰-+-=EEdx x cf dx x cf )()(=()⎰⎰⎰=--+EEEdx x f c dx x f dx x f c )()()( ;当0<c 时, ()())()(),()(x cf x cf x cf x cf +--+-=-=, 所以()()⎰⎰⎰-+-=EEEdx x cf dx x cf dx x cf )()()(=()()⎰⎰+----EEdx x cf dx x cf )()(=[]⎰⎰⎰=--+-EEEdx x f c dx x f dx x f c )()()( .(2)因为|)(||)(||)()(|x g x f x g x f +≤+,所以当)(),(x g x f 在E 上勒贝格可积时,)(,)(x g x f 在E 上勒贝格可积,从而)()(x g x f +在E 上勒贝格可积,故)()(x g x f +可积.另外,由于-++-+=+))()(())()(()()(x g x f x g x f x g x f , 又 ))()(())()(()()(x g x g x f x f x g x f -+-+-+-=+ ,所以 ,))()(())()(()()()()(-+-+-++-+=-+-x g x f x g x f x g x g x f x f 从而)()())()(())()(()()(x g x f x g x f x g x f x g x f --+-+++++=+++ .于是由§2定理1(6),⎰⎰⎰-+++++EEEdx x g x f dx x g dx x f ))()(()()(=⎰⎰⎰--++++EEEdx x g dx x f dx x g x f )()())()((因此⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()())()((定理3 设函数)(x f 在E 上勒贝格可积, ∞==1n n E E ,E n 是可测集(n ≥1),且互不相交,则)(x f 在每个E n 上勒贝格可积,且dx x f dx x f Enn E⎰∑⎰∞==)()(1.证明 对每个n ≥1,)(x f 在E n 上勒贝格可积,(留作习题).因为)(x f 在E 上勒贝格可积,所以由非负可测函数积分的可数可加性,+∞<=⎰⎰∑++∞=dx x f dx x f EE n n)()(1 ,+∞<=⎰⎰∑--∞=dx x f dx x f EE n n)()(1 ,于是⎰⎰∑⎰∑-+∞=∞=-=nnnE E n E n dx x f dx x f dx x f ))()(()(11=⎰∑⎰∑-∞=+∞=-nnE n E n dx x f dx x f )()(11=⎰⎰-+-EEdx x f dx x f )()(=dx x f E)(⎰ .定理4 (勒贝格控制收敛定理) 设)(x f 、)1)((≥n x f n 是E 上的可测函数,如果(1))()(x f x f n →a . e.于E ,(2)存在E 上的勒贝格可积函数g (x ),使),()(x g x f n ≤ a. e.于E ,则)1)((),(≥n x f x f n 在E 上勒贝格可积,且⎰⎰=∞→EEn n dx x f dx x f )()(lim .证明 由(2),f (x ), f n (x )(n ≥1)在E 上勒贝格可积,且g (x )+f n (x )≥0 (n ≥1), a .e.于E . 由Fatou 定理,⎰⎰+≤+∞→∞→E n n E nn dx x f x g dx x fx g ))()((lim ))()((lim ,于是 ⎰⎰⎰⎰∞→∞→+≤+E n En En n Edx x f dx x g dx x f dx x g )(lim )()(lim )( , 从而⎰⎰⎰∞→∞→≤=E n En n n Edx x f dx x f dx x f )(lim )(lim )( .同理,由g (x )-f n (x )≥0,(n ≥1),a.e.于E 知,()⎰⎰-≤-∞→Enn Edx x fdx x f )(lim ))(( ,即⎰⎰∞→-≤-En n Edx x f dx x f )(lim )(,所以, ⎰⎰∞→≥En n Edx x f dx x f )(lim )( ,因此⎰⎰∞→=En n Edx x f dx x f )(lim )( .推论 设)(,x f mE n +∞< )1(≥n 是E 上的可测函数,如果 (1)..),()(e a x f x f n →.于E ,(2)M x f n ≤)(, a.e.于E ,(n ≥1) ,则 可积,且上在L E x f )(⎰⎰∞→=En n Edx x f dx x f )(lim )(.定理5 (积分的绝对连续性)设f (x )在E 上勒贝格可积,则对任何ε>0,存在δ>0,对E 的任何可测子集A ,当mA<δ时,ε<⎰Adx x f )(证明 不失一般性,设f (x )在E 上非负可积. 令⎩⎨⎧>≤=nx f nn x f x f x f n )()()()(,则 )1,(),()(0≥∈≤≤n E x x f x f n ,且)()(lim x f x f n n =∞→,)()(1x f x f n n +≤.因为f (x )勒贝格可积,所以对每个n ,f n (x )是勒贝格可积的,于是由Levi 单调收敛定理,有⎰⎰∞→=EEn n dx x f dx x f )(lim )( ,因此,对任意正数ε>0, 存在N ≥1,使⎰<-≤EN dx x f x f 2))()((0ε.令 N2εδ=,则对E 的任何可测子集A ,当mA<δ时,()⎰⎰⎰+-=AAN AN dx x f dx x f x f dx x f )()()()(<εεεε=+<⋅+222mA N . 定理6 设f (x )是1R E ⊂上的L 可积函数,mE<+∞,则对任何ε>0,存在R 1上的连续函数g (x ),使⎰<-Edx x g x f ε)()(.证明 令[]n x f x E E n >=)(|,则1+⊃n n E E ,且[] ∞=+∞==1)(|n n x f x E E . 因为f (x )在E 上勒贝格可积,所以f (x )在E 上几乎处处有限. 又mE <+∞,故由可测集性质,[]0)(|lim =+∞==∞→x f x mE mE n n ,因此,由积分的绝对连续性,对任何ε>0,存在N ≥1,使⎰<≤NE N dx x f NmE 4)(ε.对于E\E N ,由第三章§3定理3,存在R 1上连续函数)(x g 和闭集N N E E F \⊂,使(1)[]NF E E m N N 4\)\(ε<,(2)f (x )=g (x ), ,N F x ∈ 且,)(sup 1N x g R x ≤∈ 于是⎰⎰⎰-+-=-EE E E NNdx x g x f dx x g x f dx x g x f \)()()()()()(⎰⎰⎰---++≤NNN NE F E E E dx x g x f dx x g dx x f )(|)()(||)(|)([]N N N F E E Nm NmE \)\(24++<εεεεε=++<244.例1 证明dy y f y x a b dy y f y x abdx d )()cos()()sin(+=+⎰⎰ , 其中f (x )是[a ,b ]上的勒贝格可积函数. 证明 对任何1R x ∈,|)(|)()sin(y f y f y x ≤+所以函数 sin(x+y )f (y )在[a ,b ]上勒贝格可积,对任何0→n ε,令[])()sin()()sin(1)(y f y x y f y x y f n nn +-++=εε ,则|)(||)(|y f y f n ≤,且 )()cos()(lim y f y x y f n n +=∞→,由控制收敛定理,dy y f y x a b dy y f y x ab dx d )()cos()()sin(+=+⎰⎰. 例2证明 0101lim 2223=+⎰∞→dx x n xn n .证明 易知]1,0[,01lim2223∈=+∞→x x n xn n ,令xx g xn xn x f n 2)(,1)(2223=+=,则)1()12(2)()(222323x n x xn nx x f x g n +-+=-, 当 0)12(2,1412323>-+≤<x n nx x n时;当 时nx 410≤≤,()04122122232323232323>⎪⎭⎫⎝⎛-≥-≥-+n n x n x n nx ,所以 1],1,0[),()(0≥∈≤≤n x x g x f n ,由习题6, g (x )在[0,1]上勒贝格可积,所以由控制收敛定理,0001101lim 2223==+⎰⎰∞→dx dx x n xn n .§4 黎曼积分与勒贝格积分本节介绍黎曼积分与勒贝格积分的关系,并给出黎曼可积函数的特征性质. 定理1 设f (x )是闭区间[a ,b ]上的有界函数,如果f (x )在[a ,b ]上黎曼可积,则f (x )在[a ,b ]上勒贝格可积,且⎰⎰=bab adx x f L dx x f R )()()()( .证明 设|,)(|sup ],[x f M b a x ∈= 则0≤M<+∞.作[a ,b ]的分划D n 如下:D n : b x x a x n k n n n=<<<=)()(1)(0 , 使1+n D 比n D 更细密,并且())(0max )(1)(1∞→→-=-≤≤n x x D n j n j k j n n.记 )(sup )(inf ],[)(],[)(11x f M x f m j j j j x x x n j x x x n j --∈∈==,作简单函数[](]⎪⎩⎪⎨⎧∈∈=-)()(1)()(1)(0)(1,,)(n jn j n j n n n n x x x m x x x m x L ,n k j ≤≤2,[](]⎪⎩⎪⎨⎧∈∈=-)()(1)()(1)(0)(1,,)(n jn j n jn n n n x x x M x x x M x U ,n k j ≤≤2,易知简单函数列{L n (x )}和{U n (x )}满足 )()(1x L x L n n +≤ , )()(1x U x U n n +≥ ,],[),()()(b a x x U x f x L n n ∈≤≤ .令 )(lim )(),(lim )(x U x U x L x L n n n n ∞→∞→==,则],[),()()(b a x x U x f x L ∈≤≤ .因为对每个n ,],[,|)(|,|)(|b a x M x U M x L n n ∈≤≤,所以由有界控制收敛定理, ⎰⎰∞→=],[],[)(lim )(b a b a n n dx x L dx x L ,⎰⎰∞→=],[],[)(lim )(b a b a n n dx x U dx x U .另外,由简单函数勒贝格积分定义知,()⎰∑=-=-=],[1)(1)()(),()(b a k j n n j n j n j n nf D s x x m dx x L ,()⎰∑=-=-=],[1)(1)()(),()(b a k j n n j n j n j n nf D S x x M dx x U ,其中s (D n , f )与S(D n , f )分别是f (x )关于分别D n f (x )在[a ,b ]上黎曼可积,所以),(lim ),(lim )()(f D S f D s dx x f R n n n n ba∞→∞→==⎰ ,从而 ⎰⎰⎰==],[],[)()()()(b a b a badx x U dx x L dx x f R ,注意到 ()⎰=-≥-],[,0)()(0)()(b a dx x L x U x L x U 及于是 U (x )-L (x )=0 a .e .于[a ,b ], 因此 f (x )=U (x )=L (x ) a .e .于[a ,b ].故f (x )在[a ,b ]上L 可积,并且⎰⎰⎰==],[],[)()()()(b a b a ba dx x U dx x L dx x f L ,于是 ⎰⎰=b a dx x f L dx x f abR )()()()(.以下我们给出黎曼可积函数的充分必要条件,先给出如下引理.引理 函数f (x )在],[0b a x ∈处连续的充分必要条件是对任意ε>0,存在包含x 0的开区间I ,使f (x )在I 上的振幅.ε<-=∈∈)(inf)(sup )(],[],[x f x f I w Ib a x Ib a x f证明 由连续函数的定义即得.定理2 设f (x )为[a ,b ]上的有界函数,则f (x )在[a ,b ]上黎曼可积的充分必要条件是它的不连续点的全体是零测集,即f (x )在[a ,b ]上几乎处处连续.证明 必要性 因为f (x )黎曼可积,所以同于定理1的证明,做[a ,b ]的分划列{D n }和简单函数列{L n (x )}与{U n (x )},得知.],[),()()(b a x x U x f x L ∈≤≤, 进而],[..),()()(b a e a x f x L x U 于==,其中 )(lim )(),(lim )(x L x L x U x U n n n n ∞→∞→== .记D 是分划{D n }的所有分点所成之集,令 )}()()()(],,[|{x U x f x L x f b a x x E <>∈=或 ,E DF = ,则mF =0,下证f (x )在[a ,b ]-F 上连续.事实上,设E x D x F b a x ∉∉-∈000,,],[且则. 若f (x )在x 0处不连续,则由引理知,存在00>ε,对任何包含x 0的开区间I ,有0)(ε≥I w f . 因为D x ∉0,所以对每个n ,存在)1(00n k k k ≤≤,使())()(1000,n k n k x x x -∈,于是()0)()(100),()()(00ε≥=--n k n k f n n x x w x L x U , 而 )(lim )(),(lim )(0000x L x L x U x U n n n n ∞→∞→==,所以0)()(000>≥-εx L x U ,这与E x ∉0矛盾,故f (x )在x 0处连续. 充分性设f (x )在[a ,b ]上几乎处处连续,且|f (x )|≤M ,],[b a x ∈. 作[a ,b ]上的一列越来越细密的分划{D n },D n :b x x x a n k n n n=<<<=)()(1)(0 , 满足:())(0max )(1)(1∞→→-=-≤≤n x x D n j n j k j n n同于定理1的证明,做简单函数列{U n (x )}和{L n (x )},使1],,[,)(,)(≥∈≤≤n b a x M x L M x U n n , 并且].,[),(lim )()(lim b a x x U x f x L n n n n ∈≤≤∞→∞→下证对于f (x )的任何连续点x ,有).()(lim )(lim x f x U x L n n n n ==∞→∞→事实上,设f (x )在x 处连续,则由引理,任给0>ε,存在开区间I =(α,β),使ε<∈)(,I w I x f 且. 因为0→n D ,所以存在N ≥1,当n ≥N 时,},min{x x D n --<βα,另外,存在k 0(1≤k 0≤k n ),使[]I x x x n k n k ⊂∈-)()(100,,因此[]()ε<≤=--)(,)()()()(100I w x x w x L x U f n k n k f n n , 由ε的任意性知,).()(lim )(lim x f x L x U n n n n ==∞→∞→因为f (x )在[a ,b ]上几乎处处连续,所以].,[..)()(lim )(lim b a e a x f x L x U n n n n 于==∞→∞→又 ⎰=],[),()(b a n n f D S dx x U ,⎰=],[),()(b a n n f D s dx x L ,于是由勒贝格有界控制收敛定理, ⎰⎰==∞→∞→bab a n n n n dx x f L dx x U f D S )()()(lim ),(lim ],[,⎰⎰==∞→∞→bab a n n n n dx x f L dx x L f D s )()()(lim),(lim ],[,因此 ()0),(),(lim =-∞→f D s f D S n n n ,故f (x )在[a ,b ]上黎曼可积.例1 设⎩⎨⎧=,]1,0[1,]1,0[0)(中有理数为中无理数为x x x D 则D (x )在[0,1]上黎曼不可积.证明 因为D (x )在[0,1]上处处不连续,所以由定理2,D (x )在[0,1]上黎曼不可积. 例2 黎曼函数⎪⎩⎪⎨⎧=,]1,0[0,1)(上其它数为为任约真分数x q px qx ξ则ξ(x )在[0,1]上黎曼可积.证明 因为ξ(x )不连续点的全体为(0,1)中的有理数集,而该集合为零测集,所以由定理2,ξ(x )在[0,1]上黎曼可积.§5 重积分与累次积分在黎曼积分中,重积分可化为累次积分. 例如设D =[a ,b ]×[c ,d ], f (x ,y )是D 上的连续函数,则⎰⎰⎰⎰⎰⎰==Ddx y x f abdy c d dy y x f c d dx a b dxdy y x f ),(),(),(本节我们在勒贝格积分中建立相应的定理——即富比尼(Fubini )定理,由此看到,在勒贝格积分中重积分化为累次积分,以及积分次序的交换等问题中,勒贝格积分要求的条件比在黎曼积分时要求的条件弱得多,这再次显示了勒贝格积分的优越性. 一、富比尼定理设p 、q 是正整数,n =p +q ,此时R n 可以看成R p 和R q 的直积,即R n =R p ×R q . R n上的函数f 可以用f (x ,y )表示,其中,,q p R y R x ∈∈相应的积分可写成⎰⨯qp R R dxdy y x f ),(,称为重积分. 另一方面,固定),(,y x f R x p ∈看成q R y ∈的函数,令⎰=q Rdy y x f x F ),()(,则称[]⎰⎰⎰⎰⎰∆=p q ppqRRR R R dy y x f dx dx dy y x f dx x F ),(),()(为累次积分. 富比尼定理给出了等式⎰⎰⎰⨯=p q qp RRR R dy y x f dx dxdy y x f ),(),(成立的条件. 定理1 (Tonelli )设f (x ,y )是R p ×R q 上的非负可测函数,则 (1)对几乎所有的q p R y y x f R x ∈∈作为),(,的函数是非负可测的; (2)⎰∈=q RP R x dy y x f x F 作为),()(的函数是非负可测的;(3).),(),(⎰⎰⎰⨯=qp p q R R RRdy y x f dx dxdy y x f证明 由于非负可测函数是非负单调增简单函数列的极限,我们只需证)(x f 是R p ×R q 中可测集E 的特征函数的情形即可.以下分五种情形加以证明.情形1 E=I 1×I 2,其中I 1和I 2分别是R p 和R q 中的区间; 当1I x ∉时,f (x ,y )=0;当,1时I x ∈⎩⎨⎧∉∈=,,1),(22I y I y y x f所以对一切q p R y y x f R x ∈∈作为),(,的函数是非负可测的,并且⎰⎩⎨⎧∉∈==q R I x I x I dy y x f x F ,0,||),()(112于是 ⎰⎰⨯==p RI I I dx I dx x F 1||||||)(212 . 而⎰⨯⨯==qp R R I I mE dxdy y x f ||||),(21 ,所以⎰⎰⎰⨯=qp p q R R RRdy y x f dx dxdy y x f ),(),( .情形2 E 是开集;由开集结构知, ∞==1)(k k I E ,其中I (k) (k ≥1)是R p ×R q 中互不相交的半开半闭区间,记)(2)(1)(k k k I I I ⨯=,其中)(2)(1k k I I 和分别是R p 和R q 中的区间,令⎩⎨⎧⨯∉⨯∈=,),(0,),(1),()(2)(1)(2)(1k k k k k I I y x I I y x y x f 则 ∑∞==1),(),(k k y x f y x f .由情形1,每个f k (x ,y )满足(1)~(3),于是对一切qp R y y x f R x ∈∈作为),(,的函数是非负可测的,从而由逐项积分定理,∑∑⎰⎰⎰∞=∞====11),(),(),()(k k Rk kRRq q qdy y x f dy y x fdy y x f x F在R p 上非负可测,仍由逐项积分定理,∑⎰⎰∞=⨯⨯=1),(),(k kR R R R dxdy y x fdxdy y x f qp qp=[]∑∑⎰⎰⎰∞=∞=⨯=11),(),(k k R R k k R R pqqp dx dy y x f dxdy y x f=⎰⎰⎰∑∑⎰⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∞=∞=p p q q R RR k k k R k dx dy y x f dx dy y x f 11),(),( =[]⎰⎰⎰⎰=pp q qR RRR dy y x f dx dx dy y x f ),(),( .情形3 E 是有界闭集; 令 },1)),,((0),{(1<<⨯∈=E y x d R R y x G q p},1)),,((),{(2<⨯∈=E y x d R R y x G qp则G 1和G 2是R p ×R q 中的有界开集,且E =G 2\G 1,21G G ⊂,及,0),(),(),(12≥-=y x f y x f y x f其中f 1, f 2分别是G 1与G 2的特征函数,由情形2,f 1, f 2均满足(1)~(3),并且对一切),(,y x f R x p ∈关于p R y ∈是非负可积的,从而dy y x f dy y x f dy y x f x F q q q RRR),(),(),()(12⎰⎰⎰-==在R p 上非负可积,并且[]dy y x f dx dy y x f y x f dx dx x F q p p q pRRRRR ),(),(),()(12⎰⎰⎰⎰⎰=-= .另外,由f i (x ,y )在R p ×R q 上非负可积及情形2知(i=1,2),⎰⎰⎰⨯⨯⨯-=qp qp qp R R R R R R dxdy y x f dxdy y x f dxdy y x f ),(),(),(12=⎰⎰⎰⎰-p q p q RRRRdy y x f dx dy y x f dx ),(),(12=[]⎰⎰⎰⎰=-pq qRRRR dy y x f dx dy y x f y x f dx ),(),(),(112.情形4 E 是零测集;因为E 是零测集,所以存在递减开集列{G k },使)1(≥⊂k G E k 且)(0∞→→k mG k ,令k k G H ∞==1,则.0,=⊂mH H E 且令⎩⎨⎧∉∈=kkk G y x G y x y x f ),(0),(1),(, 则由控制收敛定理和情形2, 0=⎰⎰⨯⨯∞→=qP qp R R RR k k H dxdy y x f dxdy y x ),(lim ),(χ =[]⎰⎰⎰⎰∞→∞→=p q p qRRR R k k k k dx dy y x f dy y x f dx ),(lim ),(lim=[]⎰⎰⎰⎰=∞→pp q q R RRH R k k dy y x dx dx dy y x f ),(),(lim χ .因此,对几乎所有的p R x ∈,有⎰=q RH dy y x 0),(χ,从而对几乎所有p R x ∈,q H R y y x ∈关于),(χ几乎处处为零,但),(),(),(0y x y x y x f H E χχ≤=≤,因而对几乎所有的p R x ∈,几乎处处为零关于q R y y x f ∈),(,因此对几乎所有的p R x ∈,⎰==0),()(dy y x f x F q R ,于是⎰⎰⎰==⨯0),(),(dy y x f dx dxdy y x f q p qp R R R R .情形5 E 是一般可测集.由可测集结构知,存在有界单增的闭集列Z F k 和零测集}{,使φ=⎪⎪⎭⎫ ⎝⎛=∞= Z F Z F E k k k ,1(k ≧1),记()则的特征函数和分别为和,1≥k F Z f f k k o),(),(lim ),(),(y x f y x f y x y x f o k k E +==∞→χ.由情形3和4,)1(,≥k f f o k 满足定理(1)~(3),故由单调收敛定理和可积函数性质知),(y x f 也满足(1)~(3).至此我们证明了q p R R ⨯中任何可测集E 上的特征函数)3(~)1()(满足定理x f ,从而易知任何非负简单函数和非负可测函数都满足定理(1)~(3). 定理2 (Fubini ),设),(y x f 在q p R R ⨯上可积,则(1)对几乎所有的q R x ∈,),(y x f 作为q R y ∈ 的函数在q R 上可积; (2)⎰=q Rdy y x f x F 在),()(q R x ∈上可积;(3)⎰⎰⎰⨯=qp qpR R R R dy y x f dx dxdy y x f ),(),(.证明 因为),(),(),(y x f y x f y x f -+-=,而q P R R f f ⨯-+都是,上的非负可积函数,所以由定理1即得结论.推论 设),(y x f 在q p R R ⨯上非负可测(L 可积),则dx y x f dy dxdy y x f dy y x f dx pqqp qpR R R R R R ),(),(),(⎰⎰⎰⎰⎰==⨯ .证明 在定理1和定理2的证明中交换y x 与的位置即得结论. 二、富比尼定理的应用以下我们介绍富比尼定理在函数的卷积和分布函数方面的应用.为此先给出如下引理:引理 设上的可测函数是则上的可测函数是n n n n R R R y x f R x f 2)(,)(=⨯-. 证明 因为函数上可测在n R x f )(,所以对任何})({,1αα>∈=∈x f R x A R n 是n R y x y x g -=),(,则})(),{(a y x f R R y x n n >-⨯∈)(}),{(1A g A y x R R y x n n -=∈-⨯∈=. 为证引理,只需证明 中可测集是n R A g 21)(-. 分三种情形证明:(1)若A 为中n R Borel 集,因为n n R R g →2:是连续映射,则)(1A g -为n R 2中Borel 集,从而)(1A g -是可测集. (2)若A 是中n R 零测集,即mA=0,则存在δG 型集G ),(,0,1G g B mA mG A -===⊃令且则B 的特征函数B χn R 2是上的非负可测函数,由推论及有,0}){(==+mG y G m.0}){(),(),(),(}{2=+=====⎰⎰⎰⎰⎰⎰⎰⎰+dy y G m dxdy dx y x dy dyy x dx dxdy y x mB nnnn nnn R y G R B R R B R R B R χχχ另外,由A G ⊃知,从而所以,0))((,)()(111==⊂---A g m B G g A g )(1A g -是n R 2中可测集.(3)若A 是n R 中任一可测集,则存在,0)\(,=⊂F A m A F F 使型集σ因为知所以由集型集是)1(,Borel F σ,)2(,)(1知又由是可测集F g -)\(1F A g -是可测集,从而)\()()(111F A g F g A g ---= 是可测集.定义 设n R x g x f 是)(),(上的可测函数,如果对几乎所有的n R x ∈,积分dy y g y x f nR )()(-⎰存在,则称dy y g y x f x g f nR )()())(*(-=⎰为)()(y g x f 与的卷积.定理3 设)(x f ,)(x g 在n R 上可积,则对几乎所有的n R x ∈,))(*(x g f 存在,并且))()()(()(*dx x g dx x f dx x g f nnnR R R ⎰⎰⎰≤.证明 先设0)(≥x f ,0)(≥y g ,由引理,)()(y g y x f -在n n R R ⨯上是非负可测的,由推论,).)()()(())()((])()([))()(())(*(dy y g dx x f dydx y x f y g dydx y g y x f dxdy y g y x f dx x g f nnnnnn nnnR R R R R R R R R ⎰⎰⎰⎰⎰⎰⎰⎰⎰=-=-=-=一般情形由下式即得:dx x g Rdx x f Rdx x g f Rdx x g f Rnnnn)()())(*())(*(⎰⎰⎰⎰=≤.定理4 设n R E ⊂是可测集,)(x f 是E 上几乎处处有限的可测函数,对每个0>λ,令 }))(({)(λλ>∈=x f E x m F ,称的分布函数为)()(x f F λ,则当∞<≤p 1时,λλλd F p dx x f E p p)(0)(1-⎰⎰∞=.证明 令⎩⎨⎧≤>=,)(0,)(1),(λλλx f x f x g固定的函数是可测集合作为时x x g ),(,0λλ>})({λ>∈x f E x 的特征函数,所以由定理1,⎰⎰⎰-=λλd p x f dx dx x f p E pE10)()(().)(.),(101010λλλλλλλλλd F p dx x g d p d x g p dx p E p p E -∞-∞-∞⎰⎰⎰⎰⎰===习 题1、证明§1定理2中(1)、(3)、(4).2、证明§2定理1中(2)、(4)、(6).3、设则上可测在,)(E x f 对任何0>η,有,)(])([dx x f x f x mE E ⎰≤≥ηη4、设上在E x f )(非负可测,且⎰=0)(dx x f E,则E e a x f 于,,0)(=5、设令上可测在,0)(E x f ≥,)(,)(0)()]([n x f n x f x f x f n >≤⎩⎨⎧= 若则于,..)(E e a x f +∞<[]⎰⎰=∞→dx x f dx x f E n En )()(lim .6、设(]⎪⎩⎪⎨⎧=∈=⎪⎩⎪⎨⎧=,00,1,02)(,]1,0[,]1,0[1)(4x x xx g x x x xx f 中有理数为中无理数为证明并求可积上在,]1,0[)(),(L x g x f ⎰⎰dx x g dx x f )()(]1,0[]1,0[和.7、 设中任一点至少属于如果的可测子集是]01[,]1,0[,,,21n E E E 这n 个集合中的q个,证明必有一个集合,它的测度大于或等于nq. 8、设是上可积的充分必要条件在证明上非负可测在E x f E x f mE )(,)(,+∞<级数])([1n x f x mE n ≥∑∞=)收敛, +∞=mE 时,结论是否成立?9、设()x f 在可测集E 上L 可积,1E 是E 的可测子集,则()x f 在1E 上L 可积. 10、设+∞<mE ,()x f 在E 上有界可测,则()x f 在E 上L 可积,从而[ a ,b ]上的连续函数是L 可积的.11、设()x f ,()x g 是E 上的可积函数,则)()(22x g x f +,也在E 上可积.12、设]1,0[0为P 中康托集,⎪⎩⎪⎨⎧∈∈=阶邻接区间n x P x n x f 0100)( ,证明 3)(]1,0[=⎰dx x f .13、设()x f 在E 上L 可积,mE mE mE n E E n n n =+∞<≥⊂→∞lim ,),1(且,证明dx x f dx x f E E n n )()(lim ⎰⎰=→∞.14、设.0lim ],)([,)(,=≥=+∞<∞→n n n nmE n x f x E E L E x f mE 证明记可积上在15、设mE ≠0,()x f 在E 上L 可积,如果对于任何有界可测函数)(x ϕ,都有0)()(=⎰dx x x f Eϕ,则()x f =0,a.e.于E16、设+∞<mE ,0,,)}({⇒n n f E E x f 上证明在函数列上几乎处处有限的可测为的充要条件为 0)(1)(lim =+⎰∞→dx x f x f n n En .17、设{})(x f n 为E 上非负可测函数列,且)1()()(1≥≥+n x f x f n n ,若)()(lim x f x f n n =∞→,且存在0k ,使⎰+∞<Ek dx x f )(0,则dx x f dx x f En En )()(lim ⎰⎰=∞→ .18、设()x f 在[a ,b ]上L 可积,则对任意ε>0,存在[a ,b ]上的连续函数()x g ,使ε<-⎰dx x g x f b a )()(],[.19、若()x f 是),(+∞-∞上的L 可积函数,则0)()(lim ],[0=-+⎰→dx x f h x f b a h .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的极限存在且相等,就称 f ( x ) 在 E 上是
勒贝格可积的, σ(Δ) 的极限值就称作 f(x) 在E上的勒贝格积分或简称L积分,记作
E
f ( x ) dm lim
n
( )0
mE
i 1 i
n
i
定理1.4.11(勒贝格积分存在条件)
设 mE <∞,则 E 上任何有界可测函 数 f ( x ቤተ መጻሕፍቲ ባይዱ 都是 L 可积的,若 α ≤ f ( x ) ≤ β ,
都是 L 可测的,就称 f ( x ) 是 E 上的勒贝 格可测函数,简称 L 可测函数或可测函数。
定理1.4.8(函数 L 可测的充要条件)
函数 f ( x ) 在可测集 E上可测的充要
条件是对于任何实数 α 与 β ,集合
E ( α ≤ f <β ) = {x︱ α ≤ f(x) < β , x∈E }
成区间长度之和。
定义1.4.2(闭集的测度)
设 F 为直线 R 上的有界闭集,若 F 含于 (a,b),则有 G = (a,b)- F,
G 是一有界开集,定义 F 的测度为: m F =(b - a)- m G
定义1.4.3 (外测度和内测度)
设E为直线R上的任一有界点集,称
所有包含E的开集的测度的下确界,为E 的外测度,记作m*E。 把所有含于E中的闭集的测度的上确 界称为集E的内测度,记作m*E。
是 L 可测的。
“几乎处处”的概念:
设 p (x) 是一个与 x 有关的数学命题, 如果它在点集 E 上不成立的点 x 的全体是 一个零测度的集合,就称命题 p (x) 在 E 上几乎处处成立,并且用 a. e. 表示。
1.4.3 勒贝格积分
定义1.4.10(有限测度集上的勒贝格积分)
设 f(x)是 E 上的有界可测函数, mE<∞且 α<f(x)<β。 任取分组点 Δ={y0, y1, ……, yn}分割区间[α, β],令
y0 y1 y2 yn
( ) max( yi yi 1 )
mEi mE ( yi 1 f yi )
任取 i [ yi 1 , yi ) ,做和式
(1 i n)
( ) i mEi
i 1
n
如果不论 [ α , β ] 如何分割和 ξ i 如何 选取,当 n →∞,且 λ(Δ) →0 时, σ(Δ)
则有不等式
mE f ( x ) dm mE
E
勒贝格积分与黎曼积分的关系:
凡在区间 [ a, b ] 上黎曼可积的函数 必定勒贝格可积,并且积分值相等,但存
在勒贝格可积但是黎曼不可积的函数。
1.4.4 L (E)函数空间
p
设 E 是 L 可测集, E 上 p 幂可积函数
f( ︱f(x)︱ 在 E 上 L 可积)的全体组成 之集合称为 L (E) 空间,即 p 幂可积函数
1.4 勒贝格积分和L 空间
1.4.1 测度,可测集
p
测度,在一维点集中,是长度概念的推广。
E 为直线 R 上的集合,用 mE 表示E的测度。 普通区间 (a , b) : m (a , b) = b - a
测度公理
E是直线上的点集
定义1.4.1(开集的测度) 设E是直线R上
的有界开集,定义E的测度为它的一切构
p p p
空间。当 E = [a , b]时,记作 L [a , b]。
在 L [a , b] 中定义“加法”“数乘” 成为线性空间。
p
在 L [a , b] 中定义距离
p
d ( x, y ) ( x(t ) y (t ) dm)
p a
b
1 p
L [a , b] 成为度量空间。
p
定义1.4.4(可测集) 设 E 是直线 R 上的
有界点集,若 m*E = m*E,则称 E 为勒贝
格可测集,它的内外测度的共同值就称为 E的勒贝格测度,记作 mE。
1.4.2 可测函数
定义1.4.7(L可测函数) 设 E 为直线 R 上的可测集(有界或者无界),f ( x ) 是 定义在 E 上的实值函数,如果对于任何实 数 a,集合 E ( f ≥ a ) = { x ︱ f ( x ) ≥ a, x∈E }