勒贝格积分的分部积分和变量替换

合集下载

《实变函数与泛函分析基础》目录简介

《实变函数与泛函分析基础》目录简介

《实变函数与泛函分析基础》目录简介内容简介本次修订是在第二版的基础上进行的,作者根据多年来的使用情况以及数学的近代发展,做了部分但是重要的修改。

《实变函数与泛函分析基础(第3版)》共11章:实变函数部分包括集合、点集、测度论、可测函数、积分论、微分与不定积分;泛函分析则主要涉及赋范空间、有界线性算子、泛函、内积空间、泛函延拓、一致有界性以及线性算子的谱分析理论等内容。

这次修订继续保持简明易学的风格,力图摆脱纯形式推演的论述方式,着重介绍实变函数与泛函分析的基本思想方法,尽量将枯燥的数学学术形态呈现为学生易于接受的教育形态;同时,补充了一些现代化的内容,如“分形”的介绍。

《实变函数与泛函分析基础(第3版)》可作为高等院校数学类专业学生的教学用书,也可作为自学参考书。

目录第一篇实变函数第一章集合1 集合的表示2 集合的运算3 对等与基数4 可数集合5 不可数集合第一章习题第二章点集1 度量空间,n维欧氏空间2 聚点,内点,界点3 开集,闭集,完备集4 直线上的开集、闭集及完备集的构造5 康托尔三分集第二章习题第三章测度论1 外测度2 可测集3 可测集类4 不可测集第三章习题第四章可测函数1 可测函数及其性质2 叶果洛夫定理3 可测函数的构造4 依测度收敛第四章习题第五章积分论1 黎曼积分的局限性,勒贝格积分简介2 非负简单函数的勒贝格积分3 非负可测函数的勒贝格积分4 一般可测函数的勒贝格积分5 黎曼积分和勒贝格积分6 勒贝格积分的几何意义·富比尼定理第五章习题第六章微分与不定积分1 维它利定理2 单调函数的可微性3 有界变差函数4 不定积分5 勒贝格积分的分部积分和变量替换6 斯蒂尔切斯积分7 L-S测度与积分第六章习题第二篇泛函分析第七章度量空间和赋范线性空间1 度量空间的进一步例子2 度量空间中的极限,稠密集,可分空间3 连续映射4 柯西点列和完备度量空间5 度量空间的完备化6 压缩映射原理及其应用7 线性空间8 赋范线性空间和巴拿赫空间第七章习题第八章有界线性算子和连续线性泛函1 有界线性算子和连续线性泛函2 有界线性算子空间和共轭空间3 广义函数第八章习题第九章内积空间和希尔伯特(Hilbert)空间1 内积空间的基本概念2 投影定理3 希尔伯特空间中的规范正交系4 希尔伯特空间上的连续线性泛函5 自伴算子、酉算子和正常算子第九章习题第十章巴拿赫空间中的基本定理1 泛函延拓定理2 C[a,b]的共轭空间3 共轭算子4 纲定理和一致有界性定理5 强收敛、弱收敛和一致收敛6 逆算子定理7 闭图像定理第十章习题第十一章线性算子的谱1 谱的概念2 有界线性算子谱的基本性质3 紧集和全连续算子4 自伴全连续算子的谱论5 具对称核的积分方程第十一章习题附录一内测度,L测度的另一定义附录二半序集和佐恩引理附录三实变函数增补例题参考书目。

第4章_第一节 Lesbesgue积分的定义及性质

第4章_第一节  Lesbesgue积分的定义及性质

0
1
定理4.1 设ϕ ( x )和ψ ( x )为可测集E上的非负简单函数,则有
(2) ∫ cϕ ( x )dx = c ∫ ϕ ( x )dx (c为非负实数);
E E
(1) 0 ≤ ∫ ϕ ( x )dx ≤ ∞;
E
(3) ∫ (ϕ ( x ) + ψ ( x )) dx = ∫ ϕ ( x )dx + ∫ ψ ( x )dx;
n →∞
limψ n ( x) = f ( x) ≥ ϕ m ( x), ∀m
n →∞
由引理 4.1可得
n →∞
lim ∫ ϕn ( x)dx ≥ ∫ ψ l ( x)dx, ∀l
n →∞ E E
lim ∫ ψ n ( x)dx ≥ ∫ ϕm ( x)dx, ∀m
再对 l , m分别取极限可得 lim ∫ ϕn ( x)dx = lim ∫ ψ n ( x)dx.
令 Ak = { x ∈ Ei | ψ k ( x) ≥ ci − ε } (ε > 0, k = 1, 2, ),
Байду номын сангаасEi
k →∞
Ei
由于{Ak }是递增的可测集列及 limψ k ( x) ≥ ϕ ( x) > ci − ε ( x ∈ Ei ).
k →∞ ∞
则有 mEi =m(∪ Ak )=m( lim Ak )= lim mAk ,
⒉ 一般可测函数积分的性质
⑴零测集上的任何函数的积分为0. ⑵ f(x)可积当且仅当|f(x)|可积(f(x)是可测函数), 且 | ∫E f ( x )dx |≤ ∫E | f ( x ) |dx
f (x) = f
+
(x) − f

勒贝格积分的概念

勒贝格积分的概念

勒贝格积分的概念在数学分析和测度论中,积分是求一个函数在某个区间内的累积量的基本工具。

对于一类较为复杂的函数传统的黎曼积分往往不够应用,这就引出了勒贝格积分的概念。

勒贝格积分由法国数学家亨利·勒贝格(Henri Lébeau)于20世纪初提出,它的重要性不仅在于其理论深度,还由于其广泛的应用。

勒贝格积分的定义勒贝格积分的定义以测度为基础。

首先,需要了解可测函数与测度空间的概念。

测度在实数轴上,我们通常用“长度”来度量某个区间的大小。

例如,区间[a, b]的长度为(b - a)。

这种对长度的度量可以推广到更一般的情况下,即测度。

在更广泛的集合论和分析中,测度是一种赋予集合“大小”的方法。

设(X)为一个集合,若给定一个σ-代数()与一个非负的加法可数可加集函数(),则称((X, , ))为一个测度空间。

在此空间中,测度()为我们提供了一种量化能否对集合进行积分的方法。

可测函数一个函数是可测函数,如果其逆像对所有开集在测度下都可测。

这一性质使得我们可以运用勒贝格测度理论进行分解和重构,使得我们能够对其进行积分操作。

令(f: X )为一个可测函数,并且定义勒贝格积分为:[ _X f d ]这里,(d) 表示对测度()进行积分。

对于Lebesgue积分,我们有一个更直观的在区间上的定义,这与概率论中的期望有些相似。

勒贝格积分与黎曼积分的区别传统黎曼积分是通过将区间分割成更小子区间,然后求每个子区间内对应函数图像下方矩形面积之和实现。

但这种方法对于不连续或具有复杂性质的函数不适用。

相比之下,勒贝格积分则更加灵活,允许我们对包含更多“维度”的未知数进行处理。

通过引入重复应用可测性的理念,勒贝格积分能够处理更多种类的函数和基于不同自变量域的问题。

勒贝格积分的一些重要性质勒贝格积分拥有众多重要性质,使其在数学及其它科学领域内被广泛应用。

线性性质:对于任意常数(a, b)和可积函数(f, g),我们有[ (af + bg) d= a f d+ b g d. ]单调收敛定理:若一列可测非负函数(f_n)满足 (f_n f ,(n )),则 [ f_n df d. ]重复应用:如有一列互不重合且具有有限长度的集合,可以得到如下结果: [ {{n=1}^{} E_n} f d= {n=1}^{} {E_n} f d. ]变化性与限制性:如果(f_n(x))逐点收敛到(f(x)),且(f_n(x))被某个可积函数所界限,则同样可以得到结论: [ _{n } f_n d= f d. ]这些性质提供了工具,使其不仅在纯数学理论中发挥作用,同时也能用于实际计算。

第七章 勒贝格积分理论简介

第七章 勒贝格积分理论简介

第七章 勒贝格积分理论简介本章所讨论的测度都是勒贝格测度,故不再特别说明。

所说可测均指。

所指函数也都是定义在实数子集上的实值函数。

可测-L 在第六章第二节中,我们曾经提到勒贝格积分的一种定义方式。

由此积分的定义可以看出,定义在一个可测集上的符号函数是可以积分的当且仅当E f 是可测的,由此引入了可测函数的概念。

但是从可测函数的角)(1+<≤i i y f y E 度考虑,可测函数可以另外的方式引入。

本章先讨论可测函数的刻画方式和一些基本性质,然后对勒贝格积分的常见计算方式作一些粗略的介绍。

进一步的内容可以在任何一本实变函数的教材可见。

§1 可测函数的定义刻画与运算我们先给出可测函数的一种最朴素的定义方式。

7.1定义:设是定义在上的函数,若对任意集合是可侧集,f E R ∈a )(a f E <称是可侧函数。

f 7.2命题. 设是集合上的函数。

f E (1)若是可侧,在上连续,则是上可测函数。

E f E f E (2)若是上可测函数,,则集合,,,f E R ∈a E )(f a E ≤)(f a E <都是可测集。

)(a f E ≤(3)若,且在上可测,则是上的可测函数。

φ==)0(f E f E f1E 证明:(1)对任意,是中开集,即存在中开集,使得R ∈a )(a f E <E R G ,故是可侧集。

E G a f E =<)()(a f E <(2)结论可由如下的集合等式得到)(a f E E n <=∈ω)(\)(a f E E f a E <=≤)1()(1f na E f a E n ≤+=<∞= )(\)(f a E E a f E <=≤(3)由⎪⎪⎩⎪⎪⎨⎧<><=<><>=<0)1()0(0)0(0)0()1()1(a a f E f E a f E a f E a f E a f E 可知是可侧集。

第七章 勒贝格积分理论简介

第七章 勒贝格积分理论简介

第七章 勒贝格积分理论简介本章所讨论的测度都是勒贝格测度,故不再特别说明。

所说可测均指可测-L 。

所指函数也都是定义在实数子集上的实值函数。

在第六章第二节中,我们曾经提到勒贝格积分的一种定义方式。

由此积分的定义可以看出,定义在一个可测集E 上的符号函数f 是可以积分的当且仅当)(1+<≤i i y f y E 是可测的,由此引入了可测函数的概念。

但是从可测函数的角度考虑,可测函数可以另外的方式引入。

本章先讨论可测函数的刻画方式和一些基本性质,然后对勒贝格积分的常见计算方式作一些粗略的介绍。

进一步的内容可以在任何一本实变函数的教材可见。

§1 可测函数的定义刻画与运算我们先给出可测函数的一种最朴素的定义方式。

7.1定义:设f 是定义在E 上的函数,若对任意R ∈a 集合)(a f E <是可侧集,称f 是可侧函数。

7.2命题. 设f 是集合E 上的函数。

(1)若E 是可侧,f 在E 上连续,则f 是E 上可测函数。

(2) 若f 是E 上可测函数,R ∈a ,则集合E ,)(f a E ≤,)(f a E <,)(a f E ≤都是可测集。

(3)若φ==)0(f E ,且f 在E 上可测,则f1是E 上的可测函数。

证明:(1)对任意R ∈a ,)(a f E <是E 中开集,即存在R 中开集G ,使得E G a f E I =<)(,故)(a f E <是可侧集。

(2)结论可由如下的集合等式得到)(a f E E n <=∈ωY)(\)(a f E E f a E <=≤)1()(1f na E f a E n ≤+=<∞=Y )(\)(f a E E a f E <=≤(3)由⎪⎪⎩⎪⎪⎨⎧<><=<><>=<0)1()0(0)0(0)0()1()1(a a f E f E a f E a f E a f E a f E I Y 可知)1(a fE <是可侧集。

第三节 变量置换法与分部积分法

第三节 变量置换法与分部积分法

x)
C.
小结 遇到下列被积分式时,凑微分如下:
P( x)exdx P( x)de x (P( x)为多项式,下同);
P( x)sin xdx或P( x)cos xdx凑为 P( x)dcos x或P( x)dsinx;
P( x)ln xdx把P( x)dx凑成微分,如x2 ln xdx 1 ln xdx3; 3
a
dt sec2 t
sec2 tdt sec t
sec tdt
a2 x2 x
t a
ln | sec t tan t | C1
图4 3
图4 3 ln | x a
a2 a
x2
|
C1
ln( x
a2 x2) C.
例5 求
1 x dx.
1 x2

1 x dx 1 x2
1
1
x
2
dx
x dx 1 x2
eax cosbxdx或eax sin bxdx把eaxdx凑微分或 把cosbxdx,sin bxdx凑微分都可以, 经过两次分部积分后会出现原来的积分.
三、拓展与思考
ቤተ መጻሕፍቲ ባይዱ
例13 求
1 dx.
x x2

原式
1 dx
( x 1)2 (1)2
22
1
d(x 1)
( x 1)2 (1)2
2
a2
x2dx
a2 cos2
tdt
a2 2
(1
cos 2t )dt
a2
x2dx
a2
cos2
tdt
a2 2
(1
cos 2t )dt
a2 (t
1 sin 2t)

18、19、勒贝格积分概念与性质

18、19、勒贝格积分概念与性质
iii) 大和有下界,小和有上界,而且 sup{s ( D, f )} ≤ inf{S ( D, f )}
D D
d) 称 inf { S ( D , f )} =
D
∫ f ( x ) dx为 f ( x )在 E 上 的 L 上 积 分
E

称 sup{ s ( D , f )} =
D
∫ f ( x ) dx为 f ( x )在 E 上 的 L 下 积 分
s ( D ) = ∑ bi mEi , S ( D ) = ∑ Bi mEi
x∈Ei
m
x∈Ei
m
类比定积分 的大、小和
§1引理1 ⅰ)E的 可测分划加细,大和不增,小和不减;
设E的两个分划D*比D更细,则sD ≤ sD* ≤ S D* ≤ S D
ii) 对于任意两个分划D*和D,均有sD ≤ S D*
4、证明:零集上任意函数都L可积,且积分值等于0
证 : 设 f 为 E上 任 意 函 数 ,
E
E
用上述思想、方式引进勒贝格积分的教 材很多。如: 【1】周民强 《实变函数》 【2】郑维行 王声望 《实变函数与泛函分析概要》(上册) 【3】钱佩玲、柳藩 《实变函数论》
2、勒贝格积分的勒贝格式的建立方式
R积分——积分区间长度有限,被积函数有界
→ (1) 测度有限 集上有界函数的勒 贝格积分 → (2)测度有限集上非负函数的勒贝格积分
实变函数论
第18、19讲
第五章 积 分 理论
(一)L积分与L可积概念的建立及L积分的基本性质
一、勒贝格积分建立方式简介
1、勒贝格积分的 非勒贝格式的建立方式 2、勒贝格积分的勒贝格式的建立方式
1、非勒贝格式的建立方式

第四章勒贝格积分

第四章勒贝格积分

第四章 勒贝格积分本章介绍勒贝格积分理论.定义勒贝格积分有多种方法,本处采用从非负简单函数到非负可测函数,然后到一般可测函数的方法逐步建立勒贝格积分理论.§1 非负简单函数的勒贝格积分定义1 设n R E ⊂是可测集,)(x ϕ是E 上的非负简单函数,即E x x c x nk E k k∈=∑=,)()(1χϕ,其中 nk k E E 1==,k E 是互不相交的可测集,k c 是非负实数(1≤k ≤n ),记⎰∑==Enk kk mEc dx x 1)(ϕ称⎰Ex dx x )()(ϕϕ为在E 上的勒贝格积分.显然,当⎰==Edx x mE 0)(,0ϕ时.下面的定理1说明非负简单函数的勒贝格积分值与其表示无关.定理1 设)(),(x x ψϕ是可测集E 上的非负简单函数,如果E x x x ∈=),()(ψϕ,则⎰⎰=EEdx x dx x )()(ψϕ证明 设E x x a x nk E k k∈=∑=,)()(1χϕ,nk k k E E n k a 1),1(0==≤≤≥,E k 是互不相交的可测集,又E x x b x jF mj j ∈=∑=),()(1χψ,mj j j j F F E m j b 1,),1(0==≤≤≥是互不相交的可测集. 因为在E 上,)()(x x ψϕ=,所以对任何k 和),1,1(m j n k j ≤≤≤≤ 总有)()(j k j j k k F E m b F E m a ⋂=⋂,于是∑∑∑∑====⎪⎪⎭⎫ ⎝⎛⋂=⋂=nk m j j k k k nk k nk k k F E m a E E m a mE a 1111)()()()(1111j k m j nk j j kmj kn k F E m b F Em a ⋂=⋂∑∑∑∑=====∑=mj j j mF b 1即⎰⎰=EEdx x dx x )()(ψϕ .定理2 设)(),(x x ψϕ是E 上的非负简单函数,则 (1)对任何非负实数c,有⎰⎰=EEdx x c dx x c )()(ϕϕ ;(2) ()⎰⎰⎰+=+EEEdx x dx x dx x x )()()()(ψϕψϕ ; (3)若,),()(E x x x ∈≤ψϕ则⎰⎰≤EEdx x dx x )()(ψϕ ,特别地,mE x dx x E⋅≤⎰)(max )(ϕϕ ;(4)若A 、B 是E 的两个不相交的可测子集,则⎰⎰⎰+=⋃BABA dx x dx x dx x )()()(ϕϕϕ .证明 仅证(2)式,其余作为习题.设 E x x a x ni A i i ∈=∑=)()(1χϕ,,)()(1E x x b x mj B j j∈=∑=χψ其中}{},{),1,1(0,j i j i B A m j n i b a ≤≤≤≤≥均为互不相交的可测集列,且 n i mj j i B A E 11====.易知jiB A n i mj i i b a x x ⋂==∑∑+=+χψϕ11)()()(所以())()()()(11j i Eni mj j iB A m b adx x x ⋂+=+⎰∑∑==ψϕ=)()(1111j i ni m j i j i ni mj i B A m b B A m a ⋂+⋂∑∑∑∑=====∑∑∑∑====⎪⎭⎫⎝⎛⋂+⎪⎪⎭⎫ ⎝⎛⋂m j n i j i j j i m j ni i B A m b B A m a 1111)()(=⎰⎰∑∑+=+==EEmj j j i n i i dx x dx x mB b mA a )()(11ψϕ定理3 设})({)},({x x n n ψϕ是E 上单调增的非负简单函数列,如果E x x x n n n n ∈=∞→∞→)(lim )(lim ψϕ,那么 ⎰⎰∞→∞→=En n En n dx x dx x )(lim )(lim ψϕ .证明 不妨设)(lim x n n ϕ∞→在E 上几乎处处有限,因为)}({x n ψ在E 上单调增,所以对任何自然数m ≥1,有)(lim )(lim )(x x x n n n n m ϕψψ∞→∞→=≤ .令 )}(),(m in{)(x x x f n m n ϕψ=,则非负简单函数列)}({x f n 收敛,且,)()(lim E x x x f m n n ∈=∞→ψ当+∞<mE 时,由Egoroff 定理,0>∀ε,存在可测集)(),()(,\,∞→<→→n x x f E E mE E m n ψεεεε上在使,于是存在N ≥1,当n>N 时,对一切εE E x \∈,)()()(x x f x n n m ϕεεψ+≤+<从而dx x dx x n E E m E E ))(()(\\ϕεψεε+≤⎰⎰dx x mE E n ⎰+≤)(ϕε因此, dx x mE dx x En E E n m⎰⎰∞→+≤)(lim )(\ϕεψε另外, )(m ax )(m ax )(x mE x dx x m m E m ψεψψεε⋅<≤⎰故 dx x dx x dx x m E m E E E m)()()(\ψψψεε⎰⎰⎰+=dx x mE x n En m )(lim ))((max ϕψε⎰∞→++<令0→ε,),1()(lim )(≥∀≤⎰⎰∞→m dxx dx x En n Emϕψ当+∞=mE 时,存在可测集列)1(,,,},{121≥+∞<=⊂⊂⊂⊂∞=k mE E E E E E E k k k k k 使.由上述证明知,对每个k ≥1, ⎰⎰⎰∞→∞→≤≤En n E n n E m dx x dx x dx x kk)(lim )(lim )(ϕϕψ .记 Tj j j Tj F j m F F E E x x a x j 11}{,,,)()(===∈=∑其中χψ是互不相交的可测集,)1(,0T j a j ≤≤≥,则由积分定义,∑⎰==Tj k j j E m E F m a dx x k1)()( ψ ,因为 j k j k mF E F m =∞→)(lim ,所以⎰⎰∑===∞→Em E Tj j j m k dx x mF a dx x k)()(lim1ψψ,于是 ⎰⎰∞→≤En n Emdx x dx x )(lim )(ϕψ,因此⎰⎰∞→∞→≤EEn n m n dx x dx x )(lim )(lim ϕψ .同理可证相反的不等式,故⎰⎰∞→∞→=EEn n m n dx x dx x )(lim )(lim ϕψ .§2 非负可测函数的勒贝格积分定义1 设)(x f 是E 上的非负可测函数,)}({x n ϕ是E 上单调增收敛于)(x f 的非负简单函数列,记⎰⎰∞→=En En dx x dx x f )(lim )(ϕ,称 )()(x f dx x f E为⎰在E 上的勒贝格积分,或L 积分,如果⎰+∞<Edx x f )(,则称)(x f 在E 上是勒贝格可积的,或L可积,简记为)(E L f ∈.由§1定理3知,非负可测函数的勒贝格积分值与非负简单函数列)}({x n ϕ选取无关.显然,若⎰=∈=Edx x f E x x f 0)(,,0)(则;若mE =0,则对于E 上的任何非负可测函数)(x f , ⎰=Edx x f 0)( .定理1 设)(x f ,)(x g 是E 上的非负可测函数, 则 (1) 若 E x x g x f ∈≤),()(,则⎰⎰≤EEdx x g dx x f )()( ;(2) 若A 、B 是E 的可测子集,且B A ⊂,则⎰⎰≤ABdx x f dx x f )()( ;(3)若A 、B 是E 的可测子集,且φ=B A ,则⎰⎰⎰+=BA ABdx x f dx x f dx x f )()()( ;(4)若E e a x g x f 于..)()(=,则⎰⎰=EEdx x g dx x f )()( ;(5)对任何非负实数c ,⎰⎰=EEdx x f c dx x cf )()( ;(6)()⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()()()( .证明 证明由定义即得.定理2 (Levi 单调收敛定理)设)}({x f n 是E 上的非负可测函数列,满足 (1) 1,..)()(1≥≤+n E e a x f x f n n 于;(2),..)()(lim E e a x f x f n n 于=∞→则⎰⎰=∞→EEn n dx x f dx x f )()(lim .证明 因为)(x f n 是E 上非负可测函数(n ≥1),所以E x x x f n kk n ∈=∞→),(lim )()(ϕ,其中)}({)(x n k ϕ是单调增的非负简单函数列,于是⎰⎰∞→=En k k En dx x dx x f )(lim )()(ϕ ,令)}(,),(),(max {)()()2()1(x x x x k k k k k ϕϕϕψ = ,则对每个)(,1x k k ψ≥是E 上的非负简单函数,且E x x x x k ∈≤≤≤≤,)()()(21 ψψψ ,E x k n x x k n k ∈≤≤≤),1(),()()(ψϕ ,又 E x x f x f x f x f x k k k ∈=≤),()}(,),(),(max {)(21 ψ ,所以 E x k n x f x x k k n k ∈≤≤≤≤,1),()()()(ψϕ, (1) 从而dx x f dx x dx x Ek EEk n k ⎰⎰⎰≤≤)()()()(ψϕ .(2)固定n ,令∞→k ,由(1)和(2)式,有E x x f x f x x f k k k k n ∈=≤≤∞→∞→),()(lim )(lim )(ψ ,和dx x f dx x dx x f k Ek Ek k n E)(lim )(lim )(⎰⎰⎰∞→∞→≤≤ψ ,进一步,令∞→n ,则)(lim )(lim )(x x f x f k k n n ψ∞→∞→== ,及dx x dx x f k Ek En n )(lim )(lim ψ⎰⎰∞→∞→= .(3)于是,由非负可测函数勒贝格积分定义和(3)式,有⎰⎰∞→=En n Edx x f dx x f )(lim )( .定理3 (逐项积分定理)设)}({x f n 是E 上的非负可测函数列,则⎰∑⎰∑∞=∞==⎪⎭⎫⎝⎛En n E n n dx x f dx x f )()(11 .证明 由定理1,对每个n ≥1⎰∑⎰∑===⎪⎭⎫⎝⎛Ek nn E n k k dx x f dx x f )()(11令 )}({,)()(1x S x f x S n nk k n 则∑==是非负可测函数列,且 E x x S x S n n ∈≤+),()(1 ,E x x f x S n n n n ∈=∑∞=∞→1)()(lim ,由Levi 单调收敛定理知,dx x S dx x f n E n E n n )(lim )(1⎰⎰∑∞→∞==⎪⎭⎫⎝⎛ =⎰∑⎰⎪⎭⎫ ⎝⎛==∞→∞→En k k n n En dx x f dx x S 1)(lim )(lim=()⎰∑⎰∑∞==∞→=Enn k Enk n dx x f dx x f 11)(lim .推论 设{E n }是可测集列,互不相交,∞==1n n E E 如果)(x f 是E 上的非负可测函数,则⎰∑⎰∞==En E ndx x f dx x f 1)()( .证明 令)1(,),()()(≥∈=n E x x x f x f n E n χ,则 )(x f n 是E 上的非负可测函数,且 ∑∞==1)()(n n x f x f ,⎰⎰=EnEn dx x f dx x f )()( .由逐项积分定理知∑⎰⎰∑⎰∞=∞===11)()()(n EnEn n Edx x f dx x f dx x f .定理4 设)(x f 是E 上几乎处处有限的非负可测函数,),0[}{,+∞⊂+∞<n y mE ,满足)(,01∞→+∞→<<<<=n y y y y n n o其中 δ<-+n n y y 1,令,1,0],)(|[1=<≤=+n y x f y x E E n n n则)(x f 在E 上是勒贝格可积的充分必要条件是∑∞=∞<0n nn mEy ,此时⎰∑=∞=→En n n dx x f mE y )(lim 0δ .证明 不妨假设)(x f 在E 上处处有限,因为在E n 上,)0(,)(1≥<≤+n y x f y n n ,所以由定理1,对每个n ≥0,n n Enn n mE y dx x f mE y 1)(+≤≤⎰,由定理3的推论知,∑⎰⎰∞==0)()(n E Endx x f dx x f ,所以⎰∑∑∞=+∞=≤≤En n n n nn mE y dx x f mEy 010)(=∑∑∞=∞=++-01)(n n n n n n n mE y mE y y∑∞=+<0n n n mE y mE δ,因此结论成立.定理5(Fatou 定理) 设{})(x f n 是E 上的非负可测函数列,则⎰⎰∞→∞→≤En n nE n dx x f dx x f)(lim )(lim .证明 令1,),(inf )(≥∈=≥n E x x f x g k nk n ,则 g n (x)是E 上的非负可测函数,且E x x g x g n n ∈≤+),()(1,于是,由Levi 单调收敛定理知,⎰⎰⎰∞→∞→∞→==En n n E n n n Edx x g dx x g dx x f )(lim )(lim )(lim .因为 E x x f x g n n ∈≤),()(所以 dx x f dx x gEn En⎰⎰≤)()( ,从而⎰⎰∞→∞→≤En n n En dx x f dx x g )(lim )(lim ,因此,⎰⎰∞→∞→≤En n n n Edx x f dx x f )(lim )(lim .Fotou 定理中的严格不等式有可能成立,例如设⎪⎩⎪⎨⎧-∈∈=]1,0[]1,0[0]1,0[)(n x n x n x f n ,易知 )1(,1)(],1,0[,0)(lim ]1,0[≥=∈=⎰∞→n dx x f x x f n n n ,所以1)(lim 0)(lim ]1,0[]1,0[=<=⎰⎰∞→∞→x f dx x f n n n n .§3 一般可测函数的勒贝格积分定义1 设)(x f 是E 上的可测函数,如果积分⎰⎰-+EEdx x f dx x f )(,)(中至少有一个是有限值,记⎰⎰⎰-+-=EEEdx x f dx x f dx x f )()()(,则称)()(x f dx x f E为⎰在E 上的勒贝格积分.如果上式右端两个积分值均是有限的,则称)(x f 在E 上是勒贝格可积的,或称)(x f 是E 上的勒贝格可积函数.通常把区间[a ,b ]上的勒贝格积分记成dx x f a b L )()(⎰,或 dx x f ab)(⎰.定理1 设)(x f 是E 上的可测函数,则 (1))(x f 在E 上勒贝格可积的充分必要条件是)(x f 在E 上勒贝格可积,此时⎰⎰≤EEdx x f dx x f |)(||)(|;(2)若)(x f 在E 上勒贝格可积,则)(x f 在E 上几乎处处有限;(3)若)()(x g x f = ..e a 于E ,且)(x f 在E 上勒贝格可积,则)(x g 在E 上勒贝格可积,且⎰⎰=EEdx x g dx x f )()(.证明 (1))(x f 与)(x f 在E 上勒贝格可积的等价性由定义1和)()()(x f x f x f -++=即得,另外,由§2 定理1, ⎰⎰⎰⎰-+-++=+=EEEEdx x f dx x f dx x f x fdx x f )()())()((|)(|⎰⎰⎰=-≥-+EEEdx x f dx x f dx x f |)(||)()(| .(2)若)(x f 在E 上勒贝格可积,则⎰⎰+∞<+∞<-+EEdx x f dx x f )(,)( ,对任何n ≥1,记])(|[n x f x E E n ≥=,则⎰⎰⎰⋅≥=≥++EE E n nnmE n dx x f dx x f dx x f )()()( ,所以 0lim =∞→n n mE ,而n n n E E x f x E ⊂=+∞=∞= 1])(|[ ,于是 0])(|[=+∞=x f x mE ,同理可证 0])(|[=-∞=x f x mE ,因此0]|)(||[=+∞=x f x mE ,即)(x f 在E 上是几乎处处有限的.(3)因为..)()(e a x g x f =于E ,所以..)()(),()(e a x g x f x g x f --++==于E ,再由勒贝格积分定义和§2定理1知结论成立.由定理1知,对于可测函数而言,其勒贝格可积性和积分值大小与零测集无关,因而我们总可以假定可积函数是处处有限的. 定理2 设)(),(x g x f 是E 上的勒贝格可积函数,则 (1) )(,1x cf R c ∈∀在E 上勒贝格可积,且⎰⎰=EEdx x f c dx x cf )()( ;(2) )()(x g x f +在E 上勒贝格可积,且()⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()()()( .证明 (1)当0≥c 时,),())((),())((x cf x cf x cf x cf --++==于是 ⎰⎰⎰-+-=EEEdx x cf dx x cf dx x cf ))(())(()(⎰⎰-+-=EEdx x cf dx x cf )()(=()⎰⎰⎰=--+EEEdx x f c dx x f dx x f c )()()( ;当0<c 时, ()())()(),()(x cf x cf x cf x cf +--+-=-=, 所以()()⎰⎰⎰-+-=EEEdx x cf dx x cf dx x cf )()()(=()()⎰⎰+----EEdx x cf dx x cf )()(=[]⎰⎰⎰=--+-EEEdx x f c dx x f dx x f c )()()( .(2)因为|)(||)(||)()(|x g x f x g x f +≤+,所以当)(),(x g x f 在E 上勒贝格可积时,)(,)(x g x f 在E 上勒贝格可积,从而)()(x g x f +在E 上勒贝格可积,故)()(x g x f +可积.另外,由于-++-+=+))()(())()(()()(x g x f x g x f x g x f , 又 ))()(())()(()()(x g x g x f x f x g x f -+-+-+-=+ ,所以 ,))()(())()(()()()()(-+-+-++-+=-+-x g x f x g x f x g x g x f x f 从而)()())()(())()(()()(x g x f x g x f x g x f x g x f --+-+++++=+++ .于是由§2定理1(6),⎰⎰⎰-+++++EEEdx x g x f dx x g dx x f ))()(()()(=⎰⎰⎰--++++EEEdx x g dx x f dx x g x f )()())()((因此⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()())()((定理3 设函数)(x f 在E 上勒贝格可积, ∞==1n n E E ,E n 是可测集(n ≥1),且互不相交,则)(x f 在每个E n 上勒贝格可积,且dx x f dx x f Enn E⎰∑⎰∞==)()(1.证明 对每个n ≥1,)(x f 在E n 上勒贝格可积,(留作习题).因为)(x f 在E 上勒贝格可积,所以由非负可测函数积分的可数可加性,+∞<=⎰⎰∑++∞=dx x f dx x f EE n n)()(1 ,+∞<=⎰⎰∑--∞=dx x f dx x f EE n n)()(1 ,于是⎰⎰∑⎰∑-+∞=∞=-=nnnE E n E n dx x f dx x f dx x f ))()(()(11=⎰∑⎰∑-∞=+∞=-nnE n E n dx x f dx x f )()(11=⎰⎰-+-EEdx x f dx x f )()(=dx x f E)(⎰ .定理4 (勒贝格控制收敛定理) 设)(x f 、)1)((≥n x f n 是E 上的可测函数,如果(1))()(x f x f n →a . e.于E ,(2)存在E 上的勒贝格可积函数g (x ),使),()(x g x f n ≤ a. e.于E ,则)1)((),(≥n x f x f n 在E 上勒贝格可积,且⎰⎰=∞→EEn n dx x f dx x f )()(lim .证明 由(2),f (x ), f n (x )(n ≥1)在E 上勒贝格可积,且g (x )+f n (x )≥0 (n ≥1), a .e.于E . 由Fatou 定理,⎰⎰+≤+∞→∞→E n n E nn dx x f x g dx x fx g ))()((lim ))()((lim ,于是 ⎰⎰⎰⎰∞→∞→+≤+E n En En n Edx x f dx x g dx x f dx x g )(lim )()(lim )( , 从而⎰⎰⎰∞→∞→≤=E n En n n Edx x f dx x f dx x f )(lim )(lim )( .同理,由g (x )-f n (x )≥0,(n ≥1),a.e.于E 知,()⎰⎰-≤-∞→Enn Edx x fdx x f )(lim ))(( ,即⎰⎰∞→-≤-En n Edx x f dx x f )(lim )(,所以, ⎰⎰∞→≥En n Edx x f dx x f )(lim )( ,因此⎰⎰∞→=En n Edx x f dx x f )(lim )( .推论 设)(,x f mE n +∞< )1(≥n 是E 上的可测函数,如果 (1)..),()(e a x f x f n →.于E ,(2)M x f n ≤)(, a.e.于E ,(n ≥1) ,则 可积,且上在L E x f )(⎰⎰∞→=En n Edx x f dx x f )(lim )(.定理5 (积分的绝对连续性)设f (x )在E 上勒贝格可积,则对任何ε>0,存在δ>0,对E 的任何可测子集A ,当mA<δ时,ε<⎰Adx x f )(证明 不失一般性,设f (x )在E 上非负可积. 令⎩⎨⎧>≤=nx f nn x f x f x f n )()()()(,则 )1,(),()(0≥∈≤≤n E x x f x f n ,且)()(lim x f x f n n =∞→,)()(1x f x f n n +≤.因为f (x )勒贝格可积,所以对每个n ,f n (x )是勒贝格可积的,于是由Levi 单调收敛定理,有⎰⎰∞→=EEn n dx x f dx x f )(lim )( ,因此,对任意正数ε>0, 存在N ≥1,使⎰<-≤EN dx x f x f 2))()((0ε.令 N2εδ=,则对E 的任何可测子集A ,当mA<δ时,()⎰⎰⎰+-=AAN AN dx x f dx x f x f dx x f )()()()(<εεεε=+<⋅+222mA N . 定理6 设f (x )是1R E ⊂上的L 可积函数,mE<+∞,则对任何ε>0,存在R 1上的连续函数g (x ),使⎰<-Edx x g x f ε)()(.证明 令[]n x f x E E n >=)(|,则1+⊃n n E E ,且[] ∞=+∞==1)(|n n x f x E E . 因为f (x )在E 上勒贝格可积,所以f (x )在E 上几乎处处有限. 又mE <+∞,故由可测集性质,[]0)(|lim =+∞==∞→x f x mE mE n n ,因此,由积分的绝对连续性,对任何ε>0,存在N ≥1,使⎰<≤NE N dx x f NmE 4)(ε.对于E\E N ,由第三章§3定理3,存在R 1上连续函数)(x g 和闭集N N E E F \⊂,使(1)[]NF E E m N N 4\)\(ε<,(2)f (x )=g (x ), ,N F x ∈ 且,)(sup 1N x g R x ≤∈ 于是⎰⎰⎰-+-=-EE E E NNdx x g x f dx x g x f dx x g x f \)()()()()()(⎰⎰⎰---++≤NNN NE F E E E dx x g x f dx x g dx x f )(|)()(||)(|)([]N N N F E E Nm NmE \)\(24++<εεεεε=++<244.例1 证明dy y f y x a b dy y f y x abdx d )()cos()()sin(+=+⎰⎰ , 其中f (x )是[a ,b ]上的勒贝格可积函数. 证明 对任何1R x ∈,|)(|)()sin(y f y f y x ≤+所以函数 sin(x+y )f (y )在[a ,b ]上勒贝格可积,对任何0→n ε,令[])()sin()()sin(1)(y f y x y f y x y f n nn +-++=εε ,则|)(||)(|y f y f n ≤,且 )()cos()(lim y f y x y f n n +=∞→,由控制收敛定理,dy y f y x a b dy y f y x ab dx d )()cos()()sin(+=+⎰⎰. 例2证明 0101lim 2223=+⎰∞→dx x n xn n .证明 易知]1,0[,01lim2223∈=+∞→x x n xn n ,令xx g xn xn x f n 2)(,1)(2223=+=,则)1()12(2)()(222323x n x xn nx x f x g n +-+=-, 当 0)12(2,1412323>-+≤<x n nx x n时;当 时nx 410≤≤,()04122122232323232323>⎪⎭⎫⎝⎛-≥-≥-+n n x n x n nx ,所以 1],1,0[),()(0≥∈≤≤n x x g x f n ,由习题6, g (x )在[0,1]上勒贝格可积,所以由控制收敛定理,0001101lim 2223==+⎰⎰∞→dx dx x n xn n .§4 黎曼积分与勒贝格积分本节介绍黎曼积分与勒贝格积分的关系,并给出黎曼可积函数的特征性质. 定理1 设f (x )是闭区间[a ,b ]上的有界函数,如果f (x )在[a ,b ]上黎曼可积,则f (x )在[a ,b ]上勒贝格可积,且⎰⎰=bab adx x f L dx x f R )()()()( .证明 设|,)(|sup ],[x f M b a x ∈= 则0≤M<+∞.作[a ,b ]的分划D n 如下:D n : b x x a x n k n n n=<<<=)()(1)(0 , 使1+n D 比n D 更细密,并且())(0max )(1)(1∞→→-=-≤≤n x x D n j n j k j n n.记 )(sup )(inf ],[)(],[)(11x f M x f m j j j j x x x n j x x x n j --∈∈==,作简单函数[](]⎪⎩⎪⎨⎧∈∈=-)()(1)()(1)(0)(1,,)(n jn j n j n n n n x x x m x x x m x L ,n k j ≤≤2,[](]⎪⎩⎪⎨⎧∈∈=-)()(1)()(1)(0)(1,,)(n jn j n jn n n n x x x M x x x M x U ,n k j ≤≤2,易知简单函数列{L n (x )}和{U n (x )}满足 )()(1x L x L n n +≤ , )()(1x U x U n n +≥ ,],[),()()(b a x x U x f x L n n ∈≤≤ .令 )(lim )(),(lim )(x U x U x L x L n n n n ∞→∞→==,则],[),()()(b a x x U x f x L ∈≤≤ .因为对每个n ,],[,|)(|,|)(|b a x M x U M x L n n ∈≤≤,所以由有界控制收敛定理, ⎰⎰∞→=],[],[)(lim )(b a b a n n dx x L dx x L ,⎰⎰∞→=],[],[)(lim )(b a b a n n dx x U dx x U .另外,由简单函数勒贝格积分定义知,()⎰∑=-=-=],[1)(1)()(),()(b a k j n n j n j n j n nf D s x x m dx x L ,()⎰∑=-=-=],[1)(1)()(),()(b a k j n n j n j n j n nf D S x x M dx x U ,其中s (D n , f )与S(D n , f )分别是f (x )关于分别D n f (x )在[a ,b ]上黎曼可积,所以),(lim ),(lim )()(f D S f D s dx x f R n n n n ba∞→∞→==⎰ ,从而 ⎰⎰⎰==],[],[)()()()(b a b a badx x U dx x L dx x f R ,注意到 ()⎰=-≥-],[,0)()(0)()(b a dx x L x U x L x U 及于是 U (x )-L (x )=0 a .e .于[a ,b ], 因此 f (x )=U (x )=L (x ) a .e .于[a ,b ].故f (x )在[a ,b ]上L 可积,并且⎰⎰⎰==],[],[)()()()(b a b a ba dx x U dx x L dx x f L ,于是 ⎰⎰=b a dx x f L dx x f abR )()()()(.以下我们给出黎曼可积函数的充分必要条件,先给出如下引理.引理 函数f (x )在],[0b a x ∈处连续的充分必要条件是对任意ε>0,存在包含x 0的开区间I ,使f (x )在I 上的振幅.ε<-=∈∈)(inf)(sup )(],[],[x f x f I w Ib a x Ib a x f证明 由连续函数的定义即得.定理2 设f (x )为[a ,b ]上的有界函数,则f (x )在[a ,b ]上黎曼可积的充分必要条件是它的不连续点的全体是零测集,即f (x )在[a ,b ]上几乎处处连续.证明 必要性 因为f (x )黎曼可积,所以同于定理1的证明,做[a ,b ]的分划列{D n }和简单函数列{L n (x )}与{U n (x )},得知.],[),()()(b a x x U x f x L ∈≤≤, 进而],[..),()()(b a e a x f x L x U 于==,其中 )(lim )(),(lim )(x L x L x U x U n n n n ∞→∞→== .记D 是分划{D n }的所有分点所成之集,令 )}()()()(],,[|{x U x f x L x f b a x x E <>∈=或 ,E DF = ,则mF =0,下证f (x )在[a ,b ]-F 上连续.事实上,设E x D x F b a x ∉∉-∈000,,],[且则. 若f (x )在x 0处不连续,则由引理知,存在00>ε,对任何包含x 0的开区间I ,有0)(ε≥I w f . 因为D x ∉0,所以对每个n ,存在)1(00n k k k ≤≤,使())()(1000,n k n k x x x -∈,于是()0)()(100),()()(00ε≥=--n k n k f n n x x w x L x U , 而 )(lim )(),(lim )(0000x L x L x U x U n n n n ∞→∞→==,所以0)()(000>≥-εx L x U ,这与E x ∉0矛盾,故f (x )在x 0处连续. 充分性设f (x )在[a ,b ]上几乎处处连续,且|f (x )|≤M ,],[b a x ∈. 作[a ,b ]上的一列越来越细密的分划{D n },D n :b x x x a n k n n n=<<<=)()(1)(0 , 满足:())(0max )(1)(1∞→→-=-≤≤n x x D n j n j k j n n同于定理1的证明,做简单函数列{U n (x )}和{L n (x )},使1],,[,)(,)(≥∈≤≤n b a x M x L M x U n n , 并且].,[),(lim )()(lim b a x x U x f x L n n n n ∈≤≤∞→∞→下证对于f (x )的任何连续点x ,有).()(lim )(lim x f x U x L n n n n ==∞→∞→事实上,设f (x )在x 处连续,则由引理,任给0>ε,存在开区间I =(α,β),使ε<∈)(,I w I x f 且. 因为0→n D ,所以存在N ≥1,当n ≥N 时,},min{x x D n --<βα,另外,存在k 0(1≤k 0≤k n ),使[]I x x x n k n k ⊂∈-)()(100,,因此[]()ε<≤=--)(,)()()()(100I w x x w x L x U f n k n k f n n , 由ε的任意性知,).()(lim )(lim x f x L x U n n n n ==∞→∞→因为f (x )在[a ,b ]上几乎处处连续,所以].,[..)()(lim )(lim b a e a x f x L x U n n n n 于==∞→∞→又 ⎰=],[),()(b a n n f D S dx x U ,⎰=],[),()(b a n n f D s dx x L ,于是由勒贝格有界控制收敛定理, ⎰⎰==∞→∞→bab a n n n n dx x f L dx x U f D S )()()(lim ),(lim ],[,⎰⎰==∞→∞→bab a n n n n dx x f L dx x L f D s )()()(lim),(lim ],[,因此 ()0),(),(lim =-∞→f D s f D S n n n ,故f (x )在[a ,b ]上黎曼可积.例1 设⎩⎨⎧=,]1,0[1,]1,0[0)(中有理数为中无理数为x x x D 则D (x )在[0,1]上黎曼不可积.证明 因为D (x )在[0,1]上处处不连续,所以由定理2,D (x )在[0,1]上黎曼不可积. 例2 黎曼函数⎪⎩⎪⎨⎧=,]1,0[0,1)(上其它数为为任约真分数x q px qx ξ则ξ(x )在[0,1]上黎曼可积.证明 因为ξ(x )不连续点的全体为(0,1)中的有理数集,而该集合为零测集,所以由定理2,ξ(x )在[0,1]上黎曼可积.§5 重积分与累次积分在黎曼积分中,重积分可化为累次积分. 例如设D =[a ,b ]×[c ,d ], f (x ,y )是D 上的连续函数,则⎰⎰⎰⎰⎰⎰==Ddx y x f abdy c d dy y x f c d dx a b dxdy y x f ),(),(),(本节我们在勒贝格积分中建立相应的定理——即富比尼(Fubini )定理,由此看到,在勒贝格积分中重积分化为累次积分,以及积分次序的交换等问题中,勒贝格积分要求的条件比在黎曼积分时要求的条件弱得多,这再次显示了勒贝格积分的优越性. 一、富比尼定理设p 、q 是正整数,n =p +q ,此时R n 可以看成R p 和R q 的直积,即R n =R p ×R q . R n上的函数f 可以用f (x ,y )表示,其中,,q p R y R x ∈∈相应的积分可写成⎰⨯qp R R dxdy y x f ),(,称为重积分. 另一方面,固定),(,y x f R x p ∈看成q R y ∈的函数,令⎰=q Rdy y x f x F ),()(,则称[]⎰⎰⎰⎰⎰∆=p q ppqRRR R R dy y x f dx dx dy y x f dx x F ),(),()(为累次积分. 富比尼定理给出了等式⎰⎰⎰⨯=p q qp RRR R dy y x f dx dxdy y x f ),(),(成立的条件. 定理1 (Tonelli )设f (x ,y )是R p ×R q 上的非负可测函数,则 (1)对几乎所有的q p R y y x f R x ∈∈作为),(,的函数是非负可测的; (2)⎰∈=q RP R x dy y x f x F 作为),()(的函数是非负可测的;(3).),(),(⎰⎰⎰⨯=qp p q R R RRdy y x f dx dxdy y x f证明 由于非负可测函数是非负单调增简单函数列的极限,我们只需证)(x f 是R p ×R q 中可测集E 的特征函数的情形即可.以下分五种情形加以证明.情形1 E=I 1×I 2,其中I 1和I 2分别是R p 和R q 中的区间; 当1I x ∉时,f (x ,y )=0;当,1时I x ∈⎩⎨⎧∉∈=,,1),(22I y I y y x f所以对一切q p R y y x f R x ∈∈作为),(,的函数是非负可测的,并且⎰⎩⎨⎧∉∈==q R I x I x I dy y x f x F ,0,||),()(112于是 ⎰⎰⨯==p RI I I dx I dx x F 1||||||)(212 . 而⎰⨯⨯==qp R R I I mE dxdy y x f ||||),(21 ,所以⎰⎰⎰⨯=qp p q R R RRdy y x f dx dxdy y x f ),(),( .情形2 E 是开集;由开集结构知, ∞==1)(k k I E ,其中I (k) (k ≥1)是R p ×R q 中互不相交的半开半闭区间,记)(2)(1)(k k k I I I ⨯=,其中)(2)(1k k I I 和分别是R p 和R q 中的区间,令⎩⎨⎧⨯∉⨯∈=,),(0,),(1),()(2)(1)(2)(1k k k k k I I y x I I y x y x f 则 ∑∞==1),(),(k k y x f y x f .由情形1,每个f k (x ,y )满足(1)~(3),于是对一切qp R y y x f R x ∈∈作为),(,的函数是非负可测的,从而由逐项积分定理,∑∑⎰⎰⎰∞=∞====11),(),(),()(k k Rk kRRq q qdy y x f dy y x fdy y x f x F在R p 上非负可测,仍由逐项积分定理,∑⎰⎰∞=⨯⨯=1),(),(k kR R R R dxdy y x fdxdy y x f qp qp=[]∑∑⎰⎰⎰∞=∞=⨯=11),(),(k k R R k k R R pqqp dx dy y x f dxdy y x f=⎰⎰⎰∑∑⎰⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∞=∞=p p q q R RR k k k R k dx dy y x f dx dy y x f 11),(),( =[]⎰⎰⎰⎰=pp q qR RRR dy y x f dx dx dy y x f ),(),( .情形3 E 是有界闭集; 令 },1)),,((0),{(1<<⨯∈=E y x d R R y x G q p},1)),,((),{(2<⨯∈=E y x d R R y x G qp则G 1和G 2是R p ×R q 中的有界开集,且E =G 2\G 1,21G G ⊂,及,0),(),(),(12≥-=y x f y x f y x f其中f 1, f 2分别是G 1与G 2的特征函数,由情形2,f 1, f 2均满足(1)~(3),并且对一切),(,y x f R x p ∈关于p R y ∈是非负可积的,从而dy y x f dy y x f dy y x f x F q q q RRR),(),(),()(12⎰⎰⎰-==在R p 上非负可积,并且[]dy y x f dx dy y x f y x f dx dx x F q p p q pRRRRR ),(),(),()(12⎰⎰⎰⎰⎰=-= .另外,由f i (x ,y )在R p ×R q 上非负可积及情形2知(i=1,2),⎰⎰⎰⨯⨯⨯-=qp qp qp R R R R R R dxdy y x f dxdy y x f dxdy y x f ),(),(),(12=⎰⎰⎰⎰-p q p q RRRRdy y x f dx dy y x f dx ),(),(12=[]⎰⎰⎰⎰=-pq qRRRR dy y x f dx dy y x f y x f dx ),(),(),(112.情形4 E 是零测集;因为E 是零测集,所以存在递减开集列{G k },使)1(≥⊂k G E k 且)(0∞→→k mG k ,令k k G H ∞==1,则.0,=⊂mH H E 且令⎩⎨⎧∉∈=kkk G y x G y x y x f ),(0),(1),(, 则由控制收敛定理和情形2, 0=⎰⎰⨯⨯∞→=qP qp R R RR k k H dxdy y x f dxdy y x ),(lim ),(χ =[]⎰⎰⎰⎰∞→∞→=p q p qRRR R k k k k dx dy y x f dy y x f dx ),(lim ),(lim=[]⎰⎰⎰⎰=∞→pp q q R RRH R k k dy y x dx dx dy y x f ),(),(lim χ .因此,对几乎所有的p R x ∈,有⎰=q RH dy y x 0),(χ,从而对几乎所有p R x ∈,q H R y y x ∈关于),(χ几乎处处为零,但),(),(),(0y x y x y x f H E χχ≤=≤,因而对几乎所有的p R x ∈,几乎处处为零关于q R y y x f ∈),(,因此对几乎所有的p R x ∈,⎰==0),()(dy y x f x F q R ,于是⎰⎰⎰==⨯0),(),(dy y x f dx dxdy y x f q p qp R R R R .情形5 E 是一般可测集.由可测集结构知,存在有界单增的闭集列Z F k 和零测集}{,使φ=⎪⎪⎭⎫ ⎝⎛=∞= Z F Z F E k k k ,1(k ≧1),记()则的特征函数和分别为和,1≥k F Z f f k k o),(),(lim ),(),(y x f y x f y x y x f o k k E +==∞→χ.由情形3和4,)1(,≥k f f o k 满足定理(1)~(3),故由单调收敛定理和可积函数性质知),(y x f 也满足(1)~(3).至此我们证明了q p R R ⨯中任何可测集E 上的特征函数)3(~)1()(满足定理x f ,从而易知任何非负简单函数和非负可测函数都满足定理(1)~(3). 定理2 (Fubini ),设),(y x f 在q p R R ⨯上可积,则(1)对几乎所有的q R x ∈,),(y x f 作为q R y ∈ 的函数在q R 上可积; (2)⎰=q Rdy y x f x F 在),()(q R x ∈上可积;(3)⎰⎰⎰⨯=qp qpR R R R dy y x f dx dxdy y x f ),(),(.证明 因为),(),(),(y x f y x f y x f -+-=,而q P R R f f ⨯-+都是,上的非负可积函数,所以由定理1即得结论.推论 设),(y x f 在q p R R ⨯上非负可测(L 可积),则dx y x f dy dxdy y x f dy y x f dx pqqp qpR R R R R R ),(),(),(⎰⎰⎰⎰⎰==⨯ .证明 在定理1和定理2的证明中交换y x 与的位置即得结论. 二、富比尼定理的应用以下我们介绍富比尼定理在函数的卷积和分布函数方面的应用.为此先给出如下引理:引理 设上的可测函数是则上的可测函数是n n n n R R R y x f R x f 2)(,)(=⨯-. 证明 因为函数上可测在n R x f )(,所以对任何})({,1αα>∈=∈x f R x A R n 是n R y x y x g -=),(,则})(),{(a y x f R R y x n n >-⨯∈)(}),{(1A g A y x R R y x n n -=∈-⨯∈=. 为证引理,只需证明 中可测集是n R A g 21)(-. 分三种情形证明:(1)若A 为中n R Borel 集,因为n n R R g →2:是连续映射,则)(1A g -为n R 2中Borel 集,从而)(1A g -是可测集. (2)若A 是中n R 零测集,即mA=0,则存在δG 型集G ),(,0,1G g B mA mG A -===⊃令且则B 的特征函数B χn R 2是上的非负可测函数,由推论及有,0}){(==+mG y G m.0}){(),(),(),(}{2=+=====⎰⎰⎰⎰⎰⎰⎰⎰+dy y G m dxdy dx y x dy dyy x dx dxdy y x mB nnnn nnn R y G R B R R B R R B R χχχ另外,由A G ⊃知,从而所以,0))((,)()(111==⊂---A g m B G g A g )(1A g -是n R 2中可测集.(3)若A 是n R 中任一可测集,则存在,0)\(,=⊂F A m A F F 使型集σ因为知所以由集型集是)1(,Borel F σ,)2(,)(1知又由是可测集F g -)\(1F A g -是可测集,从而)\()()(111F A g F g A g ---= 是可测集.定义 设n R x g x f 是)(),(上的可测函数,如果对几乎所有的n R x ∈,积分dy y g y x f nR )()(-⎰存在,则称dy y g y x f x g f nR )()())(*(-=⎰为)()(y g x f 与的卷积.定理3 设)(x f ,)(x g 在n R 上可积,则对几乎所有的n R x ∈,))(*(x g f 存在,并且))()()(()(*dx x g dx x f dx x g f nnnR R R ⎰⎰⎰≤.证明 先设0)(≥x f ,0)(≥y g ,由引理,)()(y g y x f -在n n R R ⨯上是非负可测的,由推论,).)()()(())()((])()([))()(())(*(dy y g dx x f dydx y x f y g dydx y g y x f dxdy y g y x f dx x g f nnnnnn nnnR R R R R R R R R ⎰⎰⎰⎰⎰⎰⎰⎰⎰=-=-=-=一般情形由下式即得:dx x g Rdx x f Rdx x g f Rdx x g f Rnnnn)()())(*())(*(⎰⎰⎰⎰=≤.定理4 设n R E ⊂是可测集,)(x f 是E 上几乎处处有限的可测函数,对每个0>λ,令 }))(({)(λλ>∈=x f E x m F ,称的分布函数为)()(x f F λ,则当∞<≤p 1时,λλλd F p dx x f E p p)(0)(1-⎰⎰∞=.证明 令⎩⎨⎧≤>=,)(0,)(1),(λλλx f x f x g固定的函数是可测集合作为时x x g ),(,0λλ>})({λ>∈x f E x 的特征函数,所以由定理1,⎰⎰⎰-=λλd p x f dx dx x f p E pE10)()(().)(.),(101010λλλλλλλλλd F p dx x g d p d x g p dx p E p p E -∞-∞-∞⎰⎰⎰⎰⎰===习 题1、证明§1定理2中(1)、(3)、(4).2、证明§2定理1中(2)、(4)、(6).3、设则上可测在,)(E x f 对任何0>η,有,)(])([dx x f x f x mE E ⎰≤≥ηη4、设上在E x f )(非负可测,且⎰=0)(dx x f E,则E e a x f 于,,0)(=5、设令上可测在,0)(E x f ≥,)(,)(0)()]([n x f n x f x f x f n >≤⎩⎨⎧= 若则于,..)(E e a x f +∞<[]⎰⎰=∞→dx x f dx x f E n En )()(lim .6、设(]⎪⎩⎪⎨⎧=∈=⎪⎩⎪⎨⎧=,00,1,02)(,]1,0[,]1,0[1)(4x x xx g x x x xx f 中有理数为中无理数为证明并求可积上在,]1,0[)(),(L x g x f ⎰⎰dx x g dx x f )()(]1,0[]1,0[和.7、 设中任一点至少属于如果的可测子集是]01[,]1,0[,,,21n E E E 这n 个集合中的q个,证明必有一个集合,它的测度大于或等于nq. 8、设是上可积的充分必要条件在证明上非负可测在E x f E x f mE )(,)(,+∞<级数])([1n x f x mE n ≥∑∞=)收敛, +∞=mE 时,结论是否成立?9、设()x f 在可测集E 上L 可积,1E 是E 的可测子集,则()x f 在1E 上L 可积. 10、设+∞<mE ,()x f 在E 上有界可测,则()x f 在E 上L 可积,从而[ a ,b ]上的连续函数是L 可积的.11、设()x f ,()x g 是E 上的可积函数,则)()(22x g x f +,也在E 上可积.12、设]1,0[0为P 中康托集,⎪⎩⎪⎨⎧∈∈=阶邻接区间n x P x n x f 0100)( ,证明 3)(]1,0[=⎰dx x f .13、设()x f 在E 上L 可积,mE mE mE n E E n n n =+∞<≥⊂→∞lim ,),1(且,证明dx x f dx x f E E n n )()(lim ⎰⎰=→∞.14、设.0lim ],)([,)(,=≥=+∞<∞→n n n nmE n x f x E E L E x f mE 证明记可积上在15、设mE ≠0,()x f 在E 上L 可积,如果对于任何有界可测函数)(x ϕ,都有0)()(=⎰dx x x f Eϕ,则()x f =0,a.e.于E16、设+∞<mE ,0,,)}({⇒n n f E E x f 上证明在函数列上几乎处处有限的可测为的充要条件为 0)(1)(lim =+⎰∞→dx x f x f n n En .17、设{})(x f n 为E 上非负可测函数列,且)1()()(1≥≥+n x f x f n n ,若)()(lim x f x f n n =∞→,且存在0k ,使⎰+∞<Ek dx x f )(0,则dx x f dx x f En En )()(lim ⎰⎰=∞→ .18、设()x f 在[a ,b ]上L 可积,则对任意ε>0,存在[a ,b ]上的连续函数()x g ,使ε<-⎰dx x g x f b a )()(],[.19、若()x f 是),(+∞-∞上的L 可积函数,则0)()(lim ],[0=-+⎰→dx x f h x f b a h .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v ( x ) 在 a, b 有连续导数, 在定积分的条件下, 黎曼积分的分部积分法 是 u(x) ,
[4]
由函数乘积的导数公式,有
(u ( x )v ( x )) ' u ' ( x )v ( x ) u ( x )v ' ( x )

2.2
b a
b b (u ( x )v ( x )) ' dx a d (u ( x )v ( x )) u ( x )v (v ) a ,
第 3 页 (共 11 页)
勒贝格积分的变量替换公式是由以下三个引理[2]推导出来的, 引理 1 设 ( x ) 是 , 上的绝对连续函数, E , 是零测度集,则 ( E ) 也 是零测度集。 引理 2 设 ( x ) 是 , 上的绝对连续函数, E , 为可测集,则 ( E ) 也是 可测集。 引理 3 设 ( x ) 是 , 上严格单调增的绝对连续函数, E , 是可测集, 则
n
法无关,即 0, 0 , T : l (T ) , k ,有 f ( k )x k I ,则称
k 1
f x 在 a, b 可 积 , I 是 函 数 f x 在 a, b 的 定 积 分 , 亦 称 黎 曼 积 分 [4] , 记 为
t 时,有 a (t ) b ,又 ( ) a, ( ) b,
b f ( x)dx f (t ) ' (t )dt 。 则 a
实变函数引入勒贝格积分是为了弥补黎曼积分的不足,扩大可积函数类,降 低逐项积分与交换积分顺序的条件。那么勒贝格积分是否也能进行分部积分和变 量替换呢?
Lebesgue 积分的分部积分和变量替换

要: 本文通过探讨黎曼积分的分部积分和变量替换的条件, 引出勒贝格积分的分部积
分和变量替换的相关结论及运用,然后给出两类积分对应的分部积分和变量替换的联系与区 别,最后拓展到勒贝格积分的一些实际应用。 关键词:黎曼积分;勒贝格积分;分部积分;变量替换 Abstract : This article through to the division of the integral of Riemann integral and the condition of variable substitution, raises Lebesgue integral division of integral and the relevant conclusions and use variable substitution.Then give two points corresponding to the division and the relationship and difference variable substitution, finally to some practical application of Lebesgue integral. Key words:Riemann integral;Lebesgue integral;Partial integration;Variable substitution
b b b ' u( x)v' ( x)dx u( x)v( x) a a u ( x)v( x)dx 。 则 a
黎曼积分的变量替换
N L 公式求定积分比较复杂,引入一种简单的方法---变量替换,变量替换
是换元法的另一种说法,求积分经常使用的方法,在积分计算中变量替换的问题 有着重要意义,化繁为简,直到能直接运用公式求出。 若 函 数 f ( x ) 在 区 间 a, b 连 续 , 且 函 数 x (t ) 在 , 有 连 续 导 数 , 当
3 勒贝格积分的分部积分和变量替换
定义 2 设 F ( x ) 为 a, b 上的有限函数,如果对 0, 0 ,使对 a, b 中互 不 相 交 的 任 意 有 限 个 开 区 间 (ai , bi ) , i 1,2,..., n , 只 要
(b
i 1
n
i
ai ) 就 有
0
因此 f ( x) f (0) 0x f ' ( x)dx , f ( x ) 是 0,1 上的绝对连续函数。
2 黎曼积分的分部积分与变量替换
定义 1 设函数 f ( x ) 在 a, b 上有定义。任给 a, b 一个分法 T 和一组 k , 有积分和 (T , ) f k x k 。

证明
b a
f ( x)dx f ( (t )) ' (t )dt.
(1)
假定 f ( x ) 是 a, b 上的非负 L 可积函数,令 x (t ) , f (t ) 作为 t 的函
数在 , 也非负可积。 对区间 a, b 进行细分,a x0 x1 ... xn b , 设 f x 在 x k , x k 1 上的最大值 也最小值分别为 M k 与 m k 。现在令 t k = x k ,那么当 t t k , t k 1 时有

x 0
f ' ( x)dx lim x f ' ( x)dx.
0
x ' f ( x)dx f ( x) f ( ) ,再由 f ( x ) 在 x 0 连 又因为 f ( x ) 在 ,1 上绝对连续,则 0
x ' 续,可以得到 0 f ( x)dx lim( f ( x) f ( )) f ( x) f (0) ,

b a
f ( x )dx lim
l (T ) 0
f (
k 1
n
k
) x k I 。
一般来说求导数比求定积分较易,如果函数存在导数,根据导数运算法则和 公式或者导数定义,按照求导运算程序,总能求出导数。但求函数定积分则不然。 根据定积分运算法则和公式只能求出一小部分比较简单的函数的不定积分,而对
mk f (t ) M k ,
再由不等式 , t 0 与 t k tk1 ' (t )dt x k 1 x k ,得出:
L t t f (t ) ' (t )dt ,其介于 mk ( xk 1 xk ) 与 M k ( xk 1 xk ) 。
m ( E) E ' (t )dt 。
定理 2(勒贝格积分的变量替换)设 f ( x ) 在 a, b 上 L 可积, (t ) 是在 , 上 严格单调增的绝对连续函数,且 ( ) a , ( ) b ,则 f t ' t 作为 t 的函数 在 , 上 L 可积,且
第 1 页 (共 11 页)
更多函数的定积分要因函数不同形式选用不同的方法,化繁为简。下面我们针对 求定积分最基本最常用的分部积分法和变量替换法进行描述。 2.1 黎曼积分的分部积分 分部积分是对于两个不同函数组成的被积函数,不便于进行换元的组合分成 两部份进行积分,其原理是函数四则运算的求导法则的逆用,是积分方法的一种。
b b b ' f ( x) g ' ( x)dx f ( x) g ( x) a a f ( x) g ( x)dx。 即 a
注:勒贝格积分分部积分是由斯蒂尔切斯积分证明的,斯蒂尔切斯积是黎曼积分 的一个很重要的推广。 把绝对连续函数表示成不定积分形式,利用 L 积分的性质和定理是讨论绝对 连续函数的常用方法。 黎曼积分只要满足函数在定义域上有连续的导数就可以,但勒贝格积分需要 函数在定义域上绝对连续,这个条件比较严格。 3.2 勒贝格积分的变量替换法
1 引言
微积分奠基于 16,17 世纪,它的扩张统治了 18 世纪到 19 世纪上半叶,形成 了数学分析这门基础数学分支。19 世纪的微积分学中已经有了许多直观而有用的 积分,例如黎曼积分(简称 R 积分)、黎曼-斯蒂尔杰斯积分(简称 R-S 积分)等。 只要相应的函数性质较好,就可以用这些积分来计算曲边形面积、物体重心、物 理学上的功能等。然而,随着认识的深入,人们愈来愈经常地需要处理复杂的函 数。在讨论它们的可积性、连续性、可微性时,经常遇到积分与极限能否交换顺 序的问题。通常只有在很强的假设下才能对这问题作出肯定的回答。因此,在理 论和应用上都迫切要求建立一种新的积分,它既能保持 R 积分的几何直观和计算 上的有效,又能在积分与极限交换顺序的条件上有较大的改善。1902 年法国数学 家 H.L.勒贝格出色地完成了这一工作, 建立了以后人们称之为勒贝格积分的理论, 接着又综合 R-S 积分思想产生了勒贝格-斯蒂尔杰斯积分(简称 L-S 积分)[1]。 本文首先讨论黎曼积分的分部积分和变量替换的条件,然后给出勒贝格积分
的分部积分和变量替换的一些相关运用[2]。 例 1 设 f ( x ) 是 0,1 上的有界变差函数,并且在点 x 0 连续。若对任 0 1 ,
f ( x ) 在 ,1 上绝对连续,则 f ( x ) 是 0,1 上的绝对连续函数。
证明 因为 f ( x ) 是 0,1 上的有界变差函数,所以 f ' x 在 0,1 上 L 可积。由勒贝 格积分的绝对连续性可以得出
第 2 页 (共 11 页)
F (b ) F (a ) ,则称 F ( x) 为 a, b 上的绝对连续函数。
i 1 i i
n
绝对连续函数是一致连续函数, 一致连续函数一定是连续函数 (其逆不成立) , 该函数可积。满足利普希茨条件[6](若存在常数 K ,使得对定义域 a, b 的任意两个 不同的实数 x1 , x2 均有 : f ( x1 ) f ( x 2 ) K x1 x 2 成立,则称 f ( x ) 在 a, b 上满足利 普希茨条件)的函数是绝对连续函数。 与黎曼积分一样,勒贝格积分也可以进行分部积分和变量替换,但是要在一 定的条件下进行,而这些条件相对于黎曼积分更为苛刻,如绝对连续,严格单调 等。 3.1 勒贝格积分的分部积分法 定理 1(勒贝格积分的分部积分法)若 f ( x ) 和 g ( x) 都在 a, b 上绝对连续,则
相关文档
最新文档