多目标优化的Pareto解的表达与求取
基于Pareto解集的多目标优化方法及其应用_费烨

的寻优模式 。这种解法在工程应用中存在着明显缺 陷 , 它只能获得特定条件下的某一 Pareto 解[2] , 该 解往往受限于设计人员对优化模型性态的理解程 度 、实践经验和个人偏好等先验知识 , 因而在工程 中并非最合理 、最理想 。
上世纪 70 年代中期发展起来的遗传算法 , 由 于其具有随机性的大规模并行搜索特性 , 因而成为 求解多目标优化问题新的研究热点[3][4] 。本文利用 遗传算法求出多目标优化问题的 Pareto 解集 , 据此 通过决ห้องสมุดไป่ตู้获得原问题的工程最优解 , 形成先寻优后 决策的多目标优化问题求解模式 。
— 13 —
1 多目标优化
多目标优化问题一般可表示为
min F ( x) = ( f 1 ( x) , f 2 ( x) , …, f n ( x) )
s1t1 g ( x ) = ( g1 ( x ) , g2 ( x ) , …, gr
( x) ) ≤0
(1)
x = ( x1 , x2 , …, xk) ∈X
为了保证寻优过程不收敛于可行域的某一局 部 , 使种群向均匀分布于 Pareto 前沿面的方向进 化 , 需要通过共享函数定义一小生境加以实现 。共 享函数可表示为[7 ]
— 14 —
δshare ( X , Y) =
0 σ( X , Y) ≥σshare 1 - σ( X , Y) / σshare σ( X , Y) <σshare
(1) 若对 2 个设计目标没有特殊偏好 , 则工程 最优解应在 A 区选择 ;
(2) 若对质量目标要求较高 , 则工程最优解可 在 B 区选择 ;
(3) 若对吊臂角位移有严格限制 , 则应在 C 区 选择工程最优解 。
pareto解支配关系及数学表达式

pareto解支配关系及数学表达式Pareto解支配关系是多目标优化中常用的概念,用于描述两个解之间的优劣关系。
如果一个解在所有目标上都优于另一个解,那么我们说前者支配后者。
具体来说,设两个解分别为x1,x2,目标函数值分别为f1(x1),f2(x1),f1(x2),f2(x2),则x1支配x2,当且仅当:f1(x1)≤f1(x2)且f2(x1)≤f2(x2)且至少有一个目标函数值满足严格不等式。
换言之,若一个解在所有目标上至少与另一个解相当,而在某一个目标上优于它,那么这个解就支配后者。
否则,如果两个解在所有目标上都相同或者x2支配x1,则它们不构成Pareto解支配关系。
针对多个解的情形,我们可以将它们按照是否被支配划分为不同的等价类,其中一个等价类中的所有解都是相互不支配的Pareto解。
这些等价类构成了Pareto前沿,是多目标优化的目标之一。
Pareto解支配关系可以用一个二元关系表示,记为x1≺x2(x1支配x2),若x1和x2符合之前所述的条件。
这个关系具有一些重要的性质:它是偏序关系,也就是说它满足自反性、反对称性和传递性。
此外,这个关系还可以通过一些算法进行快速计算,比如快速非支配排序(Fast non-dominated sorting)和多目标遗传算法(Multi-objective Genetic Algorithm)等。
作为一个基本的工具,Pareto解支配关系在多目标优化问题中得到了广泛的应用,如供应链管理、机器学习、结构优化等领域。
通过对Pareto前沿的分析,我们可以获得一系列的最优解,这些解都具有不同的权衡方案。
同时,由于Pareto前沿的不确定性和多样性,它也为人们提供了各种可能的选择和决策方案。
总之,Pareto解支配关系是多目标优化中非常重要的概念,它为我们提供了一种有效的方式来描述和分析多目标问题的解空间结构,为解决实际问题提供了一种可行的选择方案。
pareto最优解并列选择法

帕累托最优解并列选择法是一种多目标优化问题中常用的方法,它帮助决策者从多个可能的解中选择一个最佳的解决方案,同时考虑多个冲突的目标。
这种方法基于帕累托最优原则,该原则强调在不牺牲一个目标的情况下改善另一个目标的价值。
以下是帕累托最优解并列选择法的基本步骤:
定义多个冲突的目标:
首先,确定问题中涉及的多个目标或指标,这些目标通常是相互冲突的,即改善一个目标可能会损害另一个目标。
评估可行解:
对于给定问题,生成一系列可行解,每个解都涵盖了各种不同的决策变量或参数组合。
对每个可行解,计算它在每个目标上的性能值。
帕累托排序:
将可行解按照帕累托原则进行排序,即找到那些不会被其他解支配的解,这些解被称为帕累托最优解。
如果一个解在所有目标上都比另一个解好,那么它被认为支配另一个解。
排序后,将可行解分成不同的帕累托层次,每个层次包含一组具有相似性能的解。
选择帕累托最优解:
根据决策者的偏好和需求,从帕累托最优解中选择一个最佳的解决方案。
这个选择可能涉及到权衡不同的目标,并根据问题的特定情况做出决策。
灵活性分析:
鉴于不同的决策者可能有不同的偏好,进行灵活性分析是一个有用的步骤。
这可以通过调整目标权重或采用其他方法来实现,以查看如何影响最终选择。
帕累托最优解并列选择法是一种有助于解决多目标优化问题的强大工具,它允许在考虑多个目标的情况下做出明智的决策。
这种方法在供应链管理、工程设计、投资组合优化等领域都有广泛的应用。
求解多目标优化问题基于相对熵的pareto解演化算法

求解多目标优化问题基于相对熵的Pareto 解演化算法!陈昌巨武秀文(武汉理工大学,武汉430070)摘要提出了一种求解多目标优化问题的基于相对熵的Pareto 解演化算法,首先分析了多目标优化中各目标间的补偿模式和非补偿模式,以及它们对应的Pareto 解演化算法和经典加权求和算法。
指出实际问题中,并不存在完全的补偿模式或完全的非补偿模式,往往是需要补偿,但要避免目标间极端不均衡解的产生。
故需在Pareto 解演化算法基础上引入目标间均衡性的评价。
然后利用相对熵作为均衡性的评价指标,在MOGA 算法的基础上引入相对熵,形成了EPEA 算法。
算法避免了各目标间极端不均衡解的产生,为方便寻找偏好解提供了途径。
数值实验证实了算法的有效性。
关键词多目标优化;Pareto 解演化算法;均衡性;相对熵中图法分类号TP 301.6过去10年中,对多目标优化问题的兴趣显著地增长,且涌现出了许多求解多目标优化问题的演化算法(MOEAS ,evolutionary algorithmS form multiobjectiveoptimization problemS )[1]。
演化算法可以在一次种群演化中得到多个解,故非常适合于多目标优化问题[2]。
因此,许多MOEAS 被提了出来,旨在找到非劣解集。
Pareto 排序和适应值共享模型成为了MOEAS 的标准。
MOEAS 一次可得到一个非劣解的集合。
问题是如何从得到的多个解中选出所需要的解呢?一般对MOEAS 可任意从非劣解集中选出一个偏好解。
一些旨在从非劣解集中找到偏好解的区域的技术已经被提了出来[1]。
其中之一是guided domination ap-proch 。
它利用事先要求的矩阵a =(a ij ),其中a ij 是损失第i 个目标函数一个单位所换得的第j 个目标函数单位的数量,故需要更多的信息。
本研究提出了一种针对多目标优化问题的基于相对熵的Pareto 解演化算法(EPEA ,entropy-baSedpareto evolutionary algorithm )。
多目标优化问题及其算法的研究

多目标优化问题及其算法的研究摘要:多目标优化问题(MOP)由于目标函数有两个或两个以上,其解通常是一组Pareto最优解。
传统的优化算法在处理多目标优化问题时不能满足工业实践应用的需要。
随着计算机科学与生命信息科学的发展,智能优化算法在处理多目标优化问题时更加满足工程实践的需要。
本文首先研究了典型多目标优化问题的数学描述,并且分析了多目标优化问题的Pareto 最优解以及解的评价体系。
简要介绍了传统优化算法中的加权法、约束法以及线性规划法。
并且研究了智能优化算法中进化算法(EA)、粒子群算法(PSO)和蚁群优化算法(ACO)。
关键词:多目标优化问题;传统优化算法;进化算法;粒子群算法;蚁群优化算法中图分类号:TP391 文献标识码:AResearch of Multi-objective Optimization Problem andAlgorithmAbstract: The objective function of Multi-objective Optimization Problem is more than two, so the solutions are made of a term called best Pareto result. Traditional Optimization Algorithm cannot meet the need of advancing in the actual industry in the field of the Multi-objective Optimization Problem. With the development in computer technology and life sciences, Intelligent Optimization Algorithm is used to solve the Multi-objective Optimization Problem in the industry. Firstly, the typical mathematic form of the Multi-objective Optimization Problem, and the best Pareto result of Multi-objective Optimization Problem with it’s evaluate system were showed in this paper. It’s take a brief reveal of Traditional Optimization Algorithm, such as weighting method, constraint and linear programming. Intelligent Optimization Algorithm, including Evolutionary Algorithm, Particle Swarm Optimization and Ant Colony Optimization, is researched too.Keyword:Multi-objective Optimization Problem; Traditional Optimization Algorithm; Evolutionary Algorithm; Particle Swarm Optimization; Ant Colony Optimization.1引言所谓的目标优化问题一般地就是指通过一定的优化算法获得目标函数的最优化解。
多目标优化的基本概念与求解方法

多目标优化的基本概念与求解方法目录:1. 引言2. 多目标优化的基本概念3. 多目标优化的求解方法3.1 Pareto优化3.2 加权和法3.3 基因算法3.4 粒子群算法3.5 支配排序遗传算法3.6 其他求解方法4. 多目标优化在实际问题中的应用5. 结论6. 参考文献1. 引言多目标优化是数学和工程领域的一个重要研究方向,它涉及同时优化多个目标函数的问题。
在实际应用中,往往存在着多个相互冲突的目标,而单目标优化方法往往无法有效地解决这种情况。
因此,多目标优化的研究和应用具有重要的意义。
本文将介绍多目标优化的基本概念和求解方法,并探讨其在实际问题中的应用。
2. 多目标优化的基本概念多目标优化的基本概念是在已知多个决策变量的条件下,同时优化多个目标函数。
通过寻找一组决策变量的取值,使得目标函数能够达到最优值或者尽可能接近最优值。
目标函数通常包括多个目标指标,如最大化效益、最小化成本等。
在多目标优化中,存在着一个重要的概念——帕累托最优解。
帕累托最优解是指在多目标优化问题中,不存在其他解能够同时优化所有目标函数的解。
换句话说,帕累托最优解是一组最优解的集合,其中任意解的改善都会导致其他目标函数的恶化。
帕累托最优解的求解是多目标优化的核心目标。
3. 多目标优化的求解方法为了寻找多目标优化问题的最优解,研究者们提出了各种求解方法。
以下将介绍几种常见的多目标优化求解方法。
3.1 Pareto优化Pareto优化是一种经典的多目标优化方法,它通过Pareto支配关系来定义帕累托最优解。
如果一个解支配另一个解,即在所有目标函数上至少有一个指标优于另一个解,并且其余指标至少和另一个解相等,那么称前者支配后者。
通过判断支配关系,可以得到帕累托最优解。
3.2 加权和法加权和法是一种简单而直观的多目标优化方法。
它通过引入权重系数,将多个目标函数线性组合成一个目标函数。
然后使用单目标优化方法求解此组合目标函数。
通过调整权重系数,可以得到不同的解,即帕累托最优解的集合。
多目标优化问题的求解算法
在对多目标问题的研究中,有的是把多目标转化成单目标优化问题。而 实际工程项目中,成本、工期、质量及安全之间不能用简单的线性或者非线 性关系来描述,所以本文为了更符合实际情况,将协同化思想引入到蚁群算 法中,针对四个目标建立四个蚁群,各种群在各自的目标要求下搜索Pareto解 集。
(1)问题的抽象及算法的定义
多目标优化问题的求解算法
2017.12.06
目录
一、多目标优化问题概述 二、基于蚁群算法的多目标优化
一、多目标优化问题概述
多 目 标 优 化 问 题 (MULTI-OBJECTIVE OPTIMIZATION PROBLEM,MOP)是由VILFREDOPARETO首次从数学的角度提出的。
1.多目标优化问题与单目标优化问题的不同点
那么蚂蚁的搜索路径可以表示如下:
每边可以采用三元组来表示, 如(i,J1,J2)表示第i个工作单元采 用的第J1,各实施方案,第i+1个工 作单元采用的是第J2个实施方案。 图中的每一条从一行到n行的线路 表示整个项目的一个实施计划方案, 工期、成本、质量及安全的多目标 优化问题实际上就是在图中找出一 条从一行到n行的线路,使得四大 目标协同最优。
二、基于蚁群algorithm,ACA)由M. Dorigo,V Maniezzo等人提出的是一 种智能优化算法。蚁群算法是模拟蚂蚁觅食过程中总是能够找到从蚁穴到食物之 间的最短路径的行为过程。
我们用“信息素”来描述蚂蚁在搜索食物的过程中产生的物质,这种物质能 够被后续的蚂蚁感知并该物质的浓度来指导其前进的方向。蚂蚁选择某条路径的 概率就是根据该路径上的信息素浓度,浓度高被蚂蚁选择的概率就越大。依照这 种信息交流的方式,蚂蚁最终寻找到最短的搜索到食物的路径。
pareto最优算法工作原理
pareto最优算法工作原理
pareto最优算法工作原理:
pareto最优算法指的是在多目标问题中,存在一组解集,使得任何一个目标函数的改进都会导致其他目标函数的恶化。
换言之,在pareto最优算法中,不存在一种单一的解能够优化所有的目标函数,而只能在解空间中进行权衡。
举例1:假设现在有两个人,甲和乙,分10块蛋糕,并且两个人都喜欢吃蛋糕。
10块蛋糕无论在两个人之间如何分配,都是帕累托最优,因为你想让某一个人拥有更大利益的唯一办法是从另一个人手里拿走蛋糕,导致的结果是那个被拿走蛋糕的人利益受损。
举例2:假设现在有两个人,甲和乙,分10块蛋糕10个包子。
甲喜欢吃蛋糕而乙喜欢吃包子,而且甲讨厌吃包子,乙讨厌吃蛋糕(甲包子吃得越多越不开心,乙蛋糕吃得越多越不开心)。
这种情形下,帕累托最优应当是:把10块蛋糕全部给甲,把10个包子全部给乙。
因为任何其他的分配都会使得至少一个人手里拿着一些自己讨厌的东西,比如甲拥有10块蛋糕以及2个包子,乙拥有8个包子。
这个时候,如果把2个包子从甲的手里转移到乙的手里,甲和乙都变得比原来更开心了,同时这样的转移并不会使得任何一方的利益受损。
多目标优化方法及实例解析
多目标优化方法及实例解析多目标优化是一种优化问题,其中有多个目标函数需要同时优化。
在传统的单目标优化中,我们只需要优化一个目标函数,而在多目标优化中,我们需要找到一组解,这组解称为“非劣解集合”或“帕累托最优集合”,其中没有解可以在所有目标函数上获得更好的值。
在本文中,我们将详细介绍多目标优化的方法和一些实例解析。
1.多目标优化方法:a. Pareto优化:Pareto优化是最常见的多目标优化方法。
它基于帕累托原理,即一个解在至少一个目标函数上比另一个解更好。
Pareto优化的目标是找到尽可能多的非劣解。
b.加权和方法:加权和方法将多个目标函数线性组合为一个单目标函数,并通过调整权重系数来控制不同目标函数之间的重要性。
这种方法的局限性在于我们必须预先指定权重系数,而且结果可能受权重选择的影响。
c.约束方法:约束方法将多目标优化问题转化为一个带有约束条件的单目标优化问题。
这些约束条件可以是各个目标函数的约束条件,也可以是基于目标之间的特定关系的约束条件。
d.演化算法:演化算法是一类基于自然选择和遗传机制的优化算法,例如遗传算法和粒子群优化。
演化算法通常能够找到帕累托最优解集合,并且不需要预先指定权重系数。
2.实例解析:a. 假设我们希望同时优化一个函数 f1(x) 表示最小化成本,以及函数 f2(x) 表示最大化效益。
我们可以使用 Pareto优化方法来找到一组非劣解。
我们可以通过在参数空间中生成一组解,并对每个解进行评估来实现。
然后,我们可以根据解的优劣程度对它们进行排序,找到最优的非劣解集合。
b.假设我们希望优化一个函数f1(x)表示最大化收益,并且函数f2(x)表示最小化风险。
我们可以使用加权和方法来将两个目标函数线性组合为一个单目标函数:目标函数=w1*f1(x)+w2*f2(x),其中w1和w2是权重系数。
我们可以尝试不同的权重系数,例如w1=0.5和w2=0.5,来找到最优解。
c.假设我们希望优化一个函数f1(x)表示最小化成本,并且函数f2(x)表示最小化风险。
用粒子群算法求解多目标优化问题的Pareto解
粒子群算法程序ticD=10;%粒子群中粒子的个数%w=0.729;%w 为惯性因子wmin=1.2;wmax=1.4;c1=1.49445;%正常数,成为加速因子c2=1 .49445;%正常数,成为加速因子Loop_max=50;%最大迭代次数%初始化粒子群for i=1:DX(i)=rand(1)*(-5-7)+7;V(i)=1;f1(i)=X(y2;f2(i)=(X(i)-2)A2;endLoop=1;%迭代计数器while Loop<=Loop_max% 循环终止条件%对粒子群中的每个粒子进行评价for i=1:Dk1=fi nd(1==Xv(i,:));%找出第一辆车配送的城市编号nb仁size(k1,2);%计算第一辆车配送城市的个数if nb1>0%判断第一辆车配送城市个数是否大于0,如果大于0则a1=[Xr(i,k1(:))];%找出第一辆车配送城市顺序号b1=sort(a1);%对找出第一辆车的顺序号进行排序G1(i)=0;%初始化第一辆车的配送量k51=[];am=[];for j1=1:nb1am=find(b1(j1)==Xr(i,:));k51(j1)=intersect(k1,am);% 计算第一辆车配送城市的顺序号G1(i)=G1(i)+g(k51(j1)+1);%计算第一辆车的配送量endk61=[];k6仁[0,k51,0];%定义第一辆车的配送路径L1(i)=0;%初始化第一辆车的配送路径长度for k11=1:nb1+1L1(i)=L1(i)+Dista nce(k61(k11)+1,k61(k11+1)+1);% 计算第一辆车的配送路径长度endelse%如果第一辆车配送的城市个数不大于0则G1(i)=0;%第一辆车的配送量设为0L1(i)=0;%第一辆车的配送路径长度设为0 endk2=fi nd(2==Xv(i,:));%找出第二辆车配送的城市编号nb2=size(k2,2);%计算第二辆车配送城市的个数if nb2>0%判断第二辆车配送城市个数是否大于0,如果大于0则a2=[Xr(i,k2(:))];%找出第二辆车配送城市的顺序号b2=sort(a2);%对找出的第二辆车的顺序号进行排序G2(i)=0;%初始化第二辆车的配送量k52=[];bm=[];for j2=1:nb2bm=find(b2(j2)==Xr(i,:));k52(j2)=intersect(k2,bm);% 计算第二辆车配送城市的顺序号G2(i)=G2(i)+g(k52(j2)+1);%计算第二辆车的配送量endk62=[];k62=[0,k52,0];%定义第二辆车的配送路径L2(i)=0;%初始化第二辆车的配送路径长度for k22=1:nb2+1L2(i)=L2(i)+Dista nce(k62(k22)+1,k62(k22+1)+1);% 计算第二辆车的路径长度endelse%如果第二辆车配送的城市个数不大于0则G2(i)=0;%第二辆车的配送量设为0L2(i)=0;%第二辆车的配送路径长度设为0endk3=fi nd(3==Xv(i,:));%找出第三辆车配送的城市编号nb3=size(k3,2);%计算第三辆车配送城市的个数if nb3>0%判断第三辆车配送城市个数是否大于0,如果大于0则a3=[Xr(i,k3(:))];%找出第三辆车配送城市的顺序号b3=sort(a3);%对找出的第三辆车的顺序号进行排序G3(i)=0;%初始化第三辆车的配送量k53=[];cm=[];for j3=1:nb3cm=find(b3(j3)==Xr(i,:));k53(j3)=intersect(k3,cm);% 计算第三辆车配送城市的顺序号G3(i)=G3(i)+g(k53(j3)+1);%计算第三辆车的配送量endk63=[];k63=[0,k53,0];%定义第三辆车的配送路径L3(i)=0;%初始化第三辆车的配送路径长度for k33=1:nb3+1L3(i)=L3(i)+Dista nce(k63(k33)+1,k63(k33+1)+1);% 计算第三辆车的路径长度endelse%如果第三辆车配送的城市个数不大于0则G3(i)=0;%第三辆车的配送量设为0L3(i)=0;%第三辆车的配送路径长度设为0endL(i)=0;%初始化每个粒子对应的配送方案总路径长度L(i)=L1(i)+L2(i)+L3(i);%计算每个粒子对应的配送方案总路径长度if L(i)<Lg&&G1(i)<Q&&G2(i)<Q&&G3(i)<Q%如果第i个粒子的总路径长度优于历史最优粒子并且满足车辆容量要求Xvg(:)=Xv(i,:);%将粒子i设为历史最优粒子Xrg(:)=Xr(i,:);%将粒子i设为历史最优粒子Lg=L(i);%将粒子i的总路径长度设为最优粒子对应的配送方案的总路径长度elseXvg(:)=Xvg(:);%最优粒子保持不变Xrg(:)=Xrg(:);%最优粒子保持不变Lg=Lg;%最优粒子所对应的配送方案的总路径长度也不变endLimi n( i)=100000;%初始化每个粒子代表的配送方案的历史最优总路径长度if L(i)<Limin(i)%如果本次循环得到的总路径长度优于粒子i历史最优总路径长度Limin(i)=L(i);%更新本次循环得到的总路径长度为粒子i的历史最优路径长度Xvl(i,:)=Xv(i,:);%更新本次得到的粒子i为i粒子的历史最优位置Xrl(i,:)=Xr(i,:); %更新本次得到的粒子i 为i 粒子的历史最优位置else%否则,保持粒子i的历史最优位置及历史最优路径长度不变Limin(i)=LL(i);Xvl(i,:)=Xv1(i,:);Xrl(i,:)=Xr1(i,:);endend%记录本次循环得到的所有粒子的位置for i=1:Dfor j=1:NXv1(i,j)=Xvl(i,j);%记录本次循环得到的所有粒子的位置Xr1(i,j)=Xrl(i,j);%记录本次循环得到的所有离子的位置endendLL(i)=0;%初始化每个粒子的历史最优路径总长度for i=1:DLL(i)=Limi n(i);%对每个粒子的历史最优路径总长度进行赋值end%对粒子群中每个粒子进行迭代w=wmin+(wmax-wmin)*exp((-Loop)/(Loop_max-Loop));for i=1:Dfor j=1:NVv(i,j)=w*Vv(i,j)+c1*rand(1)*(Xvl(i,j)-Xv(i,j))+c2*rand(1)*(Xvg(1,j)-Xv(i,j));% 计算位置变化率Vr(i,j)=w*Vr(i,j)+c1*rand(1)*(Xrl(i,j)-Xr(i,j))+c2*rand(1)*(Xrg(1,j)-Xr(i,j));% 计算位置变化率%Vv(i,j)和Vr(i,j)进行上下限的限制if Vv(i,j)>K-1Vv(i,j)=K-1;elseif Vv(i,j)<1-KVv(i,j)=1-K;elseVv(i,j)=Vv(i,j);endendendfor i=1:Dfor j=1:NXv(i,j)=ceil(Xv(i,j)+Vv(i,j));% 更新位置坐标%对Xv(i,j)进行上下限的限制if Xv(i,j)>KXv(i,j)=K;elseif Xv(i,j)<1Xv(i,j)=1;elseXv(i,j)=Xv(i,j);endXr(i,j)=Xr(i,j)+Vr(i,j);% 更新位置坐标endendLoop=Loop+1;endXvg%输出粒子群中的最优粒子Xrg%输出粒子群中的最优粒子Lg%输出最优粒子所代表方案的总路径长度Loop%输出迭代的次数%计算最优粒子所代表的配送方案k1=fi nd(1==Xvg(:));%找出第一辆车配送的城市编号k1=k1';nb仁size(k1,2);%计算第一辆车配送城市的个数if nb1>0%判断第一辆车配送城市个数是否大于0,如果大于0则a1=[Xrg(k1(:))];%找出第一辆车配送城市顺序号b1=sort(a1);%对找出第一辆车的顺序号进行排序G1=0;%初始化第一辆车的配送量k51=[];am=[];for j1=1:nb1am=find(b1(j1)==Xrg(:));k51(j1)=intersect(k1,am);% 计算第一辆车配送城市的顺序号G仁G1+g(k51(j1)+1);%计算第一辆车的配送量endk61=[];k61=[0,k51,0];% 定义第一辆车的配送路径L1=0;%初始化第一辆车的配送路径长度for k11=1:nb1+1L仁L1+Dista nce(k61(k11)+1,k61(k11+1)+1);% 计算第一辆车的配送路径长度end else%如果第一辆车配送的城市个数不大于0则G仁0;%第一辆车的配送量设为0L1=0;%第一辆车的配送路径长度设为0endk2=fi nd(2==Xvg(:));%找出第二辆车配送的城市编号k2=k2';nb2=size(k2,2);%计算第二辆车配送城市的个数if nb2>0%判断第二辆车配送城市个数是否大于0,如果大于0则a2=[Xrg(k2(:))];%找出第二辆车配送城市的顺序号b2=sort(a2);%对找出的第二辆车的顺序号进行排序G2=0;%初始化第二辆车的配送量k52=[];bm=[];for j2=1:nb2bm=find(b2(j2)==Xrg(:));k52(j2)=intersect(k2,bm);% 计算第二辆车配送城市的顺序号G2=G2+g(k52(j2)+1);%计算第二辆车的配送量endk62=[];k62=[0,k52,0];%定义第二辆车的配送路径L2=0;%初始化第二辆车的配送路径长度for k22=1:nb2+1L2=L2+Dista nce(k62(k22)+1,k62(k22+1)+1);% 计算第二辆车的路径长度endelse%如果第二辆车配送的城市个数不大于0则G2=0;%第二辆车的配送量设为0L2=0;%第二辆车的配送路径长度设为0endk3=fi nd(3==Xvg(:));%找出第三辆车配送的城市编号k3=k3';nb3=size(k3,2);%计算第三辆车配送城市的个数if nb3>0%判断第三辆车配送城市个数是否大于0,如果大于0则a3=[Xrg(k3(:))];%找出第三辆车配送城市的顺序号b3=sort(a3);%对找出的第三辆车的顺序号进行排序G3=0;%初始化第三辆车的配送量k53=[];cm=[];for j3=1:nb3cm=find(b3(j3)==Xrg(:));k53(j3)=intersect(k3,cm);% 计算第三辆车配送城市的顺序号G3=G3+g(k53(j3)+1);%计算第三辆车的配送量endk63=[];k63=[0,k53,0];%定义第三辆车的配送路径L3=0;%初始化第三辆车的配送路径长度for k33=1:nb3+1L3=L3+Dista nce(k63(k33)+1,k63(k33+1)+1);% 计算第三辆车的路径长度end else%如果第三辆车配送的城市个数不大于0则G3=0;%第三辆车的配送量设为0L3=0;%第三辆车的配送路径长度设为0endk61k62k63x=City(:,1);y=City(:,2);%对各个城市进行顺序标号max_text={'0','1','2','3','4','5','6','7',};text(x+1,y+1,max_text)%画出最优粒子所代表的配送方案路径for i=1:nb1+2 short1(i)=k61(i)+1;endfor i=1:nb2+2short2(i)=k62(i)+1;endfor i=1:nb3+2short3(i)=k63(i)+1;endline(x(short1),y(short1),'Marker','o')line(x(short2),y(short2),'Marker','o')line(x(short3),y(short3),'Marker','o')toc%计算程序的运行时间Time=num2str(toc)clear allticK=3;%车辆数D=200;%粒子群中粒子的个数Q=1;%每辆车的容量%w=0.729;%w 为惯性因子wmi n=1.2;wmax=1.4;c1=1.49445;%正常数,成为加速因子c2=1.49445;%正常数,成为加速因子Loop_max=50;%最大迭代次数%初始化城市坐标City=[18,54;22,60;58,69;71,71;83,46;91,38;24,42;18,40];n=size(City,1);%城市个数,包含中心仓库N=n-1;%发货点任务数for i=1:nfor j=1:nDistance(i,j)=sqrt((City(i,1)-City(j,1))A2+(City(i,2)-City(j,2))A2);% 各城市节点之间的距离矩阵end endg=[0,0.89,0.14,0.28,0.33,0.21,0.41,0.57];% 各发货点的货运量%初始化粒子群for i=1:Dfor j=1:NXv(i,j)=ra ndi(K,1);%初始化粒子群中粒子的位置Vv(i,j)=ra ndi(2*K-1,1)-K;%初始化粒子群中粒子的位置变化率Vr(i,j)=randi(2*N-1,1)-N;% 初始化粒子群中离子的位置变化率Xvl(i,j)=Xv(i,j);%初始化粒子群中每个粒子的最优位置endendfor i=1:Da=randperm(N);for j=1:NXr(i,j)=a(j);%初始化粒子群中粒子的位置Xrl(i,j)=Xr(i,j);%初始化粒子群中每个粒子的最优位置endendLg=100000;%初始化最优粒子对应的配送方案的总路径长度Xvg=o nes(1,N);%粒子群中最优的粒子Xrg=o nes(1,N);%粒子群中最优的粒子Loop=1;%迭代计数器while Loop<=Loop_max% 循环终止条件%对粒子群中的每个粒子进行评价for i=1:Dk1=fi nd(1==Xv(i,:));%找出第一辆车配送的城市编号nb仁size(k1,2);%计算第一辆车配送城市的个数if nb1>0%判断第一辆车配送城市个数是否大于0,如果大于0则a1=[Xr(i,k1(:))];%找出第一辆车配送城市顺序号b1=sort(a1);% 对找出第一辆车的顺序号进行排序G1(i)=0;%初始化第一辆车的配送量k51=[];am=[];for j1=1:nb1am=find(b1(j1)==Xr(i,:));k51(j1)=intersect(k1,am);% 计算第一辆车配送城市的顺序号G1(i)=G1(i)+g(k51(j1)+1);%计算第一辆车的配送量end k61=[];k61=[0,k51,0];% 定义第一辆车的配送路径L1(i)=0;%初始化第一辆车的配送路径长度for k11=1:nb1+1L1(i)=L1(i)+Dista nce(k61(k11)+1,k61(k11+1)+1);% 计算第一辆车的配送路径长度endelse%如果第一辆车配送的城市个数不大于0则G1(i)=0;%第一辆车的配送量设为0L1(i)=0;%第一辆车的配送路径长度设为0endk2=fi nd(2==Xv(i,:));%找出第二辆车配送的城市编号nb2=size(k2,2);%计算第二辆车配送城市的个数if nb2>0%判断第二辆车配送城市个数是否大于0,如果大于0则a2=[Xr(i,k2(:))];%找出第二辆车配送城市的顺序号b2=sort(a2);% 对找出的第二辆车的顺序号进行排序G2(i)=0;%初始化第二辆车的配送量k52=[]; bm=[];for j2=1:nb2 bm=find(b2(j2)==Xr(i,:));k52(j2)=intersect(k2,bm);% 计算第二辆车配送城市的顺序号G2(i)=G2(i)+g(k52(j2)+1);%计算第二辆车的配送量endk62=[];k62=[0,k52,0];% 定义第二辆车的配送路径L2(i)=0;%初始化第二辆车的配送路径长度for k22=1:nb2+1 L2(i)=L2(i)+Dista nce(k62(k22)+1,k62(k22+1)+1);% 计算第二辆车的路径长度endelse%如果第二辆车配送的城市个数不大于0则G2(i)=0;%第二辆车的配送量设为0L2(i)=0;%第二辆车的配送路径长度设为0endk3=fi nd(3==Xv(i,:));%找出第三辆车配送的城市编号nb3=size(k3,2);%计算第三辆车配送城市的个数if nb3>0%判断第三辆车配送城市个数是否大于0,如果大于0则a3=[Xr(i,k3(:))];%找出第三辆车配送城市的顺序号b3=sort(a3);%对找出的第三辆车的顺序号进行排序G3(i)=0;%初始化第三辆车的配送量k53=[];cm=[];for j3=1:nb3cm=find(b3(j3)==Xr(i,:));k53(j3)=intersect(k3,cm);% 计算第三辆车配送城市的顺序号G3(i)=G3(i)+g(k53(j3)+1);%计算第三辆车的配送量endk63=[];k63=[0,k53,0];%定义第三辆车的配送路径L3(i)=0;%初始化第三辆车的配送路径长度for k33=1:nb3+1L3(i)=L3(i)+Dista nce(k63(k33)+1,k63(k33+1)+1);% 计算第三辆车的路径长度endelse%如果第三辆车配送的城市个数不大于0则G3(i)=0;%第三辆车的配送量设为0L3(i)=0;%第三辆车的配送路径长度设为0endL(i)=0;%初始化每个粒子对应的配送方案总路径长度L(i)=L1(i)+L2(i)+L3(i);%计算每个粒子对应的配送方案总路径长度if L(i)<Lg&&G1(i)<Q&&G2(i)<Q&&G3(i)<Q%如果第i个粒子的总路径长度优于历史最优粒子并且满足车辆容量要求Xvg(:)=Xv(i,:);%将粒子i设为历史最优粒子Xrg(:)=Xr(i,:);%将粒子i设为历史最优粒子Lg=L(i);%各粒子i的总路径长度设为最优粒子对应的配送方案的总路径长度elseXvg(:)=Xvg(:);%最优粒子保持不变Xrg(:)=Xrg(:);%最优粒子保持不变Lg=Lg;%最优粒子所对应的配送方案的总路径长度也不变endLimi n( i)=100000;%初始化每个粒子代表的配送方案的历史最优总路径长度if L(i)<Limin(i)%如果本次循环得到的总路径长度优于粒子i历史最优总路径长度Limin(i)=L(i);%更新本次循环得到的总路径长度为粒子i的历史最优路径长度Xvl(i,:)=Xv(i,:);%更新本次得到的粒子i为i粒子的历史最优位置Xrl(i,:)=Xr(i,:); %更新本次得到的粒子i 为i 粒子的历史最优位置else%否则,保持粒子i的历史最优位置及历史最优路径长度不变Limin(i)=LL(i);Xvl(i,:)=Xv1(i,:);Xrl(i,:)=Xr1(i,:);endend%记录本次循环得到的所有粒子的位置for i=1:Dfor j=1:NXv1(i,j)=Xvl(i,j);%记录本次循环得到的所有粒子的位置Xr1(i,j)=Xrl(i,j);%记录本次循环得到的所有离子的位置endendLL(i)=0;%初始化每个粒子的历史最优路径总长度for i=1:DLL(i)=Limi n(i);%对每个粒子的历史最优路径总长度进行赋值end%对粒子群中每个粒子进行迭代w=wmin+(wmax-wmin)*exp((-Loop)/(Loop_max-Loop));for i=1:Dfor j=1:NVv(i,j)=w*Vv(i,j)+c1*rand(1)*(Xvl(i,j)-Xv(i,j))+c2*rand(1)*(Xvg(1,j)-Xv(i,j));% Vr(i,j)=w*Vr(i,j)+c1*rand(1)*(Xrl(i,j)-Xr(i,j))+c2*rand(1)*(Xrg(1,j)-Xr(i,j));% %Vv(i,j)和Vr(i,j)进行上下限的限制if Vv(i,j)>K-1Vv(i,j)=K-1;elseif Vv(i,j)<1-KVv(i,j)=1-K;elseVv(i,j)=Vv(i,j);endendendfor i=1:Dfor j=1:NXv(i,j)=ceil(Xv(i,j)+Vv(i,j));% 更新位置坐标%对Xv(i,j)进行上下限的限制if Xv(i,j)>KXv(i,j)=K;elseif Xv(i,j)<1Xv(i,j)=1;elseXv(i,j)=Xv(i,j);endXr(i,j)=Xr(i,j)+Vr(i,j);% 更新位置坐标endendLoop=Loop+1;计算位置变化率计算位置变化率endXvg%输出粒子群中的最优粒子Xrg%输出粒子群中的最优粒子Lg%输出最优粒子所代表方案的总路径长度Loop%输出迭代的次数%计算最优粒子所代表的配送方案ki=fi nd(1==Xvg(:));%找出第一辆车配送的城市编号k1=k1';nb仁size(k1,2);%计算第一辆车配送城市的个数if nb1>0%判断第一辆车配送城市个数是否大于0,如果大于0则a1=[Xrg(k1(:))];%找出第一辆车配送城市顺序号b1=sort(a1);%对找出第一辆车的顺序号进行排序G1=0;%初始化第一辆车的配送量k51=[];am=[];for j1=1:nb1am=find(b1(j1)==Xrg(:));k51(j1)=intersect(k1,am);% 计算第一辆车配送城市的顺序号G仁G1+g(k51(j1)+1);%计算第一辆车的配送量endk61=[];k6仁[0,k51,0];%定义第一辆车的配送路径L1=0;%初始化第一辆车的配送路径长度for k11=1:nb1+1L1=L1+Dista nce(k61(k11)+1,k61(k11+1)+1);% 计算第一辆车的配送路径长度endelse%如果第一辆车配送的城市个数不大于0则G仁0;%第一辆车的配送量设为0L1=0;%第一辆车的配送路径长度设为0endk2=fi nd(2==Xvg(:));%找出第二辆车配送的城市编号k2=k2';nb2=size(k2,2);%计算第二辆车配送城市的个数if nb2>0%判断第二辆车配送城市个数是否大于0,如果大于0则a2=[Xrg(k2(:))];%找出第二辆车配送城市的顺序号b2=sort(a2);%对找出的第二辆车的顺序号进行排序G2=0;%初始化第二辆车的配送量k52=[];bm=[];for j2=1:nb2bm=find(b2(j2)==Xrg(:));k52(j2)=intersect(k2,bm);% 计算第二辆车配送城市的顺序号G2=G2+g(k52(j2)+1);%计算第二辆车的配送量endk62=[];k62=[0,k52,0];% 定义第二辆车的配送路径L2=0;%初始化第二辆车的配送路径长度for k22=1:nb2+1L2=L2+Dista nce(k62(k22)+1,k62(k22+1)+1);% 计算第二辆车的路径长度end else%如果第二辆车配送的城市个数不大于0则G2=0;%第二辆车的配送量设为0L2=0;%第二辆车的配送路径长度设为0endk3=fi nd(3==Xvg(:));%找出第三辆车配送的城市编号k3=k3';nb3=size(k3,2);%计算第三辆车配送城市的个数if nb3>0%判断第三辆车配送城市个数是否大于0,如果大于0则a3=[Xrg(k3(:))];%找出第三辆车配送城市的顺序号b3=sort(a3);%对找出的第三辆车的顺序号进行排序G3=0;%初始化第三辆车的配送量k53=[];cm=[];for j3=1:nb3cm=find(b3(j3)==Xrg(:));k53(j3)=intersect(k3,cm);% 计算第三辆车配送城市的顺序号G3=G3+g(k53(j3)+1);%计算第三辆车的配送量endk63=[];k63=[0,k53,0];%定义第三辆车的配送路径L3=0;%初始化第三辆车的配送路径长度for k33=1:nb3+1L3=L3+Dista nce(k63(k33)+1,k63(k33+1)+1);% 计算第三辆车的路径长度endelse%如果第三辆车配送的城市个数不大于0则G3=0;%第三辆车的配送量设为0L3=0;%第三辆车的配送路径长度设为0endk61k62k63x=City(:,1);y=City(:,2);%对各个城市进行顺序标号max_text={'0','1','2','3','4','5','6','7',};text(x+1,y+1,max_text)%画出最优粒子所代表的配送方案路径for i=1:nb1+2short1(i)=k61(i)+1;endfor i=1:nb2+2short2(i)=k62(i)+1;endfor i=1:nb3+2short3(i)=k63(i)+1;endline(x(short1),y(short1),'Marker','o') line(x(short2),y(short2),'Marker','o') line(x(short3),y(short3),'Marker','o') toc%计算程序的运行时间Time=num2str(toc)clear all。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多目标优化问题与单目标区别
多目标优化问题的解不是唯一的,而是一组均衡解, 称为最优非劣解集或pareto最优解集,且这组解释无 差别的。目标冲突是MOP的共同难题(不存在使得所 有目标同时达到的最优解)。
概念
定义MOP:一般MOP由n个变量参数、m个目标函数和 k个约束条件组成,数学定义为:
MOP优化过程中可能并不存在可以满足所有约束条件 并且能够使所有的目标函数达到全局最优的解。
定义1.2:可行解:可行解集Xf是由能够满足所有约束 条件的决策向量x所组成的集合,即:
解决多目标优化问题
搜索和决策 搜索:找出pareto(帕雷托)最优解集 决策:从pareto解集中选择合适的解
4.5变异算子:
基于pareto概念的多目标遗传算法
算法主要思想:
基于pareto概念的多目标遗传算法
Pareto占优过程
Pareto维护过程:解集不断增加会导致收敛速度减慢,因此需要淘汰相 对较劣的个体。采用拥挤机制淘汰哪些周围个体较多的。
基于pareto概念的多目标遗传算法
最优非劣个体的适应值为1,其他的<1,适应值越大,有越高的优先权被选择配对。
基于pareto概念的多目标遗传算法
4.3选择算子:赌盘操作算子 利用适应值选择第i个个体的概率:
基于pareto概念的多目标遗传算法
4.4交叉算子 从亲代产生自带的过程如下:
基于pareto概念的多目标遗传算法
常规数学解法-----直接法
直接法求解多目标的线性凸优化问题
常规数学解法-----直接法
常规数学解法-----间接法
间接法是基于权重的方法,基本思想都是把多目标问 题转化为单目标问题进行求解(权值由优化者决定)。
1.加权和方法: 将多个目标线性组合转化为一个单目标优化问题:
常规数学解法-----间接法
解决MOP的智能优化算法:遗传进化算法,群智能算 法、人工免疫算法、神经网络等
早期MOGA(没多目标算法
基于群集智能的多目标算法
多目标免疫算法 基于神经网络的多目标算法
基于pareto概念的多目标遗传算法
1、适应值计算模型:利用群体中的个体与最优非劣解 集之间的绝对距离的远近来刻画适应值,然后将适应 值直接用于遗传算法中。
拥挤距离:
实验
参数;
多目标优化方法: 1、搜索前决策 2、决策前搜索 3、在搜索过程中决策
求解多目标优化问题方法
1、常规的数学方法: 直接解法:如单变量多目标优化算法等 间接解法:多目标-》单目标 2、基于智能优化的多目标算法: 多目标遗传算法及其改进算法(收敛性问题) 群智能算法 神经网络。。。
2.目标规划法:增加每个目标的期望值,将原问题转 换为目标值与事先给出的目标值之间绝对偏差最小的 问题。
、、
3.������-约束法:先对多目标中最重要的一个进行优化, 其它的目标作为约束条件考虑。
常规数学解法-----间接法
4.最大最小值法:最小化目标冲突
基于智能优化的多目标算法