函数单调性学案
人教版 必修1第一章函数的单调性同步学案设计(无答案)

一对一辅导教案学生姓名 性别年级学科数学 授课教师上课时间 年 月 日第( )次课 共( )次课课时:2课时教学课题 人教版 必修1第一章函数的单调性 同步教案教学目标 (1)学会判断函数的单调性与单调区间(2)学会函数单调性的综合运用(3)学会通过图像判断函数的单调性教学重点与难点 函数单调性的判断与综合运用教学过程(一)函数的单调性知识梳理1.函数单调性定义:对于给定区间D 上的函数f(x),若对于任意x 1,x 2∈D,当x 1<x 2时,都有f(x 1) <f(x 2),则称f(x)是区间D 上的增函数,D 叫f(x)单调递增区间. 当x 1<x 2时,都有f(x 1)> f(x 2),则称f(x)是区间D 上的减函数,D 叫f(x)单调递减区间.2.函数单调性的判断方法: (1)定义法.步骤是:①任取x 1,x 2∈D ,且x 1<x 2 ②作差f(x 1)- f(x 2)或作商()()()()0112≠x f x f x f ,并变形, ③判定f(x 1)- f(x 2)的符号,或比较()()12x f x f 与1的大小, ④根据定义作出结论. (2)图象法;借助图象直观判断.(3)复合函数单调性判断方法:设()()[][],,,,,y f u u g x x a b u m n ==∈∈若内外两函数的单调性相同,则()y f g x =⎡⎤⎣⎦在x 的区间D 内单调递增, 若内外两函数的单调性相反时,则()y f g x =⎡⎤⎣⎦在x 的区间D 内单调递减. (同增异减)3.常见结论若f(x)为减函数,则-f(x)为增函数 ; 若f(x)>0(或<0)且为增函数,则函数)(1x f 在其定义域内为减函数.例题精讲【题型一、单调性的判断】【例1】写出下列函数的单调区间(1),b kx y += (2)xk y =, (3)c bx ax y ++=2.【题型二、用定义法证明单调性】【例2】证明函数y=2x+5的单调性【例3】判断函数f (x )=xx 1+在(1,2)上【方法技巧】根据函数的定义法来进行判别,记好步骤。
高中数学第三章函数单调性的定义与证明学案新人教B版必修第一册

3.1.2 函数的单调性第1课时 单调性的定义与证明课程标准借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义.新知初探·自主学习——突出基础性教材要点知识点一 定义域为A 的函数f (x )的单调性状元随笔 定义中的x 1,x 2有以下3个特征(1)任意性,即“任意取x 1,x 2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x 1<x 2;(3)属于同一个单调区间.知识点二 单调性与单调区间如果函数y =f (x )在区间M 上是单调递增或单调递减,那么就说函数y =f (x )在这一区间上具有(严格的)________,区间M 叫做y =f (x )的________.状元随笔 一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“和”连接. 如函数y =1x 在(-∞,0)和(0,+∞)上单调递减,却不能表述为:函数y =1x 在(-∞,0)∪(0,+∞)上单调递减.知识点三 函数的最值一般地,设函数f(x)的定义域为D,且x0∈D:如果对任意x∈D,都有f(x)≤f(x0),则称f(x)的最大值为f(x0)(记作f(x)max=f(x0)),而x0称为f(x)的最大值点;如果对任意x∈D,都有f(x)≥f(x0),则称f(x)的最小值为f(x0)(记作f(x)min=f(x0)),而x0称为f(x)的最小值点.最大值和最小值统称为最值,最大值点和最小值点统称为最值点.状元随笔 最大(小)值必须是一个函数值,是值域中的一个元素,如函数y=-x2(x∈R)的最大值是0,有f(0)=0. 基础自测1.函数y=(2m-1)x+b在R上是减函数,则( )A.m>12 B.m<12C.m>-12D.m<-122.函数f(x)=1x在[1,+∞)上( )A.有最大值无最小值B.有最小值无最大值C.有最大值也有最小值D.无最大值也无最小值3.若f(x)在R上是增函数,且f(x1)>f(x2),则x1,x2的大小关系为________.4.如图是函数y=f(x)的图象,则函数f(x)的单调递减区间是( )A.(-1,0)B.(1,+∞)C.(-1,0)∪(1,+∞)D.(-1,0),(1,+∞)课堂探究·素养提升——强化创新性题型1 利用函数图象求单调区间[经典例题]例1 (1)已知函数y=f(x)的图象如图所示,则该函数的减区间为( )A.(-3,1)∪(1,4)B.(-5,-3)∪(−1,1)C.(-3,-1),(1,4)D.(-5,-3),(-1,1)状元随笔 观察图象,若图象呈上升(下降)趋势时为增(减)函数,对应的区间是增(减)区间.(2)下列函数在区间(0,1)上是增函数的是( )A.y=1-2x B.y=1 xC.y=√x−1D.y=-x2+2x(3)函数y=|x-1|的单调增区间是________.跟踪训练1 (1)函数f(x)的图象如图所示,则( )A.函数f(x)在[-1,2]上是增函数B.函数f(x)在[-1,2]上是减函数C.函数f(x)在[-1,4]上是减函数D.函数f(x)在[2,4]上是增函数状元随笔 图象上升或下降趋势判断.(2)画出函数y=-x2+2|x|+3的图象,并指出函数的单调区间.题型2 函数的单调性判断与证明例2 证明函数f (x )=x +4x在(2,+∞)上是增函数.在(0,2)上是减函数.状元随笔 先根据单调性的定义任取x 1,x 2∈(2,+∞),且x 1<x 2,再判断f(x 1)-f(x 2)的符号.方法归纳利用定义证明函数单调性的步骤注:作差变形是解题关键.跟踪训练2 利用单调性的定义,证明函数y =x +2x +1在(-1,+∞)上是减函数.题型3 利用函数的单调性求最值[经典例题]例3 已知函数f(x)=2x−1x+1,x∈[3,5].(1)判断函数在区间[3,5]上的单调性,并给出证明;(2)求该函数的最大值和最小值.方法归纳1.利用单调性求函数的最大(小)值的一般步骤(1)判断函数的单调性.(2)利用单调性求出最大(小)值.2.函数的最大(小)值与单调性的关系(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间[a,b]上的最小(大)值是f(a),最大(小)值是f(b).(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),最小(大)值是f(a)与f(c)中较小(大)的一个.跟踪训练3 已知函数f(x)=32x−1,求函数f(x)在[1,5]上的最值.状元随笔 (1)判断函数的单调性.(2)利用单调性求出最大(小)值.题型4 由函数的单调性求参数的取值范围[经典例题]例4 (1)已知函数f(x)=-x2-2(a+1)x+3.①若函数f(x)在区间(-∞,3]上是增函数,则实数a的取值范围是________;②若函数f(x)的单调递增区间是(-∞,3],则实数a的值为________.(2)已知函数y=f(x)是(-∞,+∞)上的增函数,且f(2x-3)>f(5x-6),则实数x的取值范围为________.方法归纳“函数的单调区间为I”与“函数在区间I上单调”的区别单调区间是一个整体概念,说函数的单调递减区间是I,指的是函数递减的最大范围为区间I,而函数在某一区间上单调,则指此区间是相应单调区间的子区间.所以我们在解决函数的单调性问题时,一定要仔细读题,明确条件含义.跟踪训练4 (1)已知函数f(x)=x2+2(a-1)x+2,在区间(-∞,4]上是减函数,求实数a的取值范围;函数的单调递减区间为(-∞,4],则a为何值?状元随笔 首先求出f(x)的单调减区间,(1)求出f(x)的对称轴为x=1-a,利用对称轴应在直线x=4的右侧或与其重合求解.(2)求出函数的减区间,用端点值相等求出a.(2)若f(x)在R上是单调递减的,且f(x-2)<f(3),则x的取值范围是________.3.1.2 函数的单调性第1课时 单调性的定义与证明新知初探·自主学习[教材要点]知识点一f(x1)<f(x2) f(x1)>f(x2) 增函数 减函数知识点二单调性 单调区间[基础自测]1.解析:使y=(2m-1)x+b在R上是减函数,则2m-1<0,即m<1 2.答案:B2.解析:函数f(x)=1x是反比例函数,当x∈(0,+∞)时,函数图象下降,所以在[1,+∞)上f(x)为减函数,f(1)为f(x)在[1,+∞)上的最大值,函数在[1,+∞)上没有最小值.故选A.答案:A3.解析:∵f(x)在R上是增函数,且f(x1)>f(x2),∴x1>x2.答案:x1>x24.解析:若函数单调递减,则对应图象为下降的,由图象知,函数在(-1,0),(1,+∞)上分别下降,则对应的单调递减区间为(-1,0),(1,+∞).答案:D课堂探究·素养提升例1 【解析】 (1)在某个区间上,若函数y=f(x)的图象是上升的,则该区间为增区间,若是下降的,则该区间为减区间,故该函数的减区间为(-3,-1),(1,4).(2)由y=1-2x,y=1x的图象易知在(0,1)上为减函数,而y=√x−1的定义域为[1,+∞),不合题意.(3)作出函数的图象,如图所示,所以函数的单调递增区间为[1,+∞).【答案】 (1)C (2)D (3)[1,+∞)跟踪训练1 解析:(1)函数单调性反映在函数图象上就是图象上升对应增函数,图象下降对应减函数,故选A.(2)y=-x2+2|x|+3={−(x−1)2+4,x≥0,−(x+1)2+4,x<0.函数图象如图所示.函数在(-∞,-1],[0,1]上是增函数,函数在[-1,0],[1,+∞)上是减函数,所以函数的单调递增区间是(-∞,-1]和[0,1],单调递减区间是[-1,0]和[1,+∞).答案:(1)A (2)见解析例2 【证明】 ∀x1,x2∈(2,+∞),且x1<x2,则f(x1)-f(x2)=x1+4x1-x2-4x2=(x1-x2)+4(x2−x1)x1x2=(x1−x2)(x1x2−4)x1x2.因为2<x1<x2,所以x1-x2<0,x1x2>4,x1x2-4>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数f(x)=x+4x在(2,+∞)上是增函数.证明:∀x1,x2∈(0,2),且x1<x2,则f(x1)-f(x2)=x1+4x1-x2-4x2=(x1-x2)+4(x2−x1) x1x2=(x1−x2)(x1x2−4)x1x2.因为0<x1<x2<2,所以x1-x2<0,0<x1x2<4,x1x2-4<0,所以f(x1)-f(x2)>0,即f(x1)>f(x2).所以函数f(x)=x+4x在(0,2)上是减函数.跟踪训练2 证明:设x1,x2是区间(-1,+∞)上任意两个实数且x1<x2,则f(x1)-f(x2)=x1+2x1+1−x2+2x2+1=x2−x1(x1+1)(x2+1),∵-1<x1<x2,∴x2-x1>0,x1+1>0,x2+1>0.∴x2−x1(x1+1)(x2+1)>0.即f(x1)-f(x2)>0,f(x1)>f(x2).∴y=x+2x+1在(-1,+∞)上是减函数.例3 【解析】 (1)函数f(x)在[3,5]上是单调递增的,证明:设任意x1,x2,满足3≤x1<x2≤5.因为f(x1)-f(x2)=2x1−1x1+1−2x2−1x2+1=(2x1−1)(x2+1)−(2x2−1)(x1+1)(x1+1)(x2+1)=3(x1−x2) (x1+1)(x2+1),因为3≤x1<x2≤5,所以x1+1>0,x2+1>0,x1-x2<0.所以f(x1)-f(x2)<0,即f(x1)<f(x2).所以f(x)=2x−1x+1在[3,5]上是单调递增的.(2)f(x)min=f(3)=2×3−13+1=54,f(x)max=f(5)=2×5−15+1=32.跟踪训练3 解析:先证明函数f(x)=32x−1的单调性,设x1,x2是区间(12,+∞)上的任意两个实数,且x2>x1>1 2,f(x1)-f(x2)=32x1−1−32x2−1=6(x2−x1)(2x1−1)(2x2−1).由于x2>x1>12,所以x2-x1>0,且(2x1-1)·(2x2-1)>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数f(x)=32x−1在区间(12,+∞)上是单调递减的,所以函数f(x)在[1,5]上是单调递减的,因此,函数f(x)=32x−1在区间[1,5]的两个端点上分别取得最大值与最小值,即最大值为f(1)=3,最小值为f(5)=1 3.例4 【解析】 (1)f(x)=-x2-2(a+1)x+3=-(x+a+1)2+(a+1)2+3.因此函数的单调递增区间为(-∞,-a-1].①由f(x)在(-∞,3]上是增函数知3≤-a-1,即a≤-4.②由题意得-a-1=3,a=-4.(2)因为函数y=f(x)在(-∞,+∞)上是增函数,且f(2x-3)>f(5x-6),所以2x-3>5x-6,解得x<1,即实数x的取值范围为(-∞,1).【答案】 (1)①a≤-4 ②-4 (2)(-∞,1)跟踪训练4 解析:(1)∵f(x)=x2-2(1-a)x+2=[x-(1-a)]2+2-(1-a)2,∴f(x)的减区间是(-∞,1-a].∵f(x)在(-∞,4]上是减函数,∴对称轴x=1-a必须在直线x=4的右侧或与其重合.∴1-a≥4,解得a≤-3.故a的取值范围为(-∞,-3].由知函数f(x)的单调递减区间为(-∞,1-a],∴1-a=4,a=-3.(2)函数的定义域为R,由条件可知,x-2>3,解得x>5.答案:(1)见解析 (2)(5,+∞)11。
函数的单调性 学案

1.2.6 函数的单调性(1)【学习目标】 1.能举例说明单调函数的意义;2.能运用函数图象观察出单调区间,会运用函数单调性的定义来判断和证明函数在区间上的单调性;3.能运用数形结合的思想来研究数学问题,激发学习数学的兴趣.【学习重点】函数单调性、单调区间的概念,探究函数的单调性及单调区间.【难点提示】理解单调性的本质、单调性的灵活运用.【学法提示】1.请同学们课前将学案与教材1516P -结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题及解答、阅读与思考、小结等都要仔细阅读)、小组讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备;2.在学习过程中用好“九字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达.【学习过程】 一、学习准备1、熟悉下列函数吗?请作出它们的图象.(1)1)(-=x x f (2)1)(+-=x x f (3)32)(2--=x x x f2、观察三个函数的图象,指出函数的图象上升与下降的特征以及函数值与自变量的大小变化的规律.(1)函数1)(-=x x f 的图象是 ,而且函数值y 随着x 的增大而 ;(2)函数1)(+-=x x f 的图象是 ,而且函数值随着x 的增大而 ;(3)函数()322--=x x x f 的图象是 ,而且在区间(]1,∞-上函数值随x 的 增大而 ,在区间)(1,+∞上函数值随x 的增大而 . 二、探究新知 1、函数单调性的概念(1)观察思考 请阅读教材第27至29页的内容,仔细观察图13中的函数图象,找出图象上升与下降的区间,分析函数值随自变量增大有什么变化规律.你能结合学习准备探究的问题,把函数值与自变量之间的大小变化规律抽象出来吗?能用几种方式来描述呢?(2)归纳概括 ① 图形描述:在给定的区间上,函数)(x f y =的图象从左至右,如果是连续上升的,就称y=f (x )是增函数,如果是 的,就称)(x f y =是减函数;图形描述也可以说是函数的 特征;②定性描述:对于给定区间上的函数)(x f y =,如果函数值随x 的增大而增大,就称函数)(x f 是增函数,如果函数值 ,就称函数)(x f 是减函数;如果函数y=f(x )在某个区间是增函数或减函数。
函数的单调性学案

§1.3.1 函数的单调性与最值¤知识要点:1. 增函数2.减函数3.函数的单调区间4. 判断函数单调性的步骤问题情境:观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:例题精讲: 例1.(1) 根据此函数图象,写出该函数的单调区间(2) 写出1(0)y x x=≠的单调区间(3)写出26y x x =-的单调递增区间思考:函数()f x 的定义域为(,)a b ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x -->,则()f x 在(,)a b 上是 . (填“增函数”或“减函数”或“非单调函数”)例2. 判断函数[]2()(2,6)1f x x x =∈-的单调性.小结: 利用定义证明函数f(x)在给定的区间I 上的单调性的一般步骤:例3.已知函数f (x )= x 2-2x +2,求43x -≤≤时f (x )的最值。
※基础达标1.函数26y x x =-的减区间是( ).A . (,2]-∞ B. [2,)+∞ C. [3,)+∞ D. (,3]-∞ 2.在区间(0,2)上是增函数的是( ).A. y =-x +1B. yC. y = x 2-4x +5D. y =2x3.函数()||()(2)f x x g x x x ==-和的递增区间依次是( ).A. (,0],(,1]-∞-∞B. (,0],[1,)-∞+∞C. [0,),(,1]+∞-∞D. [0,),[1,)+∞+∞4.二次函数2()2f x x ax b =++在区间(-∞,4)上是减函数,你能确定的是( ). A. 2a ≥ B. 2b ≥ C. 4a ≤- D. 4b ≤-5.已知函数f (x )= x 2-2x +2,那么f (1),f (-1),f之间的大小关系为 请将以下题目写在作业本上:1.证明函数xx y 1+=在(1,+∞)上为增函数. 2. 求证:函数11y x=--在区间(),0-∞上是单调增函数.3.试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.。
中职数学 函数的单调性学案

3.3 函数的单调性一.学习目标1、理解函数单调性的概念,会根据函数的图像判断函数的单调性;2、能够根据函数单调性的定义证明函数在某一区间上的单调性。
3、通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力二.预习案(一).自学引导观察函数x x f =)(,2)(x x f =的图象从左至右看函数图象的变化规律:(1).x x f =)(的图象是_________的, 2)(x x f =的图象在y 轴左侧是______的,2)(x x f =的图象在y 轴右侧是_______的.(2) x x f =)(在),(+∞-∞上,)(x f 随着x 的增大而___________;(3) 2)(x x f =在]0,(-∞ 上,)(x f 随着x 的增大而_______;2)(x x f =在),0(+∞上,)(x f 随着x 的增大而________.归纳总结一、单调性※ 增函数、减函数的定义在函数)(x f y = 的图象上任取两点A (x 1,y 1), B (x 2,y 2),记△x= △y= 这里△x 表示自变量的增量或改变量,△y 表示函数值的增量或改变量.1. 增减函数定义:一般地,设函数)(x f 的定义域为I : x y 0 xy 0 x x f =)( 2)(x x f =如果对于定义域I 内某个区间D 上的任意两个 自变量的值21,x x ,当时,则称)(x f 在这个区间上是增函数,而这个区间称函数的一个 ; 当 时,则称)(x f 在这个区间上是减函数,而这个区间称函数的一个2.函数的单调性定义如果函数y=f(x)在某个区间上是 或 ,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D 叫做y=f(x)的单调区间:例1.下列说法正确的是 ( )A.定义在),(b a 上的函数)(x f ,若存在不相等),(,21b a x x ∈,当0>∆∆x y 时,那么)(x f 在),(b a 上为增函数B.定义在),(b a 上的函数)(x f ,若有无穷多对不相等),(,21b a x x ∈,当0>∆∆x y 时,那么)(x f 在),(b a 上为增函数C.若函数)(x f 在区间1I 上为减函数,在区间2I 上也为减函数,那么)(x f 在区间21I I ⋃上就一定是减函数D.若函数)(x f 在区间I 上是增函数,且)()(21x f x f <,),(21I x x ∈,则21x x <. 讨论:设任意不相等[]b a x x ,,21∈,(1)若12x x <时,12()()f x f x <,则)(x f 在[]b a ,上是增函数吗?(2)若12x x <时,)()(21x f x f >,则)(x f 在[]b a ,上是减函数吗?(二).预习自测1.下列函数中,在)0,(-∞上不是增函数的是( )A.x y 3=B.2x y -=C.x y =D.xy 1-= 2.对于函数)(x f y =,在定义域内有两个值21,x x ,且21x x <,使)()(21x f x f <成立,则)(x f y = ( )A.一定是增函数B.一定是减函数C.可能是常数函数D.单调性不能确定3.已知函数)(x f 在(-2,3)上是减函数,则有( )A.)0()1(f f <-B.)2()0(f f <C.)0()1(f f <D.)1()1(f f <-4.如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?解:三.探究案1.探究一:利用图像求下列函数的单调区间并指出在其单调区间上是增函数还是减函数:(1)12-=x y (2)4)1(2-=-x y (3)xy 1= (4)x y =2.探究二:求证:1)(3+=x x f 在R 上是增函数。
函数的单调性第一课时学案-高一上学期数学人教A版

3.2.1 单调性与最大(小)值 第一课时 函数的单调性【学习目标】1. 借助函数图象,会用符号语言表达函数的单调性,理解它们的作用和实际意义.2. 会用定义法证明(或判断)函数的单调性。
【重难点】重点:函数单调性的定义难点:增(减)函数的定义,利用增(减)函数的定义判断函数的单调性 【学习过程】导:初中利用图象,研究过函数值随自变量的增大而增大(或减小)的性质,这一性质叫做函数的单调性。
如何用符号语言描述这一性质?思:认真阅读课本7677页内容,思考并回答下列问题: 1. 增、减函数的概念 前提条件设函数()x f 的定义域为I ,区间I D ⊆条件2121,,x x D x x <∈∀都有()1x f ()2x f都有()1x f ()2x f图示结论()x f 在区间D 上单调递增()x f 在区间D 上单调递减特殊情况当函数()x f 在它的定义域上单调递增时,我们就称它为 函数当函数()x f 在它的定义域上单调递减时,我们就称它为 函数【问题1】(1)若I x x ∈21,,当21x x <时,()()21x f x f <,可以说()x f y =在I 上是增函数吗?这反应了21,x x 的什么特征?(2)21,x x 可以在不同区间上取值吗?(3)若()f x 在区间D 上是增函数,且()()12f x f x >,1x 与2x 的大小关系是否确定?若确定,请说出12,x x 的大小关系。
例1、若函数()f x 在R 上为增函数,且()(3)f a f <,求实数a 的取值范围. 一题多变:(1)若本例中条件不变,把“()(3)f a f <”改为“()(23)f a f a >+”求实数a 的取值范围.(2)若把本例中条件“R ”改为“[]1,5-”,其余不变,求实数a 的取值范围 . 认真阅读课本7879页内容,思考并回答下列问题如果函数()x f y =在区间D 上 或 ,那么就说函数()x f 在这一区间上具有(严格的)单调性,区间D 叫做()x f y =的 .【问题2】:设A 是区间D 上某些自变量值组成的集合,而且,,21A x x ∈∀当21x x <时,都有()()21x f x f <,我们能说函数()x f 在区间D 上单调递增吗?你能举个例子吗?例2.用定义法证明函数()()kf x k x=为正常数在),(∞+0上单调递减。
函数的单调性教学设计 高中数学教案数学教案数学教案学案
函数的单调性教学目标:1.知识目标:理解函数单调性的概念;2.能力目标:〔1〕.能由函数图象判断某些函数的单调性;〔2〕.通过模仿学会证明函数单调性的方法;〔3〕.培养学生观察、比拟、分析的能力;掌握数形结合的方法.3.德育目标:熟悉从感性认识到理性认识,从抽象到具体的研究问题的方法。
教学重点:函数单调性的概念与判断教学难点:利用概念证明或判断函数的单调性教学用具:多媒体、实物投影仪教学过程:一.问题情境:日常生活中,我们有过这样的体验:从阶梯教室前向后走,逐步上升,从从阶梯教室后向前走,逐步下降。
1.观察以下图表,体会图形上升或下降的变化在实际生活中作用:洞庭湖沿不同观测站1954年洪水过程图春兰股份线性图在哪些时段内气温是升高的?2.很多函数也具有类似性质。
如〔电脑给出图象〕:y=3x+2 y=1x(x>0)这就是我们要研究的函数的重要性质之一:函数的单调性〔电脑给出课题〕二.学生活动问题1:观察以下函数的图象,指出函数从左向右是怎样变化的?函数y=x2、y=x3的图象〔电脑给出〕y yO O x这些说明某些函数在定义域内的某些区间上图象呈现上升趋势,在某些区间上呈现下降趋势。
问题2:你能用数学语言刻画“图象呈上升或下降的趋势〞吗?三.建构数学:问题3:如何用数学语言来准确地表述这种y值随着x的值增大而增大〔减小〕呢?进而抽象出单调性的定义〔电脑给出〕:一般地,设函数y=f(x)的定义域为A,区间I⊆A如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1 )<f(x2 ),那么就说y=f(x)在区间I上是增函数。
I称为y=f(x)的单调增区间。
如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1 )>f(x2 ),那么就说在这个区间I上是减函数。
I称为y=f(x)的单调减区间。
如果函数y=f(x)在区间I上是单调增函数或是单调减函数,那么就说函数y=f(x)在区间I上具有单调性.问题4:由函数单调性定义,你发现哪些特点?(1)自变量属于定义域(2)自变量的任意性(3)x1、x2的大小与f(x1 )、f(x2)的大小要对应.为了让学生更直观地看出单调函数定义的内涵,用电脑演示动画。
高中数学 第二章 函数 3 函数的单调性(一)学案 北师大
3 函数的单调性(一)学习目标 1.理解函数单调区间、单调性等概念.2.会划分函数的单调区间,判断单调性.3.会用定义证明函数的单调性.知识点一 函数的单调性思考 画出函数f (x )=x 、f (x )=x 2的图像,并指出f (x )=x 、f (x )=x 2的图像的升降情况如何?梳理 单调性是相对于区间来说的,函数图像在某区间上上升,则函数在该区间上为增函数.反之则为减函数.很多时候我们不知道函数图像是什么样的,而且用上升下降来刻画单调性很粗糙.所以有以下定义:一般地,在函数y =f (x )的定义域内的一个区间A 上,如果对于任意两数x 1,x 2∈A ,当x 1<x 2时,都有f (x 1)<f (x 2),那么,就称函数y =f (x )在区间A 上是__________,有时也称函数y =f (x )在区间A 上是__________.在函数y =f (x )的定义域内的一个区间A 上,如果对于任意两数x 1,x 2∈A ,当x 1<x 2时,都有f (x 1)>f (x 2),那么,就称函数y =f (x )在区间A 上是__________,有时也称函数y =f (x )在区间A 上是__________.如果函数y =f (x )在定义域的某个子集上是增加的或是减少的,就称函数y =f (x )在该子集上具有单调性;如果函数y =f (x )在整个定义域内是增加的或是减少的,我们分别称这个函数是增函数或减函数,统称为单调函数. 知识点二 函数的单调区间思考 我们已经知道f (x )=x 2在(-∞,0]上是减少的,f (x )=1x在区间(-∞,0)上是减少的,这两个区间能不能交换?梳理一般地,有下列常识:(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,所以单调区间的端点若属于定义域,则该点处区间可开可闭,若区间端点不属于定义域则只能开.(2)单调区间D⊆定义域I.(3)遵循最简原则,单调区间应尽可能大.类型一求单调区间并判断单调性例1 如图是定义在区间[-5,5]上的函数y=f(x),根据图像说出函数的单调区间,以及在每一单调区间上,它是增加的还是减少的?反思与感悟函数的单调性是在定义域内的某个区间上的性质,单调区间是定义域的子集;当函数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“∪”,可以用“和”来表示;在单调区间D上函数要么是增加的,要么是减少的,不能二者兼有.跟踪训练1 写出函数y =|x 2-2x -3|的单调区间,并指出单调性.类型二 证明单调性命题角度1 证明具体函数的单调性例2 证明f (x )=x 在其定义域上是增函数.反思与感悟 运用定义判断或证明函数的单调性时,应在函数的定义域内给定的区间上任意取x 1,x 2且x 1<x 2的条件下,转化为确定f (x 1)与f (x 2)的大小,要牢记五大步骤:取值→作差→变形→定号→小结.跟踪训练2 求证:函数f (x )=x +1x在[1,+∞)上是增函数.命题角度2 证明抽象函数的单调性例3 已知函数f(x)对任意的实数x、y都有f(x+y)=f(x)+f(y)-1,且当x>0时,f(x)>1.求证:函数f(x)在R上是增函数.反思与感悟因为抽象函数不知道解析式,所以不能代入求f(x1)-f(x2),但可以借助题目提供的函数性质来确定f(x1)-f(x2)的大小,这时就需要根据解题需要对抽象函数进行赋值.跟踪训练3 已知函数f(x)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<1.求证:f(x)在R上是减函数.类型三 单调性的应用命题角度1 利用单调性求参数范围例4 若函数f (x )=⎩⎪⎨⎪⎧a -x +4a ,x <1,-ax ,x ≥1是定义在R 上的减函数,则a 的取值范围为( ) A .[18,13)B .(0,13)C .[18,+∞)D .(-∞,18]∪[13,+∞)反思与感悟 分段函数在定义域上单调,除了要保证各段上单调外,还要接口处不能反超.另外,函数在单调区间上的图像不一定是连续不断的.跟踪训练4 已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.命题角度2 用单调性解不等式例5 已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),求a 的取值范围.反思与感悟若已知函数f(x)的单调性,则由x1,x2的大小,可得f(x1),f(x2)的大小;由f(x1),f(x2)的大小,可得x1,x2的大小.跟踪训练5 在例5中若函数y=f(x)的定义域为R,且为增函数,f(1-a)<f(2a-1),则a 的取值范围又是什么?1.函数y =f (x )在区间[-2,2]上的图像如图所示,则此函数的增区间是( )A .[-2,0]B .[0,1]C .[-2,1]D .[-1,1]2.函数y =6x的减区间是( )A .[0,+∞)B .(-∞,0]C .(-∞,0),(0,+∞)D .(-∞,0)∪(0,+∞)3.在下列函数f (x )中,满足对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( ) A .f (x )=x 2B .f (x )=1xC .f (x )=|x |D .f (x )=2x +14.已知函数y =f (x )满足:f (-2)>f (-1),f (-1)<f (0),则下列结论正确的是( ) A .函数y =f (x )在区间[-2,-1]上递减,在区间[-1,0]上递增 B .函数y =f (x )在区间[-2,-1]上递增,在区间[-1,0]上递减 C .函数y =f (x )在区间[-2,0]上的最小值是f (-1) D .以上的三个结论都不正确5.若函数f (x )在R 上是减函数,且f (|x |)>f (1),则x 的取值范围是( ) A .x <1 B .x >-1 C .-1<x <1D .x <-1或x >11.若f (x )的定义域为D ,A ⊆D ,B ⊆D ,f (x )在A 和B 上都递减,未必有f (x )在A ∪B 上递减.2.对增函数的判断,对任意x 1<x 2,都有f (x 1)<f (x 2),也可以用一个不等式来替代: (x 1-x 2)[f (x 1)-f (x 2)]>0或f x 1-f x 2x 1-x 2>0.对减函数的判断,对任意x 1<x 2,都有f (x 1)>f (x 2),相应地也可用一个不等式来替代:(x 1-x 2)[f (x 1)-f (x 2)]<0或f x 1-f x 2x 1-x 2<0.3.熟悉常见的一些单调性结论,包括一次函数,二次函数,反比例函数等.4.若f (x ),g (x )都是增函数,h (x )是减函数,则:①在定义域的交集(非空)上,f (x )+g (x )递增,f (x )-h (x )递增,②-f (x )递减,③1f x递减(f (x )≠0).5.对于函数值恒正(或恒负)的函数f (x ),证明单调性时,也可以作商f x 1f x 2与1比较.答案精析问题导学 知识点一思考 两函数的图像如下:函数f (x )=x 的图像由左到右是上升的;函数f (x )=x 2的图像在y 轴左侧是下降的,在y 轴右侧是上升的.梳理 增加的 递增的 减少的 递减的 知识点二思考 f (x )=x 2的减区间可以写成(-∞,0),而f (x )=1x的减区间(-∞,0)不能写成(-∞,0],因为0不属于f (x )=1x的定义域.题型探究例1 解 y =f (x )的单调区间有[-5,-2],[-2,1],[1,3],[3,5],其中y =f (x )在区间[-5,-2],[1,3]上是减少的,在区间[-2,1],[3,5]上是增加的.跟踪训练1 解 先画出f (x )=⎩⎪⎨⎪⎧x 2-2x -3,x <-1或x >3,-x 2-2x -,-1≤x ≤3的图像,如图.所以y =|x 2-2x -3|的单调区间有(-∞,-1],[-1,1],[1,3],[3,+∞),其中递减区间是(-∞,-1],[1,3];递增区间是[-1,1],[3,+∞). 例2 证明 f (x )=x 的定义域为[0,+∞).设x 1,x 2是定义域[0,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1-x 2=x 1-x 2x 1+x 2x 1+x 2=x 1-x 2x 1+x 2.∵0≤x 1<x 2,∴x 1-x 2<0,x 1+x 2>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴f (x )=x 在定义域[0,+∞)上是增函数.跟踪训练2 证明 设x 1,x 2是实数集R 上的任意实数,且1≤x 1<x 2,则f (x 1)-f (x 2)=x 1+1x 1-(x 2+1x 2)=(x 1-x 2)+(1x 1-1x 2)=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)(1-1x 1x 2)=(x 1-x 2)(x 1x 2-1x 1x 2).∵1≤x 1<x 2,∴x 1-x 2<0,1<x 1x 2, ∴x 1x 2-1x 1x 2>0,故(x 1-x 2)(x 1x 2-1x 1x 2)<0, 即f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )=x +1x在区间[1,+∞)上是增函数.例3 证明 方法一 设x 1,x 2是实数集上的任意两个实数,且x 1>x 2. 令x +y =x 1,y =x 2,则x =x 1-x 2>0.f (x 1)-f (x 2)=f (x +y )-f (y )=f (x )+f (y )-1-f (y )=f (x )-1.∵x >0,∴f (x )>1,f (x )-1>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). ∴函数f (x )在R 上是增函数. 方法二 设x 1>x 2,则x 1-x 2>0, 从而f (x 1-x 2)>1,即f (x 1-x 2)-1>0.f (x 1)=f [x 2+(x 1-x 2)]=f (x 2)+f (x 1-x 2)-1>f (x 2),故f (x )在R 上是增函数.跟踪训练3 证明 ∵对于任意实数m ,n ,恒有f (m +n )=f (m )·f (n ),令m =1,n =0,可得f (1)=f (1)·f (0), ∵当x >0时,0<f (x )<1, ∴f (1)≠0,∴f (0)=1. 令m =x <0,n =-x >0,则f (m +n )=f (0)=f (-x )·f (x )=1,∴f (x )f (-x )=1,又∵-x >0时,0<f (-x )<1,∴f (x )=1f -x>1. ∴对任意实数x ,f (x )恒大于0.设任意x 1<x 2,则x 2-x 1>0,∴0<f (x 2-x 1)<1,∴f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)f (x 1)-f (x 1)=f (x 1)[f (x 2-x 1)-1]<0, ∴f (x )在R 上是减少的.例4 A [要使f (x )在R 上是减函数,需满足:⎩⎪⎨⎪⎧ 3a -1<0,-a <0,a -+4a ≥-a ·1. 解得18≤a <13.] 跟踪训练4 a ≤1或a ≥2解析 由于二次函数开口向上,故其增区间为[a ,+∞),减区间为(-∞,a ],而f (x )在区间[1,2]上单调,所以[1,2]⊆[a ,+∞)或[1,2]⊆(-∞,a ],即a ≤1或a ≥2. 例5 解 f (1-a )<f (2a -1)等价于⎩⎪⎨⎪⎧ -1<1-a <1,-1<2a -1<1,1-a >2a -1,解得0<a <23, 即所求a 的取值范围是0<a <23. 跟踪训练5 解 ∵y =f (x )的定义域为R ,且为增函数,f (1-a )<f (2a -1),∴1-a <2a -1,即a >23, ∴所求a 的取值范围是(23,+∞). 当堂训练1.C 2.C 3.B 4.D 5.C。
3.3.1单调性 学案(含答案)
3.3.1单调性学案(含答案)3.3导数在研究函数中的应用3.3.1单调性学习目标1.结合实例,直观探索并掌握函数的单调性与导数的关系.2.能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式.3.会用导数法求函数的单调区间其中多项式函数一般不超过三次知识点函数的单调性与导函数正负的关系思考1观察下列各图,完成表格内容.函数及其图象切线斜率k正负导数正负单调性正正1,上单调递增正正R上单调递增负负0,上单调递减负负0,上单调递减负负,0上单调递减思考2依据上述分析,可得出什么结论答案一般地,设函数yfx,在区间a,b上,如果fx0,则fx在该区间上单调递增;如果fx0,则fx在该区间上单调递减梳理1导数值切线的斜率倾斜角曲线的变化趋势函数的单调性fx0k0锐角上升单调递增fx0k0钝角下降单调递减2在区间a,b内函数的单调性与导数有如下关系函数的单调性导数单调递增fx0,且fx在a,b的任何子区间上都不恒为零单调递减fx0,且fx在a,b的任何子区间上都不恒为零常函数fx01如果函数yfx在区间a,b上都有fx0,那么fx在区间a,b内单调递增2如果函数yfx在区间a,b上单调递增,那么它在区间a,b上都有fx0.3函数yx3x25x5的单调递增区间是和1,4函数fxlnxaxa0的单调增区间为.类型一求函数的单调区间命题角度1求不含参数的函数的单调区间例1求fx3x22lnx的单调区间解fx3x22lnx的定义域为0,fx6x,由x0,解fx0,得x;由x0,解fx0,得0x.所以函数fx3x22lnx的单调递增区间为,单调递减区间为.反思与感悟求函数yfx的单调区间的步骤1确定函数yfx的定义域;2求导数yfx;3解不等式fx0,函数在定义域内的解集上为增函数;4解不等式fx0,函数在定义域内的解集上为减函数跟踪训练1求函数fx的单调区间解函数fx的定义域为,22,fx.因为x,22,,所以ex0,x220.由fx0,得x3,所以函数fx的单调递增区间为3,;由fx0,得x3.又函数fx的定义域为,22,,所以函数fx的单调递减区间为,2和2,3命题角度2求含参数的函数的单调区间例2讨论函数fxx2alnxa0的单调性解函数fx的定义域是0,,fx2x.设gx2x2a,由gx0,得2x2a.当a0时,fx2x0,函数fx在区间0,上为增函数;当a0时,由gx0,得x或x舍去当x时,gx0,即fx0;当x时,gx0,即fx0.所以当a0时,函数fx在区间上为减函数,在区间上为增函数综上,当a0时,函数fx的单调增区间是0,;当a0时,函数fx的单调增区间是,单调减区间是.引申探究若将本例改为fxax2lnxaR呢解fx2ax,当a0时,且x0,,fx0,函数fx在0,上为减函数;当a0时,令fx0,解得x或x 舍去当x时,fx0,fx为减函数;当x时,fx0,fx为增函数综上所述,当a0时,函数fx在0,上为减函数;当a0时,fx在上为减函数,在上为增函数反思与感悟1在判断含有参数的函数的单调性时,不仅要考虑到参数的取值范围,而且要结合函数的定义域来确定fx的符号,否则会产生错误2分类讨论是把整个问题划分为若干个局部问题,在每一个局部问题中,原先的不确定因素就变成了确定性因素,当这些局部问题都解决了,整个问题就解决了跟踪训练2已知函数fx4x33tx26t2xt1,其中xR,tR.当t0时,求fx的单调区间解fx12x26tx6t26xt2xt,令fx0,得x1t,x2.当t0,x时,fx0,此时fx为减函数;当x时,fx0,此时fx为增函数,同理当xt,时,fx也为增函数当t0时,fx的增区间为和t,,fx的减区间为;当t0,x时,fx0,此时fx为减函数,当x,t和x时,fx0,此时fx为增函数,当t0时,fx的增区间为,t,,fx的减区间为.综上所述,当t0时,fx的单调增区间是,t,,单调减区间是.当t0时,fx的单调增区间是,t,,单调减区间是.类型二证明函数的单调性问题例3证明函数fx在区间上单调递减证明fx,又x,则cosx0,sinx0,xcosxsinx0,fx0,fx在上是减函数反思与感悟关于利用导数证明函数单调性的问题1首先考虑函数的定义域,所有函数性质的研究必须保证在定义域内这个前提下进行2fx或0,则fx为单调递增或递减函数;但要特别注意,fx为单调递增或递减函数,则fx或0.跟踪训练3证明函数fx在区间0,e上是增函数证明fx,fx.又0xe,lnxlne1.fx0,故fx在区间0,e上是增函数类型三已知函数的单调性求参数范围例4已知函数fxx2x0,常数aR若函数fx在x2,上单调递增,求a的取值范围解fx2x.要使fx在2,上单调递增,则fx0在x2,时恒成立,即0在x2,时恒成立x20,2x3a0,a2x3在x2,时恒成立a2x3min.当x2,时,y2x3是单调递增的,2x3min16,a16.当a16时,fx0x2,,有且只有f20,a的取值范围是,16反思与感悟已知函数的单调性,求函数解析式中参数的取值范围,可转化为不等式恒成立问题,一般地,函数fx在区间I上单调递增或减,转化为不等式fx0fx0在区间I上恒成立,再用有关方法可求出参数的取值范围跟踪训练4已知函数fxx3ax2a1x2在区间1,2上为减函数,求实数a的取值范围解方法一fxx2axa1,因为函数fx在区间1,2上为减函数,所以fx0,即x2axa10,解得ax1.因为在1,2上,ax1恒成立,所以ax1max1.所以a的取值范围是1,方法二fxx1xa1,由于函数fx在区间1,2上为减函数,所以fx0,当a2时,解得1xa1,即减区间为1,a1,则1,21,a1,得a1.当a2时,解得减区间为a1,1,则函数fx不可能在1,2上为减函数,故a1.所以实数a的取值范围是1,1函数fx2x33x21的单调递增区间是________,单调递减区间是________答案,0和1,0,1解析fx6x26x,令fx0,得x0或x1,令fx0,得0x1.2函数fxx1ex的单调递增区间是________答案0,解析fxx1exx1exxex,令fx0,解得x0.3函数fxlnxaxa0的单调递增区间为________答案解析fx的定义域为x|x0,由fxa0,得0x.4若函数yx3ax24在0,2上单调递减,则实数a的取值范围为________答案3,解析y3x22axx3x2a,由题意知x0,2,y0,即x3x2a0,得0xa,则2,即a3.5求函数fxxkex的单调区间解fxexxkexxk1ex,当xk1时,fx0;当xk1时,fx0,所以fx的单调递减区间是,k1,单调递增区间为k1,1导数的符号反映了函数在某个区间上的单调性,导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度2利用导数求函数fx的单调区间的一般步骤1确定函数fx的定义域;2求导数fx;3在函数fx的定义域内解不等式fx0和fx0;4根据3的结果确定函数fx的单调区间。
高中数学单调性教案怎么写
高中数学单调性教案怎么写
一、教学目标
1. 理解函数的增减性和单调性的概念。
2. 掌握函数单调性的判定方法。
3. 能够应用函数的单调性解决实际问题。
二、教学重点和难点
1. 理解函数的单调性概念,掌握判定方法。
2. 应用函数的单调性解决实际问题。
三、教学准备
1. 教师准备:教案、教学PPT、板书笔、教材、教具等。
2. 学生准备:课前提前预习相关内容。
四、教学过程
1. 导入:通过一个例子引导学生了解单调性的概念,如:函数$f(x) = x^2$在区间$[-
2,2]$上的单调性。
2. 教学:讲解函数的增减性和单调性的定义,及如何判定函数的单调性。
3. 辅导:给学生一些练习题进行实操,让学生自己判断函数的单调性,并解释判断的依据。
4. 实践:通过学生自主解决实际问题的练习,培养学生应用函数单调性解决实际问题的能力。
5. 总结:归纳总结本节课学习的内容,强调函数单调性的重要性。
五、布置作业
布置适量的作业,巩固和拓展学生对函数单调性的理解和应用能力。
六、教学反思
教师根据学生的学习情况,及时进行评价和反思,对今后教学提出改进建议。
七、拓展延伸
学生可自行探究其他函数的单调性,如三角函数、指数函数等,进一步提升应用函数的单
调性解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岚山一中高一数学导学案
课题:函数的单调性班级姓名执笔人:李秀梅审核人:接迎2010 年9月21日编号05 【学习目标:】
1. 理解函数单调性的概念。
由函数图象会写函数的单调区间。
2. 学会运用单调性的定义来判断函数的单调性。
3. 培养运用数形结合思想,解决数学问题能力。
【重点难点】
重点:函数单调性的定义和函数单调性的证明。
难点:函数单调性的判断或证明。
【自主学习】
自学课本44页到例1的上方,完成下列问题
一、函数单调性的定义
1.画出下列函数的图象,观察其变化规律:(1).f(x) = x
○1从左至右图象上升还是下降______?
○2在区间____________ 上,随着x的增大,
.
(2).f(x) = -2x+1
○1从左至右图象上升还是下降______?
○2在区间____________ 上,随着x
f(x)的值随着________ .
(3).f(x) = x2
○1在区间____________ 上,f(x)的值随
着x的增大而________ .
○2在区间____________ 上,f(x)的值随着x
2、函数单调性的定义
一般地,设函数y=f(x)的定义域为A,区间M A
.如果取区间M中的两
个值12,x x ,改变量 ,则当 时,就称函
数y=f(x)在区间M 上是 。
当 时,就称函数y=f(x)在区间M 上是 。
(在记忆理解的基础上口述此定义)
3、对函数单调性定义的认识、理解
(1)、函数的单调性是整个定义域上的性质吗?若不是请举例说明。
答:
(2)、定义中的12,x x 能否取特值代替来判断单调性?
答:
(3)、函数y=x-1, x ∈{1、2、3、4}是否存在单调性?
答:
二、函数的单调区间与图像之间的关系
1、(1)完成课本46页练习A 第1题
2、画函数||1y x =-的图像并指出单调区间
三、基础自测
(1)下列函数中,在区间()0,1上是增函数的是( )
A .x y =
B .x y -=3
C .x
y 1= D .42+-=x y (2)函数||)(x x f =+1的减区间是____________________.
(3)、若函数()(1)f x k x b =-+在R 上是减函数,则k 的取值范围为__________。
认真自学课本45页例1与例2后,请尝试独立写出详细的证明过程!!!
(1)证明函数()21f x x =+在R 上是增函数
(2)证明函数1()f x x
=,在区间(,0)(0,)-∞+∞和上分别是减函数
思考:根据两个例题的证明,你能否总结出证明函数单调性的一般步骤?在这些步骤中你认为最关键的地方是什么?
步骤为:(1)
(2)
(3)
关键点;
疑难反馈:
【合作探究】
一、用定义证明函数单调性
例1.证明函数1y x x
=+
在[1,+∞)上是增函数
变式、证明函数21()f x x =∝在(0,+)上是减函数
小结:用定义证明函数单调性三步曲
二、求函数的单调区间
例2、求函数2()||f x x x =+的单调增区间与减区间
变式:求函数()|1|1f x x =-+的的单调增区间与减区间
小结;解此类题的关键是什么?思想方法是?
三、函数单调性的应用
例3. )(x f y =在定义域)1,1(-上是减函数,且),13()1(-<-a f a f 求a 的取值范围
例4、函数3)(2+--=ax x x f 在区间]1,(--∞上是增函数,求a 的取值范围
当堂检测
1.、下列函数中,在区间(0,2)上为增函数的是 ( )
A.13+-=x y
B. 3x y =
C.342+-=x x y
D.x
y 4= 2、已知函数()f x ax =和()b g x x
=在(0,)+∞上都是减函数,则2()h x ax bx c =++在(,0)-∞上( ) ()A 是增函数 ()B 是减函数
()C 既不是增函数也不是减函数 ()D ()h x 的单调性不能确定
四、课后巩固提高
课后作业:1、课本第46页练习A--第4题;
2、课本第52页第6 题(4)
巩固提高:A 级:课本第34页练习B--第1、2题;
B 级:伴你学—基础过关(第一课时)。