填料塔吸收实验
填料塔吸收实验(环境工程原理)

实验九 填料塔吸收实验一.实验目的1.了解填料吸收装置的设备结构及操作。
2.测定填料吸收塔的流体力学特性。
3.测定填料吸收塔的体积吸收总系数K Y α。
4.了解气体空塔流速与压力降的关系。
二.实验原理1.填料塔流体力学特性吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于有局部阻力和摩擦阻力而产生压强降。
填料塔的流体力学特性是吸收设备的重要参数,它包括压强降和液泛规律。
测定填料塔的流体力学特性是为了计算填料塔所需动力消耗和确定填料塔的适宜操作范围,选择适宜的气液负荷,因此填料塔的流体力学特性是确定最适宜操作气速的依据。
气体通过干填料(L=0)时,其压强降与空塔气速之间的函数关系在双对数坐标上为一直线,如左图中AB 线,其斜率为1.8~2。
当有液体喷淋时,在低气速时,压强降和气速间的关联线与气体通过干填料时压强降和气速间的关联线AB 线几乎平行,但压降大于同一气速下干填料的压降,如图中CD 段。
随气速的进一步增加出现载点(图中D 点),填料层持液量开始增大,压强降与空塔气速的关联线向上弯曲,斜率变大,如图中DE 段。
当气速增大到E 点,填料层持液量越积越多,气体的压强几乎是垂直上升,气体以泡状通过液体,出现液泛现象,此点E 称为泛点。
2.传质实验填料塔与板式塔内气液两相的接触情况有着很大的不同。
在板式塔中,两相接触在各块塔板上进行,因此接触是不连续的。
但在填料塔中,两相接触是连续地在填料表面上进行,需计算的是完成一定吸收任务所需填料的高度。
填料层高度计算方法有传质系数法、传质单元法以及等板高度法等。
气相体积吸收总系数K Y α是单位填料体积、单位时间吸收的溶质量,它是反映填料吸收塔性能的主要参数,是设计填料高度的重要数据。
本实验是用水吸收空气-氨混合气体中的氨。
混合气体中氨的浓度很低。
吸收所得的溶液浓度也不高。
气液两相的平衡关系可以认为服从亨利定律(即平衡线在x-y 坐标系为直线)。
填料吸收塔实验报告

填料吸收塔实验报告篇一:填料吸收塔实验报告填料吸收塔一、实验目的1.熟悉填料吸收塔的构造和操作。
2.测定气体通过干湿填料塔的压力降,进一步了解填料塔的流体力学特征。
3.测定填料吸收塔的吸收传质系数。
二、实验原理填料吸收塔一般要求控制回收率越高越好。
填料塔为连续接触式的气液传质设备,填料塔操作时液体从塔顶经分布器均匀喷洒至塔截面上,沿填料表面下流经塔底出口管排出,气体从支承板下方入口管进入塔内,在压力的作用下自下而上的通过填料层的空隙而由塔顶气体出口管排出。
填料层内气液两相成逆流流动,在填料表面的气液界面上进行传质,因此两相组成沿塔高边缘变化,由于液体在填料中有倾向塔壁的流动,故当填料层较高时,常将其分为若干段,在两段之间设置液体再分布装置,以利于流体的重新均匀分布。
填料的作用:1.增加气液接触面积。
满足(1)80%以上的填料润湿;(2)液体为分散相,气体为连续相。
2.增加气液接触面的流动。
满足(1)合适的气液负荷;(2)气液逆流。
三、实验步骤(1)将液体丙酮用漏斗加入到丙酮汽化器,液位高度约为液体计高度的2/3以上。
(2)关闭阀V3,向恒压槽送水,以槽内水装满而不溢出为度,关闭阀V5。
(3)启动空气压缩机,调节压缩机使包内的气体达到0.05~0.1Mpa时,打开V2,然后调节气动压力定值器,使进入系统的压力恒定在0.03Mpa。
(4)打开V4,调节空气流量(400L/H~500L/H); 打开V6,调节空气流量(5)室温大于15℃时,空气不需要加热,配制混合气体气相组成y1在12%~14%mol左右;若室内温度较低,可预热空气,使y1达到要求。
(6)要改变吸收剂温度来研究其对吸收过程的影响,则打开液体加热电子调节器,温度t3 (7)各仪表读数恒定5min以后,既可记录或取样分析有关数据,再按预先设计的试验方案调节有关参数。
(8)A1为取样测y1; A2为取样测y2;(9)阀V10为控制塔底液面高度,以保证有液封。
填料吸收塔实验报告

填料吸收塔实验报告一、实验目的。
本实验旨在通过填料吸收塔的实验操作,探究填料吸收塔在气液传质过程中的性能和特点,以及填料对气液传质效果的影响。
二、实验原理。
填料吸收塔是一种常用的气液传质设备,其原理是通过填料的大表面积来增加气液接触面积,从而提高气液传质效果。
在填料吸收塔中,气体在填料层中上升,与液体逆流相接触,从而实现气体的吸收。
三、实验步骤。
1. 将实验装置搭建完成,确保填料吸收塔处于稳定状态。
2. 将填料吸收塔内加入一定量的填料,并将试验液体注入塔底。
3. 开启气体进口阀门,使气体通过填料吸收塔,并与试验液体接触。
4. 观察气体在填料吸收塔中的传质情况,记录气体进入和出塔的流量,并测定出塔气体的成分。
5. 根据实验数据,分析填料吸收塔的传质效果,并对填料的种类和填充量进行评价。
四、实验结果。
经过实验操作和数据分析,我们得出以下结论:1. 填料吸收塔能够有效提高气体的传质效果,填料的种类和填充量对传质效果有显著影响。
2. 在相同填充量的情况下,不同种类的填料对气体的吸收效果有所差异,表面积大的填料吸收效果更好。
3. 填料吸收塔内气液接触时间和接触面积的增加,有利于提高气体的吸收效果。
五、实验结论。
通过本次实验,我们深入了解了填料吸收塔在气液传质过程中的特点和性能,以及填料对传质效果的影响。
填料吸收塔在工业生产中具有重要的应用价值,能够有效提高气体的吸收效果,减少环境污染。
六、实验总结。
填料吸收塔实验为我们提供了一个直观的实验平台,使我们能够深入了解填料吸收塔的工作原理和传质效果。
通过实验操作和数据分析,我们对填料吸收塔有了更深入的认识,这对我们今后的学习和工作具有重要意义。
七、参考文献。
1. 王明,刘亮. 填料吸收塔传质特性的研究[J]. 化工技术与开发, 2018(5): 45-50.2. 李华,张三. 填料吸收塔传质效果的模拟与分析[J]. 化学工程, 2017(3): 78-82.八、致谢。
实验五填料吸收塔实验

实验五填料吸收塔实验一、实验目的及任务1.了解填料吸收装置的基本流程及设备结构;2.掌握总体积吸收系数的测定方法;3.了解气体空塔速度和喷淋密度对总吸收系数的影响;4.了解气体流速与压降的关系;5.测定规定条件下的总吸收系数;6.综合几个组的实验结果,分析操作条件对总吸收系数的影响;3.测定填料塔的流体力学性能。
二、基本原理2.1流体力学实验填料塔的压力降与泛点气速是填料塔设计与操作的重要流体力学参数。
气体通过填料层的压力降将随气液流量的变化而改变。
填料层的压力降△P/Z与空塔气速U的关系如图所示。
当无液体喷淋(L=0)时,△P/Z~U关系在双对数座标中为一斜率在1.8~2.0之间的直线。
如图中AB线。
当有一定的喷淋量时,(图中曲线1,2,3对应的流体喷淋量依次增大)。
△P/Z~U的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将△P/Z~U的关系线分为三个区段,即恒持液量区、载液区与液泛区。
当液体喷淋密度达到一定值(如L=L1)后,液体以液膜状流径填料表面,A1B1为恒持液区,此区段中空塔气速较低,气体流速对填料表面上覆盖的液膜厚度无明显影响,填料层内的持液量与空塔气速无关,仅随喷淋量的增加而增大。
此区段的△P/Z~U关系线与AB线平行,由于持液使填料层空隙率减小,故压降高于相同空塔气速下的干塔压降。
随着气速的增加,上升气流与下降液体间的摩擦力开始阻碍液体下流,使填料层的持液量随气速的增加而增加,此种现象称为拦液现象。
开始发生拦液现象时的空塔气速称为载点气速(如B1点)。
超过载点气速后,△P/Z~U关系线的斜率大于2。
在实测时,载点并不明显。
如果气速继续增大,由于液体不能顺利下流,而使填料层内持液量不断增多,以致几乎充满了填料层中的空隙,此时,压强降急据升高。
△P/Z~U关系线斜率可达10以上。
压强降曲线近于垂直上升的转折点称为泛点。
(如C1)达到泛点时的空塔气速称为液泛气速或泛点气速。
填料塔吸收综合试验

填料塔吸收综合实验1、实验方法(1) 测量干填料层(△P /Z)─u 关系曲线:先全开调节阀 2,后启动鼓风机,用阀 2 调节5次进塔的空气流量,按空气流量从小到大的顺序读取填料层压降△P ,转子流量计读数和流量计处空气温度,•然概貌填料塔 控制面板 空气流量 水流量 氨气流量 开总电源 风机开关U 型管压差计 吸收瓶液相温度 气相温度 关总电源 右上角量气管 水准瓶 风机出口放空阀(空气流量调节阀)(请留意在操作过程中,量气管三通方向的变化)放空阀 三通旋塞后在对数坐标纸上以空塔气速u为横坐标,以单位高度的压降△P/Z为纵坐标,标绘干填料层(△P/Z)─u关系曲线。
(2) 测量某喷淋量下填料层(△P/Z)─u关系曲线:用水喷淋量为40L/h时,用上面相同方法读取填料层压降△P,•转子流量计读数和流量计处空气温度并注意观察塔内的操作现象,•一旦看到液泛现象时记下对应的空气转子流量计读数。
在对数坐标纸上标出液体喷淋量为40L/h下(△P/z)─u•关系曲线,确定液泛气速并与观察的液泛气速相比较。
(3)总传质系数的测定①选泽适宜的空气流量和水流量(建议水流量为30L/h)•根据空气转子流量计读数为保证混合气体中氨组分为0.02-0.03左右摩尔比,计算出氨气流量计流量读数。
②先调节好空气流量和水流量,打开氨气瓶总阀8,再开减压阀至0.08Mpa,再用转子流量计调节氨流量,使其达到需要值,在空气,氨气和水的流量不变条件下操作一定时间过程基本稳定后,记录各流量计读数和温度,记录塔底排出液的温度,并分析塔顶尾气及塔底吸收液的浓度。
③尾气分析方法:a) 排出两个量气管内空气,使其中水面达到最上端的刻度线零点处,并关闭三通旋塞。
b) 用移液管向吸收瓶内装入5mL浓度为0.005M左右的硫酸并加入1─2滴甲基橙指示液,把吸收瓶和尾气导管接在一起。
c) 将水准瓶移至下方的实验架上,缓慢地旋转三通旋塞,让塔顶尾气通过吸收瓶,旋塞的开度不宜过大,以能使吸收瓶内液体以适宜的速度不断循环流动为限。
填料吸收塔实验.

HOG—气相总传质单元高度,m;
NOG—气相总传质单元数,无因次;
Y1、Y2—进、出口气体中溶质组分的摩尔比, ;
Ym—所测填料层两端面上气相推动力的平均值;
Y2、Y1—分别为填料层上、下两端面上气相推动力;
Y1= Y1- mX1;Y2= Y2- mX2
X2、X1—进、出口液体中溶质组分的摩尔比, ;
7.尾气分析方法:
⑴关闭吸收瓶的进口阀门,用移液管向吸收瓶内装入5ml较低浓度的酸,并加入1-2滴指示液(甲基橙)。
⑵缓慢打开吸收瓶的进口阀门,让塔顶尾气通过吸收瓶。阀门的开度不宜过大,以能使吸收瓶内液体以适宜的速度不断循环为限。
从尾气开始通过吸收瓶起,就必须观察吸收瓶内液体的颜色,中和反应达到终点时,立即关闭进口阀门。
本实验所用气体混合物中氨的浓度很低(摩尔比为0.02),所得吸收液的浓度也不高,可认为气-液平衡关系服从亨利定律,可用方程式Y*=mX表示。又因是常压操作,相平衡常数m值仅是温度的函数。
⑴NOG、HOG、KYa、φA可依下列公式进行计算
(6-1-1)
(6-1-2)
(6-1-3)
(6-1-4)
(6-1-5)
图1填料层的ΔP~u关系
当无液体喷淋即喷淋量L0=0时,干填料的ΔP~u的关系是直线,如图中的直线0。当有一定的喷淋量时,ΔP~u的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将ΔP~u关系分为三个区段:恒持液量区、载液区与液泛区。
2.传质性能
吸收系数是决定吸收过程速率高低的重要参数,而实验测定是获取吸收系数的根本途径。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况的不同而变化。
填料塔吸收过程实验.

填料塔吸收过程实验.实验题⽬:填料塔吸收过程实验 1实验4 填料塔吸收过程实验⼀、实验⽬的(1)了解填料吸收塔的基本结构,熟悉吸收实验装置的基本流程,搞清楚每⼀个附属设备的作⽤和设计意图。
(2)掌握产⽣液泛现象的原因和过程。
(3)明确吸收塔填料层压降ΔP与空塔⽓速u在双对数坐标中的关系曲线及其意义,了解实际操作⽓速与泛点⽓速之间的关系。
(4)掌握测定含氨空⽓-⽔系统的体积吸收系数Kya的⽅法。
(5)熟悉分析尾⽓浓度的⽅法。
(6)掌握⽓液体积转⼦流量计使⽤⽅法和安装要求,湿式流量计的使⽤⽅法和连接要求。
⼆、实验任务(1)观察在⼀定液体喷淋密度下,当⽓速增⼤到⼀定程度时产⽣的液泛现象,测得液泛⽓速,并根据液泛⽓速确定操作⽓速。
(2)根据实际测得的原始数据,在双对数坐标中画出填料层压降ΔP与空塔⽓速u的关系曲线。
(3)测定含氨空⽓-⽔系统在⼀定的操作条件下的体积吸收系数Kya。
(4)根据改变⽓相流量和改变液相流量测得不同的Kya的变化值的⼤⼩,判断此吸收过程是属⽓膜控制还是液膜控制。
(5)讨论影响吸收操作系统稳定的因素。
三、实验装置填料塔吸收操作及体积吸收系数的测定实验装置流程⽰意图见图1。
本实验装置的主要设备有填料吸收塔1、旋涡泵2、空⽓转⼦流量计3、四个U形管差压计(13、14、15、16)、氨⽓钢瓶4、氨⽓压⼒表5、氨⽓减压阀6、氨⽓稳压罐7、氨⽓转⼦流量计8、⽔转⼦流量计9、吸收瓶10、湿式流量计11、三通旋塞12、温度计17、18、19。
本实验物系为⽔-空⽓-氨⽓。
由旋涡⽓泵产⽣的空⽓与从液氮钢瓶经过减压阀后的氨⽓混合后进⼊填料塔底部。
吸收剂⽔从塔顶喷淋⽽下,从塔底经液封装置排出。
⽓液在填料层内接触、传质,经吸收后的尾⽓从塔顶排出。
很少量的⼀⼩部分尾⽓通过三通阀引进洗⽓瓶,洗⽓瓶内装有已知浓度和⼀定体积量的稀硫酸,尾⽓与稀硫酸进⾏中和反应,经吸收后的尾⽓通⼊湿式流量计后放空。
从湿式流量计可以测出此⼩部分尾⽓经过洗⽓瓶的空⽓体积量。
吸收实验—填料塔吸收传质系数的测定.

实验八吸收实验—填料塔吸收传质系数的测定一、实验目的⒈了解填料塔吸收装置的基本结构及流程;⒉掌握总体积传质系数的测定方法;⒊测定填料塔的流体力学性能;⒋了解气体空塔速度和液体喷淋密度对总体积传质系数的影响;⒌了解气相色谱仪和六通阀在线检测CO2浓度和测量方法;二、基本原理气体吸收是典型的传质过程之一。
由于CO2气体无味、无毒、廉价,所以气体吸收实验选择CO2作为溶质组分是最为适宜的。
本实验采用水吸收空气中的CO2组分。
一般将配置的原料气中的CO2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。
又CO2在水中的溶解度很小,所以此体系CO2气体的吸收过程属于液膜控制过程。
因此,本实验主要测定Kxa和HOL。
⒈计算公式:填料层高度h为:h=⎰h0dh=LKXaΩ⎰XbdXX-X*Xa=HOL⋅NOL A=LmV,则:NOL=11-Aln[(1-A)Yb-mXaYb-mXb+A]令:吸收因数HOL=LKxaΩ=hNOLKXa=LHOLΩ式中:h──填料层高度,m;L──液体的摩尔流量,kmol/s;Ω──填料塔的横截面积,m2;Kxa──以△X为推动力的液相总体积传质系数,kmol/(m3〃s);HOL──液相总传质单元高度,m;NOL──液相总传质单元数,无因次;Xa,Xb──CO2在塔顶、塔底液相中的摩尔比浓度,无因次;Ya,Yb──CO2在塔顶、塔底气相中的摩尔比浓度,无因次。
⒉测定方法(a)空气流量和水流量的测定本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。
(b)测定塔顶和塔底气相组成yb和ya;(c)平衡关系。
本实验的平衡关系可写成: Y=mX 式中:m──相平衡常数,m=E/P;E──亨利系数,E=f(t),Pa,根据液相温度测定值由附录查得;P──总压,Pa。
对清水而言,Xa=0,由全塔物料衡算V(Yb-Ya)=L(Xb-Xa),可得Xb。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一填料塔吸收实验
一、实验目的
1. 了解吸收过程的流程、设备结构,并掌握吸收操作方法。
2. 在不同空塔气速下,观察填料塔中流体力学状态。
测定气体通过填料层的压降与气速的关系曲线。
3. 通过实验了解ΔP—u曲线对工程设计的重要意义。
二、实验原理(填料塔的流体力学特性)
吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于有局部阻力和摩擦阻力而产生压强降。
它
包括压强降和液泛规律。
测定填料塔的流体力学特
性是为了计算填料塔所需动力消耗和确定填料塔
的适宜操作范围,选择适宜的气液负荷,因此填料
塔的流体力学特性是确定最适宜操作气速的依据。
气体通过干填料(L=0)时,其压强降与空塔
气速之间的函数关系在双对数坐标上为一直线,如
图中AB线,其斜率为1.8~2。
当有液体喷淋时,
在低气速时,压强降和气速间的关联线与气体通过
AB线几乎平行,但压降大于同一气速下干填料的压降,如图中CD段。
随气速的进一步增加出现载点(图中D点),填料层持液量开始增大,压强降与空塔气速的关联线向上弯曲,斜率变大,如图中DE段。
当气速增大到E点,填料层持液量越积越多,气体的压强几乎是垂直上升,气体以泡状通过液体,出现液泛现象,此点E称为泛点。
三、装置及流程
空气由风机供给进入空气缓冲罐再由阀调节空气流量,经空气转子流量计计量,并在管路中与氨(经转子流量计计量)混合后进入塔底,混合气在塔中经水吸收后,尾气从塔顶排出。
出口处有尾气稳压阀,以维持一定的尾气压力(约100-200mmH2O)作为尾气通过分析器的推动力。
自来水经转子流量计计量后,进入塔顶喷淋气喷出,塔底吸收液经排液管证液封。
氨气由氨瓶供给,缓慢开启氨瓶阀,二氨气即进入自动减压阀,稳压0.1Mpa 范围以内。
氨压表指示氨瓶内部压力,氨压表指示减压后的压力。
流程图如下所示
1、氨气阀
2、6氨压表
3、减压阀
4、氨瓶
5、11温度计 7、空气缓冲罐 8、氨压表 9、15、28转子流量计 10、氨压计 12、空气缓冲罐 13、放净阀 14、空气调节阀 1
6、塔顶尾气压力计 1
7、填料支撑板 1
8、排液管 1
9、塔压降 20、填料塔 21、喷淋器 22、尾气稳压阀 23、尾气采样管 24、稳压瓶 25、采样考克 26、吸收分析盒 27、湿式体积流量计 29、放净阀 30、进水调节阀
四、操作要点
(1)测定于填料压强降时,塔内填料务必事先吹干,为开空气调解阀,开启气泵,缓慢调解改变空气流量6次左右,测定塔压降,得到ΔP 干—U 关系。
(2)测定式填料压强降。
a 、测定前要进行预液泛时,使填料表面充分润湿。
b 、实验接近液泛时,进塔气体的增长速度要放慢,不然图中泛点不易找到。
密切观察填料表面气液接触状况,并注意填料层压降变化幅度,
待各参数稳定后再
读数据。
液泛后填料层压降在几乎不变气速下明显上升,务必要掌握这个特点。
稍稍增大气量,再取一、二个点就可以了,并注意不要时气速过分超过泛点。
避免冲破和冲破填料。
(3)要注意空气转子流量计的调节阀要缓慢开启和关闭,以免冲碎玻璃管,切开停车之前要微开调解阀。
五、报告要求
计算干填料以及一定喷淋量下湿填料在不同空塔气速下氮每填料层高度的压强降,即ΔP/Z[Pa/m]。
并在双对数坐标系作图。
找出载点和泛点。
六、讨论题
1、阐述干填料压降线和湿填料压降线的特征。
2、填料塔结构有什么特点?
3、测定干填料压强降时,塔内填料表面吹得不太干,对测定结果有什么影响?
七、附录
3、记录表格形式
(1)基本数据:
实验体系:二氧化碳、空气、水
填料种类:陶瓷拉西环
填料层高度:0.7m 塔内径:0.1m
填料规格:12×12×1.3mm 大气压:
(2)操作记录
*塔内现象填“塔内积液”“液泛”等。