材料力学II复习要点(1)

合集下载

安徽工业大学 工程材料力学性能复习提纲整理(1)

安徽工业大学 工程材料力学性能复习提纲整理(1)

1.包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%~2%),卸载后再同向加载,规定残余应力(弹性极限或屈服强度)增加;反向加载,规定残余应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象,称为包申格效应。

2.用低密度可动位错理论解释屈服现象产生的原因金属材料3.答:塑性变形的应变速率与可动位错密度、位错运动速率及柏氏矢量成正比欲提高v就需要有较高应力τ这就是我们在实验中看到的上屈服点。

一旦塑性形变产生,位错大量增值,ρ增加,则位错运动速率下降,相应的应力也就突然降低,从而产生了屈服现象。

(回答不完整,尤其是上屈服点产生的原因回答的不好)3.塑性:材料受力,应力超过屈服点后,仍能继续变形而不发生断裂的性质。

强度:金属材料在外力作用下抵抗永久变形和断裂的能力称为强度。

韧性:表示材料在塑性变形和断裂过程中吸收能量的能力脆性:材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质。

4.韧性断裂与脆性断裂的区别,为什么脆性断裂最危险?答:韧性断裂是材料断裂前产生明显宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量,韧性断裂的断裂面的断口呈纤维状,灰暗色。

脆性断裂是突然发生的断裂,断裂前基本不发生塑性变形,没有明显征兆,因而危害性极大,脆性断裂面的断口平齐而光亮,常呈放射状或结晶状。

5.试指出剪切断裂与解理断裂哪一个是穿晶断裂,哪一个是沿晶断裂?哪一个属于韧性断裂,哪一个属于脆性断裂?为什么?答:都是穿晶断裂,剪切断裂是材料在切应力作用下沿滑移面发生滑移分离而造成的断裂,断裂面为穿晶型,在断裂前会发生明显的塑性变形,为韧性断裂;而解理断裂是材料在正应力作用下沿一定的晶体学平面产生的断裂,也为穿晶断裂,但断裂面前无明显的塑性变形,为脆性断裂。

6.拉伸断口的三要素:纤维区、放射区、剪切唇7. 理论断裂强度的推导过程是否存在问题?为什么?为什么理论断裂强度与实际的断裂强度在数值上有数量级的差别?答:(1)虽然理论断裂强度与实际材料的断裂强度在数值上存在着数量级的差别,但是理论断裂强度的推导过程是没有问题的。

2013-2014学年第2学期《材料力学》复习要点_参考简答题答案

2013-2014学年第2学期《材料力学》复习要点_参考简答题答案

2013-2014学年第2学期《材料力学》复习要点_参考简答题答案2013-2014学年第2学期《材料力学》复习要点——参考简答题答案1、什么是变形固体?材料力学中关于变形固体的基本假设是什么?【解答】:在外力作用下,一切固体都将发生变形,故称为变形固体。

材料力学中对变形固体所作的基本假设:连续性假设:认为整个物体体积内毫无空隙地充满物质。

均匀性假设:认为物体内的任何部分,其力学性能相同。

各向同性假设:认为在物体内各个不同方向的力学性能相同。

小变形假设:认为固体在外力作用下发生的变形比原始尺寸小得很多,因此在列平衡方程求约束力或者求截面内力时,一般按构件原始尺寸计算。

2、什么是截面法?简要说明截面法的四个基本步骤。

【解答】:用一个假想截面,将受力构件分开为两个部分,取其中一部分为研究对象,将被截截面上的内力以外力的形式显示出来,根据保留部分的平衡条件,确定该截面内力大小、内力性质(轴力、剪力、扭转还是弯矩,符号的正负)的一种方法。

截面法贯穿于材料力学的始终,一定要反复练习,熟练掌握。

截面法的四个基本步骤:(1)截:在需要确定内力处用一个假想截面将杆件截为两段。

(2)取:取其中任何一段为研究对象(舍弃另一段)。

(3)代:用被截截面的内力代替舍弃部分对保留部分所产生的作用。

(4)平:根据保留部分的平衡条件,确定被截截面的内力数值大小和内力性质。

3、什么是材料的力学性能?低碳钢拉伸试验要经历哪四个阶段?该试验主要测定低碳钢的哪些力学性能指标?【解答】:材料的力学性能是指:在外力作用下材料在变形和破坏方面所表现出的各种力学指标。

如强度高低、刚度大小、塑性或脆性性能等。

低碳钢拉伸试验要经历的四个阶段是:弹性阶段、屈服阶段、强化阶段、颈缩断裂阶段。

低碳钢拉伸试验主要测定低碳钢的力学性能指标有:屈服极限、强度极限、延伸率、断面收缩率等。

4、什么是极限应力?什么是许用应力?轴向拉伸和压缩的强度条件是什么(内容、表达式)?利用这个强度条件可以解决哪三类强度问题?【解答】:材料失效时所达到的应力,称为极限应力。

(完整版)材料力学各章重点内容总结

(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。

二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。

三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。

第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。

二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。

注意此规定只适用于轴力,轴力是内力,不适用于外力。

三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。

四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。

五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。

八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。

会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。

十、卸载定律及冷作硬化:课本第23页。

材料力学复习知识点

材料力学复习知识点

1、构件尺寸与形状的变化,称为变形。

2、外力解除后能消失的变形,称为弹性变形(刚度);外力解除后不能消失的变形,称为塑性变形或残余变形(强度)。

3、承载能力指标:(1)、构件应具备足够的强度(即抵抗破坏的能力)
(2)、构件应具备足够的刚度(即抵抗变形的能力)
(3)、构件应具备足够的稳定性(即保持原有平衡形式的能力)
4、材料在外力作用下所表现的性能,称为力学性能或机械性能。

5、随时间变化极缓慢或不变化的载荷,称为静载荷;随时间显著变化或使构件各质点产生
明显加速度的载荷,称为动载荷。

工程材料力学性能各章节复习知识点

工程材料力学性能各章节复习知识点

工程材料力学性能各个章节主要复习知识点第一章弹性比功:又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力。

滞弹性:对材料在弹性范围内快速加载或卸载后随时间延长附加弹性应变的现象。

包申格效应:金属材料经预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力降低的现象。

塑性:指金属材料断裂前发生塑性变形的能力。

脆性:材料在外力作用下(如拉伸,冲击等)仅产生很小的变形及断裂破坏的性质。

韧性:是金属材料断裂前洗手塑性变形功和断裂功的能力,也指材料抵抗裂纹扩展的能力。

应力、应变;真应力,真应变概念。

穿晶断裂和沿晶断裂:多晶体材料断裂时,裂纹扩展的路径可能不同,穿晶断裂穿过晶内;沿晶断裂沿晶界扩展。

拉伸断口形貌特征?①韧性断裂:断裂面一般平行于最大切应力并与主应力成45度角。

用肉眼或放大镜观察时,断口呈纤维状,灰暗色。

纤维状是塑性变形过程中微裂纹不断扩展和相互连接造成的,而灰暗色则是纤维断口便面对光反射能力很弱所致。

其断口宏观呈杯锥形,由纤维区、放射区、和剪切唇区三个区域组成。

②脆性断裂:断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。

板状矩形拉伸试样断口呈人字形花样。

人字形花样的放射方向也与裂纹扩展方向平行,但其尖端指向裂纹源。

韧、脆性断裂区别?韧性断裂产生前会有明显的塑性变形,过程比较缓慢;脆性断裂则不会有明显的塑性变形产生,突然发生,难以发现征兆拉伸断口三要素?纤维区,放射区和剪切唇。

缺口试样静拉伸试验种类?轴向拉伸、偏斜拉伸材料失效有哪几种形式?磨损、腐蚀和断裂是材料的三种主要失效方式。

材料的形变强化规律是什么?层错能越低,n越大,形变强化增强效果越大退火态金属增强效果比冷加工态是好,且随金属强度等级降低而增加。

在某些合金中,增强效果随合金元素含量的增加而下降。

材料的晶粒变粗,增强效果提高。

第二章应力状态软性系数:材料某一应力状态,τmax和σmax的比值表示他们的相对大小,成为应力状态软性系数,比为α,α=τmaxσmax缺口敏感度:缺口试样的抗拉强度σbn 与等截面尺寸光滑试样的抗拉强度σb的比值表示缺口敏感度,即为NSR=σbnσb第三章低温脆性:在实验温度低于某一温度t2时,会由韧性状态变为脆性状态,冲击吸收功明显降低,断裂机理由微孔聚集性变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。

2014-2015学年第2学期《材料力学》复习要点_参考填空题

2014-2015学年第2学期《材料力学》复习要点_参考填空题

2014—2015学年第2学期《材料力学》复习要点_参考填空题——仅供参考,有待修改!适用班级:20130300401/2/3/4、20130300501/2/3、20130500901/2/3/4 班第一章绪论1.强度是指构件抵抗破坏的能力,刚度是指构件抵抗变形的能力。

2材料力学的任务,是在保证构件既安全可靠又经济节省的前提下,为构件选择合适的材料,确定合理的的截面形状和尺寸,提供必要的理论基础、实用的计算方法和实验技术。

3.研究构件的承载能力时,构件所产生的变形不能忽略,因此把构件抽象为变形固体。

4.变形固体材料的基本假设是(1)连续性假设,(2)均匀性假设,(3)各向同性假设,(4)小变形假设。

5.杆件的基本变形形式是拉伸或压缩、剪切、扭转、弯曲。

第二章拉伸、压缩与剪切1.轴向拉(压)杆的受力特点是:外力(或合外力)沿杆件的轴向作用,变形特点是:杆件沿轴线方向伸长或缩短,沿横向扩大或缩小。

2.杆件由于外力作用而引起的附加内力简称为杆的内力,轴向拉(压)时杆件的内力称为轴力,用符号F N表示,并规定背离截面的轴力为正,反之为负。

3.求任一截面上的内力应用截面法法,具体步骤是:在欲求内力的杆件上,假想地用一截面把杆件截分为两部分,取其中一部分为研究对象,列静力学的平衡方程,解出该截面内力的大小和方向。

4.由截面法求轴力可以得出简便方法:两外力作用点之间各截面的轴力相等,任意x截面的轴力F N (x)等于x截面左侧(或右侧)全部轴向外力的代数和。

5.应力是内力在截面的单位面积上的力,其单位用N/m2(p a)表示。

由于一般机械类工程构件尺寸较小,应力数值较大,因此应力还常常采用k pa、M pa、Gpa等单位。

通常把垂直于截面的应力称为正应力,用符号δ表示,相切于截面的应力称为切应力,用符号η表示。

6.杆件轴向拉压可以作出平面假设:变形前为平面的横截面,变形后仍为平面且始终与杆的轴线垂直,由此可知,两个横截面之间所有原长相等的纵向线伸长或缩短量是相等的。

材料力学重点总结-材料力学重点

材料力学重点总结-材料力学重点

材料力学阶段总结一. 材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾。

研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。

2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。

均匀性:构件内各处的力学性能相同。

各向同性:物体内各方向力学性能相同。

3. 材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。

内力:附加内力。

应指明作用位置、作用截面、作用方向、和符号规定。

应力:正应力、剪应力、一点处的应力。

应了解作用截面、作用位置(点)、作用方向、和符号规定。

正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。

4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。

剪切虎克定律:两线段——拉伸或压缩。

拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。

5. 材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s p σσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。

拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=12塑性材料与脆性材料的比较:6. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。

过小,使构件安全性下降;过大,浪费材料。

许用应力:极限应力除以安全系数。

塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。

2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。

3) 截面法:将内力转化成“外力”。

材料力学性能复习重点

材料力学性能复习重点

期末复习资料一 名词解释1. 弹性比功:又称弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。

金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3. 循环韧性:金属材料在交变载荷(振动)下吸收不可逆变形功的能力。

也叫金属的内耗。

4. 包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服强度)增加;反向加载,规定残余伸长应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象。

5. 应力状态软性系数:金属所受的最大切应力τmax 与最大正应力σmax 的比值大小。

即:()32131max max 5.02σσσσσστα+--== 6. 缺口效应:绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。

缺口第一效应:引起应力集中,改变了缺口前方的应力状态,使缺口试样所受的应力由原来的单向应力状态改变为两向或三向应力状态。

缺口第二效应:缺口使塑性材料强度增高,塑性降低。

7. 缺口敏感度:缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即:8. 缺口试样静拉伸试验:轴向拉伸、偏斜拉伸两种。

9. 布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。

10. 洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度11. 维氏硬度——以两相对面夹角为136°的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《材料力学Ⅱ》复习要点
第一章 绪论
材料力学的任务及研究对象;变形固体的基本假设;外力与内力、截面法、应力应变的基本概念;杆件变形的基本形式。

第二章 拉伸、压缩与剪切
轴向拉伸、压缩的概念;轴力和轴力图的画法;横截面和斜截面上的应力计算以及拉(压)杆的变形计算、胡克定律;材料在拉伸、压缩时的力学性质;强度条件的应用、应力集中的概念;拉(压)杆的超静定问题的应用;应变能和比能;剪切的概念、剪切和挤压的实用计算。

第三章 扭转
扭转概念,扭矩及扭矩图的画法;剪切胡克定律;圆轴扭转时的应力与应变的计算;扭转强度及刚度条件的应用。

第四章 弯曲内力
平面弯曲的概念;剪力、弯矩方程及相应的剪力、弯矩图的画法;M F q S --的微分关系;可以利用微分关系画出梁的剪力、弯矩图;刚架内力图的画法。

第五章 弯曲应力
纯弯曲和横力弯曲梁横截面上各点正应力的计算,梁按正应力的强度条件及应用;矩形截面梁的弯曲剪应力计算;提高梁弯曲强度的措施。

第六章 弯曲变形
梁的挠度及转角概念;挠曲线近似微分方程,位移边界条件与连续条件,积分法、叠加法求梁变形计算;简单超静定梁的应用;梁的刚度校核,提高梁弯曲刚度的措施。

第七章 应力和应变分析 强度理论
点的应力状态的概念;平面应力状态下应力分析的解析法及图解法的应用;广义胡克定律,体积应变的概念;体积胡克定律;强度理论的概念;四种常见的强度理论及其相当应力。

第八章 组合变形
拉伸(压缩)与弯曲组合、扭转与弯曲组合的应力计算及强度条件的应用。

第九章 压杆稳定
压杆稳定性的概念;两端铰支中心受压细长压杆的临界力公式,杆端不同约束时的临界压力公式;临界应力、欧拉公式的适用范围;细长临界应力求解、欧拉公式的应用;提高压杆稳定性措施。

第十章 动载荷
动静法的应用;自由落体冲击时,构件动相应的计算。

第十一章 交变应力
掌握交变应力下杆件的受力及变形。

第十三章 能量方法
应变能,功的互等定理,卡氏第二定理;虚功原理的概念与单位载荷法的应用;图乘法的应用。

第十四章 超静定结构
力法解超静定结构的简单应用,结构对称性的利用。

相关文档
最新文档