材料力学期末复习要点
材料力学总复习

一、基本变形
外力
拉伸与压缩
扭转
弯曲
内力
FN F
应力 强度条件
变形
FN
A
max [ ]
l FNl EA
刚度条件
T Me
T
IP
max [ ]
Mnl
GI P
FS 外力
M 外力对形心之矩
My
,
FS
S
* z
Iz
bI z
, max [ ] max [ ]
1、积分法
2、叠加法
∑Fix= 0, FN1 cos30°+FN2=0 (1)
(2)画节点A的位移图(见图c) (3)建立变形方程
△L1=△L2cos30°
(4)建立补充方程
△L1=△LN1+△LT,
即杆①的伸长△l1由两部份组成,△l N1表示由轴力FN1引起的变形, △lT表示温度升高引起的变形,因为△T 升温,故△lT 是正值。
因为AB 杆受的是拉力,所以沿AB 延
长线量取BB1等于△L1;同理,CB 杆受
的也是拉力,所以沿杆CB 的延长线量取
BB2 等于△L。
分别在点B1 和B2 处作BB1 和BB2 的垂
线,两垂线的交点B′为结构变形后节点
B应有的新位置。即结构变形后成为
ABˊC 的形状。图c称为结构的变形图。
为了求节点B的位置,也可以单独作出节点B的位移图。位移图的作 法和结构变形图的作法相似,如图d所示。
C1 5、求应力并校核强度:
A1
1
FN 1 A
66 .7 MPa ,
2
FN 2 A
133 .2MPa ,
剪切
F AB A1
F BC A2
材料力学总复习重点

y
M x
Mechanic of Materials
M、 Iz ——所求应力点所 在横截面的弯矩、惯性矩 。 y ——点到所在横截面的中 性轴的距离 ①应力随离中性层的距离线 性变化
z
中性轴
M
x
②正应力沿高度线性分布,同一y 值,y 相同;中性轴上正 应力等于 0,离中性轴最远的上下边缘,应力 达到最大。
1.6 杆件变形的基本形式 杆件变形的四种基本形式: 1.轴向拉压
Mechanic of Materials
2.剪切与挤压
3.扭转
4.弯曲
二、轴向拉伸与压缩 2.2 轴向拉伸或压缩时的应力
Mechanic of Materials
1、杆横截面上的内力 1)求轴力。
2)内力的正与负是如何规定的?
3)如何画轴力图?
M max
10kN (a)
Engineering Mechanics
A C
4m 26kN 2m
50kN
B
4m 34kN
z
D
max =
Wz
Wz
2
(b )
26 +
16 34
104 136 +
M max
6
2
3
136 103
FS(kN)
170 106
3
2
3
400 10 m 400 10 mm
(5)正应力强度校核:由于拉压强度不同,必须同 时考虑B、C这两个具有最大正负弯矩的截面。
B截面 :
B ,max
yC=139
Engineering Mechanics
材料力学复习笔记

材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。
为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。
【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。
【内容讲解】一、基本概念强度—-构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形.刚度-—构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。
稳定性--构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。
杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。
根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。
二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。
(一)连续性假设-—假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。
这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。
(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。
按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体).(三)各向同性假设——沿各个方向均具有相同力学性能。
具有该性质的材料,称为各向同性材料。
综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。
三、外力内力与截面法(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力.外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等.当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况.在小变形的情况下,三个坐标平面内的力互相独立,即一个坐标平面的载荷只引起这一坐标平面内的内力分量,而不会引起另一坐标平面内的内力分量。
“材料力学”重点归纳

“材料力学”重点归纳
第一章静力学基础
掌握:静力学基本概念和定理:力、力偶、平衡力系、等效力系、合力投影定理、合力矩定理、力线平移定理、静力学的基本任务等。
重点掌握:掌握各种力系的简化和平衡方程应用。
了解材料力学的发展沿革,理解本课程的任务、内容、目的。
第二章材料力学绪论
掌握:了解材料力学的基本任务和杆件的基本变形。
重点掌握:材料力学的基本概念:弹性变形、塑性变形、破坏、强度、刚度、稳定性、内力、应力、应变等。
第三章应力分析和应变分析理论
掌握:应力状态、应力张量、应力张量不变量、空间应力圆、等效应力、八面体应力、变形位移、应变状态、应变张量、偏斜应力张量、偏斜应变张量等概念。
应力分析理论、应变分析理论。
重点掌握:应力状态、应力张量、应力张量不变量、空间应力圆、等效应力、八面体应力、变形位移、应变状态、应力分析理论。
第四章固体材料的弹性本构关系和塑性本构关系
掌握:固体材料弹性变形和塑性变形的主要特点、弹性本构关系(广义胡克定律)、主应力空间、屈服函数、常用屈服条件、常用强度理论等。
重点掌握:固体材料弹性变形和塑性变形的主要特点、弹性本构关系(广义胡克定律)、常用屈服条件和强度理论等。
第五章材料力学实验
了解和掌握金属材料单轴拉伸和压缩力学实验的原理和方法。
(完整版)材料力学复习重点汇总

6.有效裂纹长度:将原有的裂纹长度与松弛后的塑性区相重合并得到的裂纹长度【新P74;旧P86】。
五、试述应力场强度因子的意义及典型裂纹 的表达式
答:应力场强度因子 :表示应力场的强弱程度。 在裂纹尖端区域各点的应力分量除了决定于位置外,尚与强度因子 有关,对于某一确定的点,其应力分量由 确定, 越大,则应力场各点应力分量也越大,这样 就可以表示应力场的强弱程度,称 为应力场强度因子。 “I”表示I型裂纹。 几种裂纹的 表达式,无限大板穿透裂纹: ;有限宽板穿透裂纹: ;有限宽板单边直裂纹: 当b a时, ;受弯单边裂纹梁: ;无限大物体内部有椭圆片裂纹,远处受均匀拉伸: ;无限大物体表面有半椭圆裂纹,远处均匀受拉伸:A点的 。
六、试述冲击载荷作用下金属变形和断裂的特点。
冲击载荷下,瞬时作用于位错的应力相当高,结果使位错运动速率增加,因为位错宽度及其能量与位错运动速率有关,运动速率越大,则能量越大,宽度越小,故派纳力越大。结果滑移临界切应力增大,金属产生附加强化。
由于冲击载荷下应力水平比较高,将使许多位错源同时开动,增加了位错密度和滑移系数目,出现孪晶,减少了位错运动自由行程的平均长度,增加了点缺陷的浓度。这些原因导致金属材料在冲击载荷作用下塑性变形极不均匀且难以充分进行,使材料屈服强度和抗拉强度提高,塑性和韧性下降,导致脆性断裂。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
材料力学重点总结要点

材料力学重点总结要点1、材料力学的任务:解决安全可靠与经济适用的矛盾。
研究对象:杆件强度:抵抗破坏的能力刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2、材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3、材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同;理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定。
正应力应变:反映杆件的变形程度变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4、物理关系、本构关系虎克定律;剪切虎克定律:适用条件:应力~应变是线性关系:材料比例极限以内。
5、材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E,剪切弹性模量G,泊松比v,塑性材料与脆性材料的比较:变形强度抗冲击应力集中塑性材料流动、断裂变形明显拉压的基本相同较好地承受冲击、振动不敏感脆性无流动、脆断仅适用承压非常敏感6、安全系数、许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数。
塑性材料脆性材料7、材料力学的研究方法1)所用材料的力学性能:通过实验获得。
2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3)截面法:将内力转化成“外力”。
运用力学原理分析计算。
8、材料力学中的平面假设寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。
1)拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。
材料力学重点及公式(期末复习)

材料⼒学重点及公式(期末复习)1、材料⼒学得任务:强度、刚度与稳定性;应⼒单位⾯积上得内⼒。
平均应⼒(1、1)全应⼒(1、2)正应⼒垂直于截⾯得应⼒分量,⽤符号表⽰。
切应⼒相切于截⾯得应⼒分量,⽤符号表⽰。
应⼒得量纲:线应变单位长度上得变形量,⽆量纲,其物理意义就是构件上⼀点沿某⼀⽅向变形量得⼤⼩。
外⼒偶矩传动轴所受得外⼒偶矩通常不就是直接给出,⽽就是根据轴得转速n与传递得功率P来计算。
当功率P单位为千⽡(kW),转速为n(r/min)时,外⼒偶矩为当功率P单位为马⼒(PS),转速为n(r/min)时,外⼒偶矩为拉(压)杆横截⾯上得正应⼒拉压杆件横截⾯上只有正应⼒,且为平均分布,其计算公式为 (3 -1)式中为该横截⾯得轴⼒,A为横截⾯⾯积。
正负号规定拉应⼒为正,压应⼒为负。
公式(3-1)得适⽤条件:(1)杆端外⼒得合⼒作⽤线与杆轴线重合,即只适于轴向拉(压)杆件;(2)适⽤于离杆件受⼒区域稍远处得横截⾯;(3)杆件上有孔洞或凹槽时,该处将产⽣局部应⼒集中现象,横截⾯上应⼒分布很不均匀;(4)截⾯连续变化得直杆,杆件两侧棱边得夹⾓时拉压杆件任意斜截⾯(a图)上得应⼒为平均分布,其计算公式为全应⼒ (3-2)正应⼒(3-3)切应⼒(3-4)式中为横截⾯上得应⼒。
正负号规定:由横截⾯外法线转⾄斜截⾯得外法线,逆时针转向为正,反之为负。
拉应⼒为正,压应⼒为负。
对脱离体内⼀点产⽣顺时针⼒矩得为正,反之为负。
两点结论:(1)当时,即横截⾯上,达到最⼤值,即。
当=时,即纵截⾯上,==0。
(2)当时,即与杆轴成得斜截⾯上,达到最⼤值,即1.2 拉(压)杆得应变与胡克定律(1)变形及应变杆件受到轴向拉⼒时,轴向伸长,横向缩短;受到轴向压⼒时,轴向缩短,横向伸长。
如图3-2。
图3-2轴向变形轴向线应变横向变形横向线应变正负号规定伸长为正,缩短为负。
(2)胡克定律当应⼒不超过材料得⽐例极限时,应⼒与应变成正⽐。
即(3-5)或⽤轴⼒及杆件得变形量表⽰为 (3-6)式中EA称为杆件得抗拉(压)刚度,就是表征杆件抵抗拉压弹性变形能⼒得量。
材料力学知识点总结(重、难点部分)

第一章 绪 论一、基本要求(1)了解构件强度、刚度和稳定性的概念,明确材料力学课程的主要任务。
(2)理解变形固体的基本假设、条件及其意义。
(3)明确内力的概念、初步掌握用截面法计算内力的方法。
(4)建立正应力、剪应力、线应变、角应变及单元体的基本概念。
(5)了解杆件变形的受力和变形特点。
二、重点与难点1.外力与内力的概念外力是指施加到构件上的外部载荷(包括支座反力)。
在外力作用下,构件内部两部分间的附加相互作用力称为内力。
内力是成对出现的,大小相等,方向相反,分别作用在构件的两部分上,只有把构件剖开,内力才“暴露”出来。
2.应力,正应力和剪应力在外力作用下,根据连续性假设,构件上任一截面的内力是连续分布的。
截面上任一点内力的密集程度(内力集度),称为该点的应力,用p 表示0lim A P dP p A dA→∆==∆ P ∆为微面积A ∆上的全内力。
一点处的全应力可以分解为两个应力分量。
垂直于截面的分量称为正应力,用符号σ表示;和截面相切的分量称为剪应力,用符号τ表示。
应力单位为Pa 。
1MPa=610Pa, 1GPa=910Pa 。
应力的量纲和压强的量纲相同,但是二者的物理概念不同,压强是单位面积上的外力,而应力是单位面积的内力。
3.截面法截面法是求内力的基本方法,它贯穿于“材料力学”课程的始终。
利用截面法求内力的四字口诀为:切、抛、代、平。
一切:在欲求内力的截面处,假想把构件切为两部分。
二抛:抛去一部分,留下一部分作为研究对象。
至于抛去哪一部分,视计算的简便与否而定。
三代:用内力代替抛去部分队保留部分的作用力。
一般地说,在空间问题中,内力有六个分量,合力的作用点为截面形心。
四平:原来结构在外力作用下处于平衡,则研究的保留部分在外力与内力共同作用也应平衡,可建立平衡方程,由已知外力求出各内力分量。
4.小变形条件在解决材料力学问题时的应用由于大多数材料在受力后变形比较小,即变形的数量远小于构件的原始尺寸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 绪论
1、 构件能够正常工作的性能要求:
1) 强度要求:指构件有足够的抵抗破坏的能力;
2) 刚度要求:指构件有足够的抵抗变形的能力;
3) 稳定性要求:指构件有足够的保持原有平衡形态的能力。
2、 变形固体的基本假设:
连续性假设;均匀性假设;各向同性假设
3、 截面法的基本步骤:截、留、平
4、 应变:线应变和切应变(角应变)
5、 杆件变形的基本形式:轴向拉伸或压缩、剪切、扭转、弯曲
第二章 拉压和剪切
1、 内力、应力计算及轴力图绘制
2、 低碳钢拉伸时的力学性能
弹性阶段、屈服阶段、强化阶段、局部变形阶段、伸长率和断面收缩率、卸载定律及冷作硬化
3、 轴向拉压的强度条件:[]N F A σσ=
≤ 4、 轴向拉压的变形:N F l l EA
∆=
5、 拉压静不定问题:
解题步骤:
1) 静力平衡方程 2变形协调方程 3物力方程 4将物力方程代入变形协调方程,得补充方程 5联立求解静力平衡方程和补充方程,得结果。
6、 剪切和挤压
课后习题:2-1、2-12、2-45
第三章 扭转、
1、 扭矩的计算和扭矩图的绘制
2、 切应力互等定理
3、 切应变:r l
ϕγ= 4、 剪切胡克定律:G τγ=
5、 横截面上距圆心为ρ的任意一点的切应力:p T I ρτ=,最大切应力:max p t
TR T I W τ== 6、 实心圆截面:432p D I π=
316t D W π= 空心圆截面:()()4
44413232p D I D d ππα=-=- ,()()3
444
11616t D W D d d D π
π=-=- 7、 扭转强度条件:[]max max t T W ττ=
≤ 8、 相对扭转角:1n i i i p Tl GI ϕ==∑ 单位长度扭转角:'p
d T dx GI ϕϕ== 9、 扭转刚度条件:[]max max ''p T GI ϕϕ=
≤ 课后习题:3-2、单元测试:6、7
第四章 弯曲内力
1、 弯曲内力的计算
2、 剪力图和弯矩图的绘制
课后习题:4-1、4-4
第五章:弯曲应力
1、纯弯曲时正应力的计算公式:z
My I σ= 2、横力弯曲最大正应力:max max max max z M y M I W
σ== 3、抗弯截面系数: 矩形:26bh W = 实心圆:332
d W π= 4、弯曲的强度条件:[]max max M W
σσ=≤ 5、矩形截面梁弯曲切应力:*S z z F S I b τ= 工字形截面梁弯曲切应力:*0
S z z F S I b τ= 6、提高弯曲强度的措施:
1)合理安排梁的受力情况:
a :合理布置梁的支座
b :合理布置载荷
2)合理设计梁的截面
a :截面放置方式
b :截面的形状的不同
课后习题:5-2、5-3、5-4
第六章 弯曲变形
1、挠曲线的近似微分方程:22d w M dx EI
= 2、积分法求变形的常见边界条件:
1)固定端:挠度和转角都为零 2)铰支座:挠度等于零
3、连续条件:在挠曲线上任意一点,有唯一的挠度和转角
4、弯曲变形的刚度条件:[]
[]max max ||||w w θθ≤≤
5、用叠加法求弯曲变形:
熟记悬臂梁、简支梁受单个载荷时的挠度和转角;尤其悬臂梁自由端的挠度和转角。
6、提高弯曲刚度的措施
1)改善结构形式,减小弯矩的数值;2)选择合理的截面形状
课后复习题:6-1、6-4、6-10
第七章 应力和应变分析 强度理论
1、基本概念:
1)主平面2)主应力 3)单向应力状态 4)二向或平面应力状态 5)三向或空间应力状态
2、二向应力状态分析——解析法
1
)极值正应力:max min 2x y σσσσ+⎫=±⎬⎭ 2)主平面确定:02tan 2xy
x y τασσ=--
3
)极值切应力:max min ττ⎫=⎬⎭ 4)主平面确定:1tan 22x y xy
σσατ-= 3、二向应力状态分析——图解法
应力圆的绘制,注意应力圆与单元体的对照:包括半径,极值应力,方向角
3、 广义胡克定律()()()111,,x x y z y y z x z z x y xy yz zx xy yz zx E E E G G G
εσμσσεσμσσεσμσστττγγγ⎫⎡=
-+⎪⎣⎪⎪⎡=-+⎬⎣⎪⎪⎡=-+⎪⎣⎭=
== 4、 四种强度理论 1) 最大拉应力理论:适用脆性材料的拉伸、扭转 最大伸长线应变: 最大切应力理论:
2) 畸变能密度理论
适用范围:铸铁,石料,混凝土,玻璃等脆性材料,通常以断裂的形式失效,宜采用第一和第二强度理论; 碳钢,铜,铝等塑性材料,通常以屈服的形式失效,宜采用第三和第四强度理论。
相当应力:()
11
21233134r r r r σσσσμσσσσσσ==-+=-=
课后复习题:7-3,7-4,7-5,7-7,7-18
第八章 组合变形
1、组合变形:构件同时发生两种或两种以上的基本变形
2、组合变形的强度计算方法:
a :将外力简化成符合各基本变形的外力作用条件下的静力等效力系。
b :由各基本变形的内力图及应力变化规律确定构件危险点的位置。
c :计算各基本变形下危险点的应力,并将同类应力进行叠加。
d :由危险点的应力状态,建立强度条件。
3、轴向拉压和弯曲的组合 强度条件:[]max max max ||y N z y z
M F M A W W σσ=++≤ 4、扭转和弯曲组合(只考虑圆截面杆)
强度条件:
[]σ≤
[]σ
[]σ≤
[]σ。