地铁隧道测量施工方案

合集下载

盾构隧道测量方案

盾构隧道测量方案

盾构施工地面监测方案1、概况1.1、工程概况深圳地铁5号线土建2标盾构施工共包括三个区间,分别是:翻身站~灵芝公园站、灵芝公园站~大浪站、大浪站~同乐站。

翻身站~灵芝公园站设计起止里程CK4+196.34~CK5+461.66。

其中左右线CK4+196.34~CK4+410各213.66m为矿山法施工暗挖隧道;左线盾构区间CK4+410~CK5+461.66,长1265.32m;右线盾构区间CK4+410~CK5+461.66,长1252.68m; 灵芝公园站~大浪站起点里程为CK5+686.661,左线隧道设计终点里程为CK6+265.602,长578.941m;右线设计终点里程为CK6+109.605,长422.944m; 大浪站~同乐站区间起点里程为CK6+588.140,左线隧道设计终点里程为CK7+201.660,长613.520m;右线设计终点里程为CK7+241.200,长653.060m。

1.2、施工总体方案投入两台海瑞克复合式土压平衡盾构机(配备保压泵碴装置),两台从同乐明挖区间盾构井站先左线、后右线下井始发,由北向南沿创业路掘进;至大浪站,过站;再从大浪站南端始发、掘进,进入灵芝公园站北端头井吊出转场。

两台分别再从翻身站北端始发,通过矿山法隧道,由南向北掘进,至灵芝公园站南端头井吊处,退场。

为了确保盾构机从同乐~大浪~灵芝站和翻身~灵芝站三个区间顺利准确的进行掘进施工,对翻身~同乐站三区间的地面导线点联测控制导线测量,地面高程测量为盾构机掘进前施工奠定基础。

2、编制依据《地下铁道、轻轨交通工程测量规范GB50308-1999》《广州地铁三号线工程施工测量管理细则》《工程测量规范》(GB500026-93)《城市测量规范》(CJJ8-99)《铁路测量规范》(TBJ101-85)3、仪器设备配置4、施工测量组织机构整个区间施工中,项目经理部设测量主管一名,负责具体的施工测量工作管理及安排;专职测量工程师二名,负责现场施工测量放样及内业资料的整理;专职测量工三名。

地铁隧道施工方案及施工过程

地铁隧道施工方案及施工过程

地铁隧道施工方案及施工过程地铁隧道的建设是城市基础设施建设中重要的一部分,它不仅能缓解交通压力,也有利于城市的发展与改善。

为了确保地铁隧道施工的安全与高效,需要制定详细的施工方案并遵循相应的施工过程。

本文将详细介绍地铁隧道施工方案及施工过程。

一、地铁隧道施工方案的准备阶段地铁隧道的施工方案准备阶段包括以下几个重要环节:1. 方案策划与设计:在这一阶段,需要对地铁线路进行勘测、设计,并确定隧道引线及补充建筑等相关内容。

2. 地质勘察与预测:通过地质勘察和地质预测,确定隧道施工过程中可能会遇到的地质问题,并制定相应的应对措施。

3. 施工队伍组建:确保施工队伍具备相关的技术能力和施工经验,以保证施工的质量与效率。

二、地铁隧道施工方案的具体步骤1. 施工准备阶段:在施工前,需要对施工区域进行封闭,并检查监测设备的正常工作。

同时,还需制定安全措施,确保工作人员的人身安全。

2. 隧道开挖:根据地质勘测的结果,选择适当的开挖方法,如盾构法或钻爆法等。

挖掘隧道时,需要注意地层的稳定性,并及时清理挖掘出的土石方。

3. 地基处理:隧道开挖后,需要对地基进行处理,以保持地基的稳定性和坚固性。

处理方法可以包括灌浆、注浆等。

4. 隧道支护:在地铁隧道开挖过程中,需要进行支护工作,以保证隧道的结构完整性和人员安全。

支护方法可以采用喷射混凝土支护、拱形支护等。

5. 隧道照明与通风:为确保地铁隧道的安全与舒适性,需要设置合理的照明和通风系统,以提供良好的光线和空气质量。

6. 隧道内部设施安装:根据地铁运营需求,安装地铁轨道、信号系统、排水系统等设施,以确保地铁的正常运营。

7. 施工完工与验收:当地铁隧道施工完成后,需要进行相关的验收工作,并确保隧道的质量符合相关建设标准。

三、地铁隧道施工过程中的风险与控制措施1. 地质风险:地质条件会对地铁隧道的施工造成影响,施工方应根据地质调查结果合理选择施工方法,并采取防止地质灾害的措施。

轨道交通工程施工测量方案

轨道交通工程施工测量方案

轨道交通工程施工测量方案一、施工测量的必要性轨道交通工程是指为满足城市高效便捷的交通需求,在地面或地下进行施工的交通线路,例如地铁、轻轨等。

轨道交通工程涉及到大量的工程测量工作,这是因为轨道交通工程需要保证线路的平整、车站的准确位置和通车的安全。

施工测量的主要目的包括:确保工程施工的精度和质量,为设计提供出具施工图纸成果,提高施工效率,节约成本,保证工程的安全性等。

二、施工测量的内容轨道交通工程施工测量的内容包括:线路测量、车站测量、土建测量、安装测量等。

1. 线路测量(1)线路纵断面测量:测量线路的纵断面地形、曲线半径、坡度等,以确定线路的设计参数和平面布置。

(2)线路横断面测量:测量线路的道床、轨面、路基等各部分的横断面,以确定各部分的平面布置。

(3)道岔测量:道岔是轨道交通系统的重要设施,需要通过道岔测量确定其准确位置和角度,保证列车的安全通行。

2. 车站测量(1)车站平面布置测量:针对车站区域的道岔、站台、站内设施等进行平面布置测量,以确定车站的尺寸和位置。

(2)站台高程测量:测量车站站台的高程,以确定客车乘降的便利性。

(3)站房测量:测量车站站房、站内设施的位置、尺寸和结构形式,为其施工和安装提供准确数据。

3. 土建测量(1)地形测量:测量轨道交通线路所经过的地形情况,包括地表高程、地貌特征、自然地质、水文地质和交通地理等。

(2)凿岩量测量:凿岩是轨道交通工程中常见的隧道施工方式,需要对凿岩量进行测量,确定施工工艺和施工进度。

4. 安装测量(1)轨道安装测量:测量轨道的轨距、轨面坡度、轨道垂直和水平偏差等,保证轨道的安装精度。

(2)信号设备测量:测量信号设备的位置、高度、角度等参数,确保信号设备的安全性和可靠性。

三、施工测量的方法轨道交通工程施工测量的方法主要包括:全站仪法、激光法、GPS定位法、测距仪法等。

1. 全站仪法全站仪是一种高精度的光电仪器,它可以测定地面物体三维坐标及其高程、测量水平角和垂直角等,并利用计算机进行数据处理以达到一定的工程精度。

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技术方案地铁盾构法隧道施工技术方案1。

施工流程图1。

1盾构法隧道施工流程图图1盾构隧道施工流程图1.2盾构始发流程图图2 始发流程图 2.盾构机下井盾构机从盾构工作井吊入,每台盾构机本身自重约200t,分解为5 块,最大块重约60t.综合考虑吊机的起吊能力和工作半径,安排1 台200t 和一台40t 汽车吊机进行吊入任务。

盾构机下井拼装顺序见图3。

图3盾构机下井拼装示意图在吊入盾构机之前,依次完成以下几项工作:1.将测量控制点从地面引到井下底板上; 2。

铺设后续台车轨道;3.依次吊入后续台车并安放在轨道上;4。

安装始发推进反力架,盾构管片反力架示意图见图4; 5。

安装盾构机始发托架,盾构始发托架示意图见图5。

图4盾构管片反力架示意图掘进图5盾构始发托架示意图3。

盾构机安装调试3。

1盾构机的安装主要工作1.盾构机各组成块的连接;2。

盾构机与后续设备及后续台车之间各种线路、管线和机械结构的连接。

3。

盾构机内管片安装器、螺旋输送器、保园器的安装;4.台车顶部皮带机及风道管的连接;5。

刀盘上各种刀具的安装。

3.2盾构机的检测调试主要内容1。

刀盘转动情况:转速、正反转;2。

刀盘上刀具:安装牢固性、超挖刀伸缩;3。

铰接千斤顶的工作情况:左、右伸缩;4.推进千斤顶的工作情况:伸长和收缩;5。

管片安装器:转动、平移、伸缩;6。

保园器:平移、伸缩;7.油泵及油压管路;8。

润滑系统;9。

冷却系统;10。

过滤装置;11。

配电系统;12。

操作控制盘上各项开关装置、各种显示仪表及各种故障显示灯的工作情况。

盾构机在完成了上述各项目的检测和调试后(具体应遵照盾构机制造厂家提供的操作手册进行),即可判定该盾构机已具备工作能力。

4.盾构进洞1。

盾构进洞前50 环进行贯通测量,以确定盾构机的实际位置和姿态。

此后的掘进不允许有大的偏差发生,逐渐按偏差方位调整盾构机姿态和位置,满足盾构进洞尺寸要求。

这一调整应在盾构刀盘进入洞前加固土前完成,以避免盾构进洞发生意外.图6盾构进洞示意图2。

地铁隧道施工方案

地铁隧道施工方案

地铁隧道施工方案地铁作为一种便捷、快速的城市交通工具,已经在许多大城市中得以广泛应用。

然而,地铁的建设并非易事,其中地铁隧道的施工是一个复杂而关键的环节。

本文将介绍地铁隧道施工方案,包括地质勘探、隧道设计、进出口施工、开挖施工等内容。

一、地质勘探在进行地铁隧道施工前,必须进行详细的地质勘探,以了解地下地层情况。

地质勘探可以通过地质探测仪器、地质钻探等手段进行,旨在确定隧道施工所涉及的地质条件,并对地质灾害风险进行评估。

根据勘探结果,制定相应的施工方案。

二、地铁隧道设计地铁隧道设计是地铁隧道施工的基础,需要根据地质勘探结果和相关规范标准进行。

隧道设计涉及隧道的几何尺寸、结构形式、支护方式等内容。

设计人员需要考虑到地质条件、地下水位、地下设施等因素,保证隧道的安全可靠。

三、进出口施工地铁隧道的进出口是连接地下隧道与地上站点的重要部分。

进出口施工包括盾构机始发井、盾构机出洞段、出洞井等环节。

施工过程中,需要对地面进行开挖、支护、覆土回填等操作,保证施工安全与施工周期的控制。

四、地铁隧道开挖地铁隧道的开挖是整个施工过程中的核心环节。

开挖方式通常采用盾构机施工或爆破施工。

盾构机施工适用于地质稳定的地区,可以减少地表沉降和地下水位受到影响的风险。

爆破施工适用于地质复杂、水下施工等情况。

开挖施工过程中,需要注重隧道的纵横坡、支护结构、排水系统等因素,确保施工的顺利进行。

五、隧道支护地铁隧道支护是地铁隧道施工的重要环节。

支护结构的设计和施工需要根据地质条件、隧道的几何尺寸等因素进行。

常见的隧道支护结构有钢支撑、混凝土衬砌、注浆固结等。

支护结构的选择应满足隧道的安全要求,能够承受地下水压力和地质变形,保证隧道的稳定性。

六、其他施工环节除了前面提及的施工环节,地铁隧道施工还包括排水系统的建设、通风系统的设计和构造、电力设备的安装等。

这些环节是地铁隧道施工不可或缺的部分,需要与其他施工环节密切配合,确保地铁隧道的正常运行。

地铁工程施工测量方案

地铁工程施工测量方案

第六篇工程施工测量第一章施工测量的组织和管理1。

1 本标段施工测量的技术要求⑴施工测量的方法及精度要求严格遵守《地下铁道、轻轨交通工程测量规范》(GB50308—)。

根据《地下铁道、轻轨交通工程测量规范》(GB50308-)规定,地铁车站和区间施工测量中线和高程的总贯通误差为m横≤±50mm,m纵<L/10000,m竖≤±25mm。

为保证总贯通误差,地铁有关施工测量的误差分配按表6。

1—1标准执行。

地铁测量的误差分配表表6.1-1⑵测量的内外业执行复核和检算制,控制网点平差及其他数据由两组人员独立进行计算,并及时较核。

重要部位的放样宜采用不同的方法和不同的路线检核测设,以确保正确.⑶测量工作根据人员和仪器设备状态选择方法,优先采用具有闭合条件的方法,避免误差超限产生和错误。

使用全站仪数字化测量时,制定并落实误差监控手段,对各种误操作必须有查错功能和纠错能力。

⑷测量外业原始记录完整,测量成果资料齐全、计算准确、文整清楚,必须有计算者、复核者签字,项目总工程师签认。

1。

2 测量队的人员组成和仪器配备为确保地铁建筑物空间位置及几何尺寸的准确性,将误差控制在规定范围之内,保证施工测量的精度,我公司将派具有地下工程测量经验的专业测量工程师和经专业培训持测绘证的测量人员组成专业测量队,负责施工测量工作。

并根据工程项目需要的规范要求标准配备测量仪器,用于现场施工测量.测量队人员组成见表6。

1-2,配备测量仪器清单见表6.1—3. 1。

3 测量队的工作职责和日常管理1.3。

1 测量队的工作职责测量队执行技术责任制,并对项目总工程师负责;⑴负责各控制网点的接收、管理和对控制网点的复测,注意对首级及二级控制网点进行复核;⑵负责对业主所交的GPS点、水准点的复测;⑶负责配合业主及监理有关测量复测及检查工作,负责对业主及监理书面申报测量实施方案及测量成果,并对所报资料的完整性、正确性负责;⑷负责对施工作业队的测量工作进行检查、指导、复测;测量队人员组成表6.1-2测量仪器清单表6。

地铁隧道监控量测施工方案

地铁隧道监控量测施工方案

地铁隧道监控量测施工方案1. 背景隧道监控量测是地铁建设中的重要环节,旨在确保隧道的安全性和稳定性。

本方案将介绍地铁隧道监控量测施工的方法和步骤。

2. 施工步骤2.1 安装监控系统在隧道内部安装监控系统,包括摄像机、传感器和数据采集设备。

监控系统应能监测隧道内的温度、湿度、位移等情况,并能实时传输数据。

2.2 校准设备在施工前,需要确保监控系统的准确性和可靠性。

对于传感器和摄像机,需要进行校准,以获得准确的监测数据。

2.3 数据采集与分析监控系统将实时采集隧道的数据,并进行分析和处理。

通过对数据的分析,可以评估隧道的安全性,及时发现潜在风险,并采取相应的措施。

2.4 报告生成与反馈根据监测数据生成报告,将监测情况以图表和文字形式呈现。

报告应包括监测结果、分析和建议,以及针对潜在风险的措施。

报告应定期提交给相关部门,并根据需要进行更新和修订。

3. 安全措施在施工过程中,需要采取有效的安全措施,确保施工人员和设备的安全。

施工人员应接受相关培训,并遵守相关的安全规定和操作程序。

4. 项目管理为了保证施工顺利进行,需要建立有效的项目管理制度。

包括施工计划的制定和执行、进度控制、质量管理等方面的工作。

5. 沟通与配合隧道监控量测施工涉及多个部门和单位的配合,需要建立良好的沟通机制。

各部门之间应保持密切联系,及时共享信息和解决问题。

6. 风险评估与管理在施工过程中,应对潜在的风险进行评估和管理。

根据监测数据和施工情况,及时调整施工计划和措施,以降低风险和确保施工质量。

7. 结束工作隧道监控量测施工结束后,需要对施工过程进行总结和评估。

评估结果应反馈给相关部门,以及时改进和提升施工质量。

以上是地铁隧道监控量测施工方案的简要介绍,具体的施工细节和注意事项可以根据实际情况进行调整和完善。

为了保证施工质量和安全性,我们建议在施工过程中充分利用现有技术和经验,并遵循相关法规和标准。

地铁隧道工程贯通施工方案

地铁隧道工程贯通施工方案

地铁隧道工程贯通施工方案一、前言地铁隧道工程是城市轨道交通建设的重要组成部分,对城市交通运输起着至关重要的作用。

隧道贯通是地铁隧道工程建设的关键节点,其施工方案对于工程进度和施工质量具有极大的影响。

本文将针对地铁隧道工程贯通施工方案进行详细分析和阐述。

二、工程概况1. 工程地点:地铁隧道工程位于某市中心区域,总长约10公里。

2. 工程内容:地铁隧道工程包括主隧道、盾构段隧道以及各类通风、排水、供电、信号等设施的建设。

3. 工程条件:工程所处地区地质条件复杂,需要对隧道贯通施工方案进行详细研究和制定。

三、施工准备1. 地质勘察:在进行隧道贯通施工前,需要进行详细的地质勘察,了解地下地质情况,为施工方案的制定提供数据支持。

2. 隧道设计:根据地质勘察结果和工程要求,制定隧道结构设计方案,确定隧道贯通的具体施工步骤和方案。

3. 施工图纸编制:根据设计方案和工程要求,编制隧道贯通的详细施工图纸,为现场施工提供指导。

4. 施工人员培训:组织施工人员进行相关技能培训,确保施工人员具备足够的技术水平和安全意识。

四、施工方案1. 隧道贯通方案(1)地面设备调整:调整地面设备,确保施工现场的安全和畅通。

(2)隧道贯通顺序:根据地质条件和隧道设计方案,确定隧道贯通的具体顺序和方法。

(3)盾构施工:对于盾构段隧道,采用盾构机进行施工,确保施工进度和质量。

(4)进洞施工:对于主隧道的贯通,采用进洞施工方法,确保施工进度和安全。

2. 施工工艺(1)隧道支护:根据地质条件和设计要求,确定隧道支护的具体工艺和材料,确保隧道的安全和稳定。

(2)排水系统:设计合理的排水系统,确保施工现场的排水畅通,避免因地下水导致的隧道施工困难。

(3)通风系统:设计合理的通风系统,保障施工现场的通风条件,确保施工人员的安全和健康。

(4)供电系统:设计合理的供电系统,确保施工现场的电力供应,避免因供电不足导致的施工延误。

3. 安全措施(1)安全卡控:设立安全卡控点,加强对施工现场的安全管理,确保施工现场的安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•地铁隧道测量施工方案
盾构隧道监测的对象主要为土体介质、隧道结构和周围环境,监测的部位包括地表、土体内、盾构隧道结构、以及周围道路、建筑物等,监测类型主要是地表和土体深层的沉降和水平位移、地层水土压力和水位变化、建筑物及其基础等的沉降和水平位移、盾构隧道结构内力、外力和变形等。

1 监测项目的确定
盾构法隧道施工监测项目的选择主要考虑如下因素:
1. 工程地质和水文地质情况;
2. 隧道埋深、直径、结构型式和盾构施工工艺;
3. 双线隧道的间距或施工隧道与旁边大型及重要公用管道的间距;
4. 隧道施工影响范围内现有房屋建筑及各种构筑物的结构特点、形状尺寸及其与隧道轴线的相对位置;
5. 设计提供的变形及其其他控制值及其安全储备系数。

各种盾构隧道基本监测项目确定的原则参见表2。

根据本工程的具体情况、人员安排及经费投入等因素综合考虑,本工程的盾构隧道施工监测内容主要为地面沉降监测、隧道沉降监测、建筑物沉降(裂缝)监测和过江段地形变化监测。

在盾构推进起始段100米范围内进行以土体变形和隧道结构为主的监测,土体变形监测包括土体深层垂直和水平位移、地下水位监测,隧道结构监测主要为隧道收敛位移。

2 监测点的布设和监测方法
2.1 地面沉降监测点的布设和监测方法
在位于隧道推进方向上,在30m范围内沿隧道中心线每3m布置1个沉降监测点,同时距井壁6m及15m处各布置1条沉降监测断面,此断面在轴线左右各布4点,间距分别为距离隧道中轴线2m、5m、8m、12m;在进洞段20m~100m范围内沿隧道中心线每4m布置1个沉降监测点;在100m以后范围内沿隧道中心线每5m布置1个沉降监测点, 距井壁30m、50m、75m处各布置1条沉降监测断面,断面点间距同上;以后每50m布置1个断面。

轴线点编号,左线以AZ001为轴线起点编号,右线为AY001作为起点编号;断面测点编号,根据断面测点所处轴线的方向,由N(北)向S(南)编号。

地面沉降测点如遇到江河或水塘,则采用水深测量方法;如周围无建筑物或场地比较空旷,则横剖面间隔可加大至50m。

地面沉降测点的埋设采用标准地表桩,必须将其埋入原状土,并做好井圈和井盖。

在坚硬的道面上埋设地表桩,应凿出道面和路基,将地表桩埋入原状土,或钻孔打入1m以上的螺纹钢筋做地表观测桩,并同时打入保护钢管套。

为布设轴线点,沿隧道轴线附近布设一条闭合平面控制导线,将轴线点放样到地面上。

由于移交的水准点比较分散,所以在沿途较稳定地区埋设5~10个水准控制点。

测量仪器采用SDZ2水准仪+铟钢尺。

观测方法采用精密水准测量方法。

基点和附近水准点联测取得初始高程。

观测时各项限差宜严格控制,每测点读数高差不宜超过0.3mm,对不在水准路线上的观测点,一个测站不宜超过3个,如超过时,应重读后视点读数,以作核对。

首次观测应对测点进行连续两次观测,两次高程之差应小于±1.0mm,取平均值作为初始值。

在条件许可的情况下,尽可能的布设导线网,以便进行平差处理,提高观测精度,水准线路闭合差应小于±0.3(mm)(N为测站数),然后按照测站进行平差,求得各点高程。

施工前,由基点通过水准测量测出隆陷观测点的初始高程H0,在施工过程中测出的高程为Hn。

则高差△H=Hn-H0即为隆陷值。

2.2 隧道沉降监测点的布设和监测方法
隧道沉降由衬砌环的沉降反映出来,衬砌环的沉降监测是通过在各衬砌环
上设置沉降点,自衬砌脱出盾尾后测其沉降,隧道的沉降情况反映盾尾注浆的效果和隧道地基处理效果。

隧道的沉降相当于增加地基损失,也必然加大地面沉降。

为了监测盾构在推进过程中隧道的沉降变化情况,在隧道管片底部设立一定数量的隧道沉降观测标志,以管片拼装螺母为监测基点。

进洞段、泵房和曲线段每3环设1个点,直线段每6环设1点。

若有较大的隧道沉降可增加测点。

衬砌环(管片)的沉降采用水准测量方法在管片脱出盾构机后测量,每次测量需回测后三环管片。

每环管片均需测量。

监测点布设在管片底部。

每天换班时均需进行管片测量工作。

测量仪器采用SDZ2精密水准仪+铟钢尺。

观测方法采用精密水准测量方法。

2.3 周围建筑物沉降及裂缝观测
本标段由于地处东风农场,周边多为果树。

隧道沿线50米范围内的基本上没有建筑物。

根据工程现场周边环境,对轴线两侧50米范围内建筑物作不均匀沉降监测,观测点布置于建筑物四墙角上,用膨胀螺丝打入墙体内。

对周围建筑物的裂缝状况,在盾构推进前作详细调查摸底,掘进施工过程中定期巡视检查。

对已经存在的裂缝,施工前必须会同有关各方现场检查,并作文字、拍照、录像记录。

沉降观测采用II等几何水准测量,每次观测要与两个相对稳定的水准点进行闭合,组成水准网进行平差计算。

建筑物裂缝观测采用下图所示的方法进行观测:
2.4 土体变形监测点的布设和监测方法
在盾构推进起始段100米范围内,布设土体垂直和水平位移监测点是为了确定盾构正面推力、压浆时间、压浆压力和数量、推进速度、送排泥速度等施工参数。

土体深层垂直位移测孔一般布置在隧道中心线上,监测结果比地表沉降更为敏感,因而能更有效地诊查施工状态和工艺参数,尤其是盾构正前方一点的沉降。

土体深层水平位移测孔布设在盾构前方两侧,用测斜仪量测,监测结果可以分析盾构推进中对土体扰动引起的水平位移以及研究减少扰动的对策。

地下水位孔布设在隧道两侧影响范围内,水文地质条件在施工过程中可能有变化的区域,如在砂层或淤泥质砂土中掘进的区域。

采用水位计进行量测。

具体布置详见盾构推进起始段监测点布置图和如下图“盾构隧道始发段监测断面图”。

2.5 隧道收敛测点的布设和监测方法
在盾构推进起始段100米范围内,分别按10米为一区段选择一个断面埋设收敛计挂点,用来量测隧道结构内部收敛位移。

详见隧道结构内部收敛监测点布置图。

采用收敛计进行量测.
4.2.6 防洪堤坝测点的设置
盾构隧道施工过程中,将先后两次穿越小虎沥,沙仔沥,狮子洋。

对两岸的防
洪堤坝构成影响.为此沿轴线纵向堤坝处布3个横断面,需加密布设沉降监测点;横向断面布点为推进轴线中心处布1点,左右各布6点,其点间距为2~3m。

在上述需重点加密监测的区域内布设沉降监测时,视不同环境地质情况宜采用不同的布设方法。

【测点布设要求】测点标志采用墙面标志,布设时,采用冲击钻成孔,然后用水泥将道钉封牢。

或采用标准地表桩,必须将其埋入原状土,并做好井圈和井盖。

在坚硬的道面上埋设地表桩,应凿出道面和路基,将地表桩埋入原状土,或钻孔打入1m以上的螺纹钢筋做地表观测桩,并同时打入保护钢管套。

相关文档
最新文档