11两参数威布尔分布中参数的极大似然估计量的迭代求解方法
利用的规划求解进行求解威布尔分布参数.完整版PPT资料

i t ; ⑸ 在D2 单元格中输入公式“=C2*C2”,用填充柄填 充D3~D6 单元格,D2~D6 单元 格的值为为2 i x ; ⑹ 在
E2 单元格中输入公式“=(A2-0.3)/5.4”,用填充柄填充 E3~E6 单元格,E2~E6 单 元格的值为为( ) i F t ,这里
( ) i F t 采用中位值算法,即F(t )=(i − 0.3) (n + 0.4) i ; ⑺ 在F2 单元格中输入公式“
,m>0;η 称为尺度参数,η>0;γ 称为位 置参数,也称最小寿 命,表示产品在γ 以前不会 失效,对
于产品寿命有γ ≥ 0 ,γ =0 时退化为二参数 威布尔分布; t 是产品的工作时间, t ≥ γ 。
当m<1 时, 由式( 3 ) 给出的失效率是递减型的,适合于 建模早期失效;当m=1 时, 失效率为常数,即退化为指 数分布,适合于建
威布尔分布是瑞典物理学家Weibull W.分析材料强度时在 实际经验的基础上推导出来 的分布形式[1],国内外大量 研究表明,用三参数威
布尔分布比用对数正态分布往往能更准确 地描述结构疲
劳寿命或腐蚀损伤的概率分布[2],物理意义更加合理; 在以损耗为特征的机械 零件寿命评估中,
采用三参数威布尔分布比采用二参数威布尔分布拟合精 度更高。因此,三 参数威布尔分布在强度与环境研究领 域及机械零件磨损寿命评价中得到越来越广泛的
其中到第i 个产品失效时的累计失效概率F(ti )可用中 位秩算
法求得:
F t i i (2) 根据失效时间和累计失效概率即可用各种方法对其参数进 行估计。
威布尔分布参数计算方法

威布尔分布参数计算方法\[ f(x;\lambda, k) = \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k} \]其中,$\lambda>0$和$k>0$是威布尔分布的两个参数,$\lambda$称为尺度参数,$k$称为形状参数。
下面将介绍如何计算威布尔分布的参数。
##最大似然估计法最常用的参数估计方法是最大似然估计法。
假设我们有$n$个样本数据$x_1, x_2, ..., x_n$,要估计威布尔分布的参数$\lambda$和$k$。
首先,根据概率密度函数,我们可以得到似然函数:\[ L(\lambda, k ; x_1, x_2, ..., x_n) = \prod_{i=1}^{n}\frac{k}{\lambda} \left(\frac{x_i}{\lambda}\right)^{k-1} e^{-(x_i/\lambda)^k} \]为了方便计算,我们可以求似然函数的对数:\[ \log L(\lambda, k ; x_1, x_2, ..., x_n) = n \log k - n \log \lambda + (k-1) \sum_{i=1}^{n}\log\left(\frac{x_i}{\lambda}\right) - \sum_{i=1}^{n}\left(\frac{x_i}{\lambda}\right)^k \]接下来,我们需要最大化对数似然函数。
可以通过求偏导数等于0来求解最大化的参数。
求解$\lambda$的最大似然估计值:\[ \frac{\partial \log L}{\partial \lambda} = -\frac{n}{\lambda} + \frac{(k-1)}{\lambda} \sum_{i=1}^{n}\frac{x_i}{\lambda} - \sum_{i=1}^{n} \frac{x_i^k}{\lambda^{k+1}} = 0 \]化简上式得到:\[ \sum_{i=1}^{n} \left(\frac{x_i}{\lambda}\right)^k =\frac{(k-1)}{n} \sum_{i=1}^{n} \frac{x_i}{\lambda} \]我们可以定义一些中间变量:\[ \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \]\[ s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} \]将上面的结果代入方程中:\[ \left(\frac{\bar{x}}{\lambda}\right)^k = \frac{(k-1)}{n} \frac{\bar{x}}{\lambda} \]进一步整理可得:\[ \lambda = \left(\frac{\bar{x}}{k-1}\right)^{1/k} \]接下来求解$k$的最大似然估计值,我们将$\lambda$的最大似然估计值带入似然函数中,得到:\[ \log L(k ; x_1, x_2, ..., x_n) = n \log k - n \log\left(\frac{\bar{x}}{k-1}\right)^{1/k} + (k-1) \sum_{i=1}^{n}\log\left(\frac{x_i}{\left(\frac{\bar{x}}{k-1}\right)^{1/k}}\right) - \sum_{i=1}^{n}\left(\frac{x_i}{\left(\frac{\bar{x}}{k-1}\right)^{1/k}}\right)^k \]类似地,对上式求偏导等于0,可以得到对$k$的求解。
最大似然估计的原理及应用

最大似然估计的原理及应用1. 原理概述最大似然估计(Maximum Likelihood Estimation,简称MLE)是统计学中一种常见的参数估计方法,通过寻找使观测数据发生的概率最大化的参数值,来估计未知参数的方法。
其基本原理是在给定观测数据的条件下,选择参数值使得似然函数(或对数似然函数)最大。
2. 最大似然估计的步骤最大似然估计的步骤可以总结为以下几点:1.建立概率模型:根据观测数据的特点,选择合适的概率分布模型,如高斯分布、泊松分布等。
2.构建似然函数:将观测数据与参数构成的概率模型相结合,得到关于参数的似然函数。
3.对似然函数取对数:通常对似然函数取对数,方便计算和推导。
4.求导并解方程:对似然函数取导数,并解方程找到使似然函数最大化的参数值。
5.参数估计:得到使似然函数最大化的参数值,作为对未知参数的估计。
3. 最大似然估计的优点最大似然估计具有以下几个优点:•简单易用:只需要建立合适的概率模型,并求解似然函数的最大值,无需额外的假设或先验知识。
•有效性:在样本量充足的情况下,最大似然估计能够产生高质量的参数估计结果。
•渐进无偏性:在样本量趋于无穷的情况下,最大似然估计的结果具有无偏性。
4. 最大似然估计的应用4.1. 二项分布的参数估计二项分布是一种常见的离散概率分布,用于描述n次独立的二元试验中成功次数的概率分布。
最大似然估计可以用来估计二项分布的参数。
假设我们观测到了一系列成功次数的数据,我们可以建立一个二项分布模型,并使用最大似然估计来确定二项分布的参数,如成功概率p。
4.2. 正态分布的参数估计正态分布是一种常见的连续概率分布,具有对称性和钟形曲线特点。
最大似然估计可以用来估计正态分布的参数,包括均值和方差。
假设我们观测到一组服从正态分布的数据,我们可以建立正态分布模型,并使用最大似然估计来确定正态分布的参数,如均值和方差。
4.3. 泊松分布的参数估计泊松分布是一种常见的离散概率分布,用于描述单位时间内独立事件发生次数的概率分布。
求最大似然估计量的一般步骤为

1 解方程组得到矩估计量分别为 ˆ i n n i 1 1
令 2 2 2
2 2
n
ˆ ( )
2
n
2 2 ( ) S i n . i 1
上例表明: 总体均值与方差的矩估计量的表达式,不因 不同的总体分布而异.
为 则样本 1 , 2, ..., n 的分布律 或分布密度 n pxi ; ,当给定样本值 x1 , x2 ,...,xn
后,它只是参数 的函数,记为 L 即
L pxi ;
n i 1
i 1
则称 L 为似然函数。似然函数实质上 是样本的分布律或分布密度。
点估计问题就是要构造一个适当的统计量 ˆ( , , , ),用它的观察值 ˆ (x , x , , x ) 1 2 n 1 2 n 来估计未知参数 .
ˆ( , ,, )称为 的估计量. 通称估计, 1 2 n ˆ ( x1 , x2 ,, xn )称为 的估计值. 简记为 ˆ.
xi n xi d i 1 令 ln L( p) i 1 0, dp p 1 p
1 n ˆ xi x . 解得 p 的最大似然估计值 p n i 1
n
n
1 n ˆ Xi X . p 的最大似然估计量为 p n i 1
这一估计量与矩估计量是相同的.
最大似然法是在总体类型已知条件下使用 的一种参数估计方法 . 它首先是由德国数学家 高斯在1821年提出的 ,然而, 这个方法常归功于英国统 计学家费歇 . 费歇在1922年重新发现了 这一方法,并首先研究了这 种方法的一些性质 .
Gauss
Fisher
1.似然函数 设总体的分布律为 P x p x; (或分 ) ,其中 1 , 2 ,..., m 布密度为 p( x;) 是未知参数,1,2 ,...,n 是总体的一个样本,
最大似然估计的关键公式概览

最大似然估计的关键公式概览最大似然估计(Maximum Likelihood Estimation,简称MLE)是统计学中一种常用的参数估计方法,它通过寻找最大化样本观测值在给定参数下的概率,从而得到最优的参数估计值。
在实际应用中,最大似然估计被广泛应用于各个领域,例如机器学习、统计分析、金融风险评估等。
本文将对最大似然估计中的关键公式进行概览,帮助读者更好地理解和应用该方法。
1. 似然函数(Likelihood Function)在最大似然估计中,首先需要定义似然函数。
似然函数是一个关于参数的函数,表示在给定参数的条件下,样本观测值出现的可能性。
在统计学中,常用L(θ;x)表示似然函数,其中θ表示参数,x表示样本观测值。
似然函数的计算通常基于样本观测值的分布假设,例如正态分布、泊松分布等。
2. 对数似然函数(Log-Likelihood Function)为了方便计算和优化,通常将似然函数取对数得到对数似然函数。
对数似然函数的形式为ln L(θ;x),其中ln表示自然对数。
对数似然函数的计算可以将乘法转化为加法,简化计算过程。
同时,对数函数的单调性保证了最大化似然函数和最大化对数似然函数有相同的结果。
3. 最大似然估计的目标函数最大似然估计的目标是找到合适的参数值,使得似然函数或对数似然函数达到最大值。
因此,需要构建一个目标函数,以参数为变量,似然函数或对数似然函数为目标,通过优化算法求解最优的参数估计。
对于似然函数而言,目标函数为:argmax L(θ;x)对于对数似然函数而言,目标函数为:argmax ln L(θ;x)其中argmax表示使目标函数达到最大值的参数取值。
4. 最大化目标函数的方法为了求解使目标函数最大化的参数取值,通常使用数值优化方法。
常见的方法有梯度下降法、牛顿法、拟牛顿法等。
梯度下降法是一种基于函数梯度信息的迭代优化算法,通过计算目标函数关于参数的梯度方向,并不断朝着梯度下降的方向更新参数值,直至达到最优解。
风电场风速概率Weibull分布的参数估计研究

风电场风速概率Weibull分布的参数估计研究杨富程;韩二红;王彬滨;刘海坤;黄博文【摘要】风电场风速概率分布是描述风能特征的主要指标,其准确程度直接影响风电场风能资源的评估结果.主要介绍了两参数威布尔分布的极大似然估计法、最小二乘估计法和WASP估计法3种风速概率分布参数的估计方法.通过对四川广元地区低风速区域测风塔实测数据分析,结果表明,极大似然估计法与实测数据统计结果最为接近,拟合效果良好;Weibull参数c、k存在相对较为明显的季节变化;尺度参数c值随高度呈现幂指数形式,形状参数k值随高度呈现二次函数形式变化特征,在80~90 m高度左右,曲线出现拐点,k值取得最大值.【期刊名称】《江西科学》【年(卷),期】2019(037)002【总页数】7页(P264-269,299)【关键词】Weibull分布;概率分布;形状参数;尺度参数;参数估计【作者】杨富程;韩二红;王彬滨;刘海坤;黄博文【作者单位】四川电力设计咨询有限责任公司,610041,成都;四川电力设计咨询有限责任公司,610041,成都;四川电力设计咨询有限责任公司,610041,成都;四川电力设计咨询有限责任公司,610041,成都;四川电力设计咨询有限责任公司,610041,成都【正文语种】中文【中图分类】TM6140 引言随着世界工业经济的快速发展,化石能源燃烧排放出的大量温室气体导致全球气候发生巨大变化,已经严重危害到人类生存环境和健康安全[1]。
因此,可再生能源已成为解决能源与环境问题的主要途径之一,其中风力发电相比其它形式的可再生能源,因具有技术较为成熟、成本相对较低、对环境影响小等优势,成为世界各国大力发展可再生能源关注的重点之一[2]。
国家能源局在新能源“十三五”规划中提出“至2020年,我国风电装机容量将达到2.1亿kW以上,风电价格与煤电上网电价相当”。
同时,伴随着IV类复杂地形区域风资源相对较差及风电上网补贴电价不断下降的状况,准确评估风电场的经济性尤为关键。
双参数威布尔分布函数的确定及曲线拟合(精)

2007.NO.4. CN35-1272/TK图 1威布尔函数拟合曲线的仿真系统模块作者简介 :包小庆 (1959~ , 男 , 高级工程师 , 从事可再生能源的研究。
大型风电场的建设不但可以减缓用电短缺情况 , 而且并网后还能为电网提供很大一部分电能。
而大型风电场的选址 , 与该地的风速分布情况有关。
用于描述风速分布的模型很多 , 如瑞利分布、对数正态分布、 r 分布、双参数威布尔分布、 3参数威布尔分布 , 皮尔逊曲线拟合等。
经过大量的研究表明 , 双参数威布尔分布函数更接近风速的实际分布。
本文采用 4种方法计算威布尔分布函数的参数 , 并利用计算出的参数确定威布尔分布函数的实际数学模型进行曲线拟合。
最后以白云鄂博矿区风电场拟选址为例 , 使用计算机软件 (MATLAB 对该地区风速威布尔分布函数进行曲线拟合 , 得到该地区不同高度的风速分布函数曲线。
1双参数威布尔分布函数的确定双参数威布尔分布是一种单峰的正偏态分布函数 , 其概率密度函数表达式为 :p(x=kx " exp-x "(1式中 :k ———形状参数 , 无因次量 ;c ———尺度参数 , 其量纲与速度相同。
为了确定威布尔分布函数的实际模型 , 需计算出实际情况下对应函数的 2个参数。
估算风速威布尔参数的方法很多 , 本文给出4种有效的方法以确定 k 和 c 值。
1.1HOMER 软件法HOMER 是一个对发电系统优化配置与经济性分析的软件。
通过输入 1a 逐时风速数据或者月平均风速数据 , 根据实际情况设置相应参数 , 即可计算得到 k 和c 值 , 此时计算出的 k 和 c 值是计算机系统认为的最佳值。
1.2Wasp 软件法Wasp 是一个风气候评估、计算风力发电机组年发电量、风电场年总发电量的软件。
通过输入风速统计资料 , 计算机可以直接计算出 k 和 c 值。
1.3最小二乘法通过风速统计资料计算出最小二乘法拟合直线 y=ax+b 的斜率 a 和截距 b 。
参数估计-Weibull分布-两参数估计迭代算法

参数估计-Weibull分布-两参数估计迭代算法常⽤于为失效时间数据建模。
例如,⼀个制造商希望计算某个部件在⼀年、两年或更多年后失效的概率。
此分布⼴泛地应⽤于⼯程、医学研究、⾦融和⽓候学。
Weibull 分布由形状、尺度和阈值等参数描述。
阈值参数为零的情况称为 2 参数 Weibull 分布。
只为⾮负变量定义此分布。
取决于参数的值,Weibull 分布可以具有各种形状。
这种分布的主要优点之⼀在于它可以具有其他类型分布的特征,从⽽在拟合不同类型的数据时极其灵活。
⼀般在可靠性分析中使⽤常见数学统计算法包内包含各种分布的pdf,cdf,参数估计却很少提供,但是项⽬中必须要⽤,所以实现了⼀个经过优化的迭代算法(C#版本)(其中有使⽤Gamma函数,正态分布等,⽐较常见,此处代码不提供了)public sealed class WeibullDistribution{///形状参数private double _alpha;///尺度参数private double _beta;///正交化分布(⽅便计算)private double _norm;///<summary>///创建⼀个分布///</summary>///<param name="shape"></param>///<param name="scale"></param>public WeibullDistribution(double shape, double scale){if (shape <= 0)throw new ArgumentOutOfRangeException("Shape parameter must be positive");if (scale <= 0)throw new ArgumentOutOfRangeException("Scale parameter must be positive");DefineParameters(shape, scale);}public double ln(double x) { return Math.Log(x, Math.E); }public double SigmaLnXi(IList<double> doubles){double sum = 0;foreach (var item in doubles){sum += ln(item);}return sum;}public double SigmaPowXi(IList<double> doubles, double beta0){double sum = 0;foreach (var item in doubles){sum += Math.Pow(item, beta0);}return sum;}public double SigmaPowXi2(IList<double> doubles, double beta0){double sum = 0;foreach (var item in doubles){sum += Math.Pow(item, beta0) * ln(item);}return sum;}///<summary>///使⽤迭代计算数值解进⾏威布尔参数估计///</summary>///<param name="datas"></param>public WeibullDistribution(IList<double> datas){//参数估计NumericalVariable n = new NumericalVariable(datas);double xbar = n.Mean;double sd = n.StandardDeviation;double E = 0.001;double b0 = 1.2 * xbar / sd;double b = b0;double Beta = int.MaxValue;//迭代计算betawhile (Math.Abs(Beta - b) >= E){Beta = 1.0 / ((SigmaPowXi2(datas, b) / SigmaPowXi(datas, b)) - (1.0 / datas.Count * SigmaLnXi(datas)));b = (Beta + b) / 2;}////计算Alphadouble Alpha = Math.Pow(1.0 / datas.Count * SigmaPowXi(datas, Beta), 1.0 / Beta);DefineParameters(Beta, Alpha);}public double Average{get { return Fn.Gamma(1 / _alpha) * _beta / _alpha; }set{throw new InvalidOperationException("Can not set average on Weibull distribution");}}public void DefineParameters(double shape, double scale){_alpha = shape;_beta = scale;_norm = _alpha / Math.Pow(_beta, _alpha);}public double DistributionValue(double x){return1.0 - Math.Exp(-Math.Pow(x / _beta, _alpha));}public string Name{get { return"Weibull distribution"; }}public double[] Parameters{get { return new double[] { _alpha, _beta }; }set { DefineParameters(value[0], value[1]); }}public double InverseDistributionValue(double x){return Math.Pow(-Math.Log(1 - x), 1.0 / _alpha) * _beta;}public override string ToString(){return string.Format("Weibull distribution ({0:####0.00000},{1:####0.00000})", _alpha, _beta);}public double Value(double x){return _norm * Math.Pow(x, _alpha - 1) * Math.Exp(-Math.Pow(x / _beta, _alpha));}public double Variance{get{double s = Fn.Gamma(1 / _alpha);return _beta * _beta * (2 * Fn.Gamma(2 / _alpha)- s * s / _alpha) / _alpha; }}}。