利用EXCE的规划求解进行求解威布尔分布参数(技术专攻)
威布尔分布参数计算方法

威布尔分布参数计算方法\[ f(x;\lambda, k) = \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k} \]其中,$\lambda>0$和$k>0$是威布尔分布的两个参数,$\lambda$称为尺度参数,$k$称为形状参数。
下面将介绍如何计算威布尔分布的参数。
##最大似然估计法最常用的参数估计方法是最大似然估计法。
假设我们有$n$个样本数据$x_1, x_2, ..., x_n$,要估计威布尔分布的参数$\lambda$和$k$。
首先,根据概率密度函数,我们可以得到似然函数:\[ L(\lambda, k ; x_1, x_2, ..., x_n) = \prod_{i=1}^{n}\frac{k}{\lambda} \left(\frac{x_i}{\lambda}\right)^{k-1} e^{-(x_i/\lambda)^k} \]为了方便计算,我们可以求似然函数的对数:\[ \log L(\lambda, k ; x_1, x_2, ..., x_n) = n \log k - n \log \lambda + (k-1) \sum_{i=1}^{n}\log\left(\frac{x_i}{\lambda}\right) - \sum_{i=1}^{n}\left(\frac{x_i}{\lambda}\right)^k \]接下来,我们需要最大化对数似然函数。
可以通过求偏导数等于0来求解最大化的参数。
求解$\lambda$的最大似然估计值:\[ \frac{\partial \log L}{\partial \lambda} = -\frac{n}{\lambda} + \frac{(k-1)}{\lambda} \sum_{i=1}^{n}\frac{x_i}{\lambda} - \sum_{i=1}^{n} \frac{x_i^k}{\lambda^{k+1}} = 0 \]化简上式得到:\[ \sum_{i=1}^{n} \left(\frac{x_i}{\lambda}\right)^k =\frac{(k-1)}{n} \sum_{i=1}^{n} \frac{x_i}{\lambda} \]我们可以定义一些中间变量:\[ \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \]\[ s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} \]将上面的结果代入方程中:\[ \left(\frac{\bar{x}}{\lambda}\right)^k = \frac{(k-1)}{n} \frac{\bar{x}}{\lambda} \]进一步整理可得:\[ \lambda = \left(\frac{\bar{x}}{k-1}\right)^{1/k} \]接下来求解$k$的最大似然估计值,我们将$\lambda$的最大似然估计值带入似然函数中,得到:\[ \log L(k ; x_1, x_2, ..., x_n) = n \log k - n \log\left(\frac{\bar{x}}{k-1}\right)^{1/k} + (k-1) \sum_{i=1}^{n}\log\left(\frac{x_i}{\left(\frac{\bar{x}}{k-1}\right)^{1/k}}\right) - \sum_{i=1}^{n}\left(\frac{x_i}{\left(\frac{\bar{x}}{k-1}\right)^{1/k}}\right)^k \]类似地,对上式求偏导等于0,可以得到对$k$的求解。
利用EXCE的规划求解进行求解威布尔分布参数

利用EXCE的规划求解进行求解威布尔分布参数
由于威布尔分布的可以描述独立同分布变量的分布,经常被用于不同
概率密度函数模型之间的相互比较,因此其参数估计一直是建模分析的重
要环节,使用EXCEL可以规划求解威布尔分布参数,我们以以下案例来求
解该分布参数:
假设有一组随机样本x(1),x(2),…,x(n),满足威布尔分布,想对α
和β参数进行估计,那么我们可以使用下面的方法:
1.首先,使用EXCEL编写对数似然函数,其表达式为:
lnL=ln[αβ^(α+n)]+α∑lnx-β∑x-nlnβ
这里α,β为待求参数。
2.编写规划过程求解α、β估计值。
具体而言,我们需要构建EXCEL规划模型,使得对数似然函数最大,而其估计值α、β即为结果。
我们以EXCEL求解威布尔分布参数为例,指导将这一过程编写如下:
1.首先,在EXCEL中编写对数似然函数,其表达式为:
lnL=ln[αβ^(α+n)]+α∑lnx-β∑x-nlnβ
这里α,β为待求参数,其取值范围通常设置为大于0小于100,因此,可以将参数α作为变量编写入EXCEL规划模型,即:
MIN = lnL
S.T.0 < α < 100 and0 < β < 100
2.在EXCEL中编写对数似然函数,其表达式为:
lnL=ln[αβ^(α+n)]+α∑lnx-β∑x-nlnβ
其中α,β为待求参数,α ∑ lnx 为样本的对数期望值, -β ∑x 为样本的期望值,而n ln β 为测量方差。
用Excel求解数学规划

用Excel求解数学规划武汉大学水利水电学院万飚Excel是Microsoft Office办公软件中的一个组件,以其强大的电子表格处理功能备受广大用户的青睐。
由于Excel支持丰富的公式和函数,因而在一般财务计算、高级财务管理、财务分析、信息管理、管理决策、市场营销、工程管理,以及管理科学、经济学和统计学等领域都得到了广泛的应用。
一、关于规划求解“规划求解”是Microsoft Excel中的一个加载宏,借助它可以求解许多运筹学中的数学规划问题。
Excel的“规划求解”工具来自德克萨斯大学奥斯汀分校的Leon Lasdon和克里夫兰州立大学的Allan Waren共同开发的Generalized Reduced Gradient(GRG2)非线性最优化代码;线性规划和整数规划算法来自Frontline Systems公司的John Watson和Dan Fylstra 提供的有界变量单纯形法和分支定界法。
安装Office的时候,系统默认的安装方式不会安装该宏程序,需要用户自己选择安装。
安装方法为:从Excel菜单中选择“工具”→“加载宏”,打开如下对话框:选择其中的“规划求解”后单击“确定”按钮,会出现提示:“这项功能目前尚未安装,是否现在安装?”,选择“是”,系统要你插入Office的安装光盘,准备好后单击确定,很快就会安装完毕。
于是,你会发现在“工具”菜单下多出一个名为“规划求解”的子菜单,说明“规划求解”功能已经成功安装。
二、第一个线性规划问题例:求解以下线性规划问题:⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0,124 16 48232 21212121x x x x x x x x z max 步骤:1.将模型中的目标函数和约束条件的系数输入到单元格中;为了使我们在操作过程中看得更清楚,可以附带输入相应的标识符,并给表格加上边框。
如下图所示:2.在E4单元格(目标值)输入“=SUMPRODUCT($C$3:$D$3,C4:D4)”;其中,SUMPRODUCT 函数的功能是将数组间对应的元素相乘,并返回乘积之和,即SUMPRODUCT($C$3:$D$3,C4:D4)=C3×C4+D3×D4;$C$3:$D$3表示这几个单元格为绝对引用。
EXCEL规划求解解析

例1. 工厂生产计划优化问题
某工厂生产4种小型工具,由于该四种工具有 不同的大小、形状、重量和风格,所以它们所需要 的主要原料(钢材和橡胶)、制作时间、最大销售 量与利润均不相同。该厂每天可提供的钢材、橡胶 和工人劳动时间分别为600单位、1000单位与400小 时,详细的数据资料见下表。
应如何安排这四种工具的日产量,使得该厂的日利 润最大?
,求x2+3y的最大值。
完整的模型描述:
第二步 在“工具”菜单中选择“规划求解”。 第三步 在“规划求解参数”对话框进行选择如下图。
第四步 点击“选项”按钮,弹出“规划求解选项”对话框
第五步 单击“求解”,即可解决此题。
最后结果如下页图所示。
例2. 整数求解问题
完成下题的求解:
一般数值求解问题: 已知x,y取值满足
工具类型
表1 生产基本数据
12 3
4 可提供两
劳动时间(小时/件) 2 1 3 2 400小时
钢材(单位/件)
4 2 1 2 600单位
橡胶(单位/件)
6 2 1 2 1000单位
单位利润(元/件) 60 20 40 30
最大销售量(件) 100 200 50 100
解:依题意,设置四种工具的日产量分别为决策变量
2.如何加载“规划求解”
1) 在“工具”菜单上,单击“加载宏”
2) 在弹出的对话框中的“可用加载宏”列表框 中,选定待添加的加载宏“规划求解”选项旁 的复选框,然后单击“确定”.单击“确定” 后,“工具”菜单下就会出现一项“规划求解”
3. “规划求解”各参数设置
单击“规划求解”按钮,将会出现以下规划求Fra bibliotek解参数设置对话框
利用EXCE的规划求解进行求解威布尔分布参数技术专攻

*
专业课
择“显示公式”和“显示R2值”; ⑶ EXCEL自动绘制回归直线,并把结果显示在图上,结果如图3 所示。其中斜率1.8486 即为形状参数m
*
专业课
*
专业课
( ) i F t 采用中位值算法,即F(t )=(i − 0.3) (n + 0.4) i ; ⑺ 在F2 单元格中输入公式“
*
专业课
=LN(LN(1/(1-E2)))”,用填充柄填充F3~F6 单元格,F2~ F6 单元格的值为为i y ,即 1 ( ) ln ln 1
*
*
专业课
i t ; ⑸ 在D2 单元格中输入公式“=C2*C2”,用填充柄填充D3~D6 单元格,D2~D6 单元 格的值为为2 i x ; ⑹ 在
*
专业课
E2 单元格中输入公式“=(A2-0.3)/5.4”,用填充柄填充E3~E6 单元格,E2~E6 单 元格的值为为( ) i F t ,这里
*
专业课
模随机失效;当m>1 时,失效率是递增的, 适合于建模磨耗或老化失效。 设有n 个产品进行寿命试验数据,按失效时间先后得到的寿命数据
*
专业课
失效时间(顺序统计 量)为 n t ≤ t ≤Λ ≤ t 1 2 ,对应的累计失效概率(经验分布函数)为( ) ( ) ( )
*
专业课
*
专业课
],现有几十种参 数估计方法,但多数只能用于形状参数和尺度参数的估计。在众多的估计方法中,能用于三 参数估计的并不多,见诸文献的有极大似然估
excel求解线性规划

线性规划的excel求解模型
在单元格E4和E5中分别输入: E4 =C4*C7+D4*D7 E5 =C5*C7+D5*D7
(4) 确定用于表示目标函数值的单元格,称为目标单元格,这里用E6表示。 在E6输入:E6 =C6*C7+D6*D7
注意:特别关注C7,D7和E6,所以将其背景刷灰
线性规划的excel求解模型
(2) 确定用于表示变量的单元格,称为可变单元格,这里分别用C7,D7表示
x1和x2。
(3) 确定用于表示原约束方程的左边的单元格,称为输出单元格。这里分别 用E4,E5表示第一和第二个约束的左边,由于约束左边决定于变量的取值,即 决定于可变单元格C7和D7的值,所以E4,E5取值决定于C7,D7。
在Excel菜单栏中选择“工具/规划求解”,便会弹出“规划求解参数”对话 框,如下图所示。
模型参数设置
在开始求解之前,需先在对话框中设置好各种参数,包括目标单元格、问 题类型(求最大值还是最小值)、可变单元格以及约束条件等。
规划求解选项
在设置完模型参数之后,需要设置计算参数,点击“选项”按钮,选择运 算参数。
EXCEL线性规划求解
主要内容
Excel规划求解功能的加载 建立线性规划问题的excel模型 线性规划的Excel求解过程 求解结果分析
1、打开Excel 点击 “工具”菜单在下拉菜单中选 择“加载宏”;
2、在弹出式菜单中勾选“规划求解”,并点击“确 定”,则规划求解功能被加载(如果MS Office 2003未完全安装,则需要插入安装盘,才能顺利 加载);
注意: (1) 特别关注决策变量的取值以及目标函数值,所以C7,D7和E6,所以将
其背景刷灰; (2) 单元格内没有任何输入时,默认取值为0;单元格内输入“=”表示单元
用Excel软件求解规划的方法

Microsoft Excel软件是当今十分流行的功能 Excel软件是当今十分流行的功能 强大操作方便的软件。在Microsoft Excel软 强大操作方便的软件。在Microsoft Excel软 件中,具有规划求解功能。如图1 件中,具有规划求解功能。如图1,在工具 菜单下,一般有“规划求解” 菜单下,一般有“规划求解”项,若未有, 则应先运行“加载宏” 则应先运行“加载宏”项目把其安装上。
图8
此时按“求解”按钮即可获得结果如图9 此时按“求解”按钮即可获得结果如图9。
图9
这时从A6至E9处可读出模型的最优解为: 这时从A6至E9处可读出模型的最优解为: x11=25000、 x20=14000、x30 =21000、x11=25000、 x20=14000、 x21=16000、y1=1,其余变量均为0。再从F14 x21=16000、y1=1,其余变量均为0。再从F14 处读出模型的最优值为2384095。 处读出模型的最优值为2384095。
图7
进入“规划求解”界面。“ 进入“规划求解”界面。“设置目标单元 格”处输入“F14”,然后选“最小值”,再 处输入“F14” 然后选“最小值” 在“可变单元格”处输入“A6:E9”,在“约 可变单元格”处输入“A6:E9” 束”处添加12个约束:⑴“A8:E8>=0”、 处添加12个约束:⑴“A8:E8>=0” ⑵“A9=1”、⑶“B9:E9=二进制”、⑷ A9=1”、⑶“B9:E9=二进制” “A10=35000”、⑸“B10=0”、⑹ “C10=0”、 A10=35000”、⑸“B10=0” C10=0” ⑺ “D10=0”、⑻ “E10=0”、⑼“F6=G6”、 D10=0” E10=0”、⑼“F6=G6” ⑽ “F7=G7”、⑾ “F8=G8”、⑿ “F9=1”。 F7=G7” F8=G8” F9=1” 最后,规划求解参数界面如图8 最后,规划求解参数界面如图8。再在 “选项”中选择“采用线性模型”。 选项”中选择“采用线性模型”
利用Excel中的加载宏新加入的规划求解功能解决线性规划问题

利用Excel中的加载宏新加入的规划求解功能解决线性规划问题(郑来运PPT例1)
具体步骤如下:
1.打开Excel,单击“工具”弹出菜单,然后单击“加载宏”会出现如下画面:
选择“规划求解”点击确定,这样你的Excel就有了能解决线性规划问题的功能。
2.依次输入以下数据作为准备工作,如下图:图中用不同的色块表示约束条件和可变部分
3.在表中选中D2的位置然后点击函数,出现“插入函数”的弹出框后,选择”常用函数”中的”SUMPRODUCT”,
如下图所示。
点击确定后在弹出的对话框中array1选择B2:C2,在Array2中选择B6:C6,同时可以看到公式的生成。
用相同的方法让D3,D4,都相应填上公式
选中E6输入公式SUMPRODUCT(B5:C5,B6:C6)
4.单击“工具”选择“规划求解”设置目标单元格为E6,可变单元格为B6,C6,并添加约束条件,如下图
单击“求解”
选择保存规划求解结果,点击“确定”得到求解结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专业课
32
3~H6 单元格, H2~H6 单元格的值为 −γ ⒁ 在I2 单元格中输入公式“=($C$9-F2)/(B2-$I
专业课
33
$8)”,用填充柄填充I3~I6单元格,I2~ I6 单元格的值为 ; ⒂ 在F8 单元格中输入公式“=SUM(H2:H6)”,F8单元格的
专业课
28
i x ⋅ y ; ⑼ 在C7 单元格中输入公式 “=AVERAGE(C2:C6)”,C7 单元格的值为x ; ⑽ 在C8 单元 格中
专业课
29
输入公式“=SUM(D2:D6)”,C8 单元格的值为Σ= n i i x ` 2 ; ⑾ 在C9 单元格中输入公式“=AVER
威布尔分布是瑞典物理学家Weibull W.分析材料强度时在 实际经验的基础上推导出来 的分布形式[1],国内外大量 研究表明,用三参数威
专业课
1
布尔分布比用对数正态分布往往能更准确 地描述结构疲
劳寿命或腐蚀损伤的概率分布[2],物理意义更加合理; 在以损耗为特征的机械 零件寿命评估中,
专业课
2
采用三参数威布尔分布比采用二参数威布尔分布拟合精 度更高。因此,三 参数威布尔分布在强度与环境研究领 域及机械零件磨损寿命评价中得到越来越广泛的
法、图估计法等,除图估计法外,其他方法大都计算复 杂,应用不便,即便是计算 机水平发达的今天
专业课
6
,也只能通过Matlab 或其他计算机语言编程计算。EXCEL 提供了超强的 数学运算、统计分析等实用程序 ,利用它
的规划求解功能可以快速、
专业课
7
高效地求解三参数威 布尔分布的参数估计问题。
2. 三参数威布尔分布模型 威布尔分布的寿命分布函
F t i i (2) 根据失效时间和累计失效概率即可用各种方法对其参数进 行估计。
3. 最大相关系数优化法 对( 专业课
15
1)式做变形处理,并取两次自然对数得到: 4. 用EXCEL 进行参数估计 (6)式所表示的方程十分复杂,解该方程 一般是通过编程,用数值解法
专业课
16
求出γ ,然后 求再用最小二乘法或其他方法求解 形状参数和尺度参数。MS EXCEL 具有强大的统计和计 算 功能,其“规划求解”功
专业课
24
E2 单元格中输入公式“=(A2-0.3)/5.4”,用填充柄填充 E3~E6 单元格,E2~E6 单 元格的值为为( ) i F t ,这里
专业课
25
( ) i F t 采用中位值算法,即F(t )=(i − 0.3) (n + 0.4) i ; ⑺ 在F2 单元格中输入公式“
专业课
17
能更是求解最优化问题的强有力工具,(6)式所表示的 方程利用 EXCEL 的“规划求解”功能可很容易解出,然 后再利用其散点图的趋势线功能即可求
专业课
18
出形状 参数和尺度参数。本文通过实例,就相关系数优化法, 用EXCEL 进行求解。
例:选取5 台某产品进行可靠性试验,失效时间分别是
专业课
30
AGE(F2:F6)”,C9 单元格的值为y ; ⑿ 在C10 单元格中输 入公式“=SUM(G2:G6)”,C10 单元格的值为&Sigma
专业课
31
;= ⋅ n i i i x y ` ; ⒀ 在H2 单元格中输入公式 “=($C$7-C2)/(B2-$I$8)”,用填充柄填充H
值; ⑷ 在C2 单元格中输入公式
专业课
22
“=LN(B2-$I$8)”,用填充柄填充C3~C6 单元格,C2~C6 单 元格的值为i x ,即ln( −γ )
专业课
23
i t ; ⑸ 在D2 单元格中输入公式“=C2*C2”,用填充柄填 充D3~D6 单元格,D2~D6 单元 格的值为为2 i x ; ⑹ 在
专业课
3
应用。
在农业机械的强度设计中也经常要用到威布尔分布。
威布尔分布参数估计方法有很多, 国内外一直有人在进行相关研究[3-
8
专业课
4
],现有几十种参 数估计方法,但多数只能用于形状参数 和尺度参数的估计。在众多的估计方法中,能用于三 参
数估计的并不多,见诸文献优化法、概率权重矩法、 灰色估计
数由下式给出 式中:m 称为形状参数
专业课
8
,m>0;η 称为尺度参数,η>0;γ 称为位 置参数,也称最小寿 命,表示产品在γ 以前不会 失效,对
专业课
9
于产品寿命有γ ≥ 0 ,γ =0 时退化为二参数 威布尔分布; t 是产品的工作时间, t ≥ γ 。
专业课
10
当m<1 时, 由式( 3 ) 给出的失效率是递减型的,适合于 建模早期失效;当m=1 时, 失效率为常数,即退化为指 数分布,适合于建
专业课
11
模随机失效;当m>1 时,失效率是递增的, 适合于建模磨耗或老 化失效。
设有n 个产品进行寿命试验数据,按失效时间先后得到的寿
命数据
专业课
12
专业课
19
27,32,36,42,49,已知产品寿命 服从威布尔分布,试估计 分布参数。
1) 准备数据表 按图1 准备数据表 ⑴ 在A2~A6
专业课
20
单元格中输入产品失效的顺序号1~5; ⑵ 在B2~B6 单元 格中输入产品的失效时间27、32、36、42、49;
⑶ 在I8 单元
专业课
21
格中输入位置参数γ 的迭代初值,初值可选择接 近于第一个失效时间,也 可用图估计法的估计值作为初
失效时间(顺序统计 量)为 n t ≤ t ≤Λ ≤ t 1 2 ,对应 的累计失效概率(经验分布函数)为( ) ( ) ( )
专业课
13
1 2 n F t ≤ F t ≤Λ ≤ F t 。
其中到第i 个产品失效时的累计失效概率F(ti )可用中
位秩算
专业课
14
法求得:
专业课
26
=LN(LN(1/(1-E2)))”,用填充柄填充F3~F6 单元格,F2~ F6 单元格的值为为i y ,即 1 ( ) ln ln 1
专业课
27
i − F t ; ⑻ 在G2 单元格中输入公式“=C2*F2”,用 填充柄填充G3~G6 单元格,G2~G6 单元格 的值为i