八年级上册 三角形的内角和
11.18八年级上第七章5 三角形内角和定理

5 三角形内角和定理1.三角形内角和定理三角形内角和定理:三角形的内角和等于180°.符号表示:△ABC中,∠A+∠B+∠C=180°.变式:∠A=180°-∠B-∠C.谈重点三角形内角和解读(1)三角形内角和等于180°是三角形的一个重要性质.与三角形的具体形状或种类没有关系,即所有三角形的内角和都等于180°;(2)三角形内角和等于180°是三角形本身固有的一个隐含条件,在有关角的计算或日常生活中应用广泛;(3)利用定理在三角形中已知两角可求第三角,或已知各角的关系求各角;(4)三角形内角和的一个重要结论:直角三角形的两个锐角互余.【例1-1】在一个三角形中,下列说法错误的是().A.可以有一个锐角和一个钝角B.可以有两个锐角C.可以有一个锐角和一个直角D.可以有两个钝角点技巧三角形中,角知多少任何三角形中,至少有两个锐角,最多有三个锐角,最多有一个钝角,最多有一个直角.【例1-2】已知一个三角形三个内角度数的比是1∶5∶6,则其最大内角的度数为().A.60°B.75°C.90°D.120°2.三角形的外角(1)定义:三角形的一边与另一边的延长线所组成的角,叫做三角形的外角.如图所示,∠ACD和∠BCE是△ABC的两个外角,而∠DCE不是三角形的外角.(2)三角形外角的特征三角形的外角特征:①顶点是三角形的一个顶点;②外角的一边是三角形的边;③外角的另一条边是三角形某条边的延长线.(3)三角形外角的实质是一个内角的邻补角,两个角的和等于180°.如上图中,∠ACB+∠ACD=180°.【例2】如图所示,∠1为三角形的外角的是().点评:判断一个角是否是三角形的外角,关键是看它是否满足三角形外角的特征.3.三角形内角和定理的证法在解决几何问题时,当仅用已有条件解决问题比较困难时,常在图形中添加线,构造新的图形,形成新的关系,搭建已知与未知的桥梁,把较困难的问题转化为熟悉的、易解决的问题.这些在原来的图形上添加的线叫辅助线.辅助线通常画成虚线.证明三角形内角和定理的基本思路:想办法把分散的三个角“拼凑”成一个“整体”,即借助于辅助线,结合所学过的知识,达到证明的目的.在证明三角形的内角和定理时,常用的辅助线主要有以下几种:(1)构造平角:利用平行线的性质进行转化(作平行线),让三个内角组成一个平角.如图①和图②.(2)构造同旁内角:如图③,过C点作CM∥AB,利用∠ABC与∠BCM是同旁内角可证.4.三角形内角和定理的运用(1)利用定理求角的度数或证明生活中,三角形、四边形是常见的图形,在解决与角的度数有关的问题时,一般会用到三角形的内角和定理.三角形的内角和定理的运用,主要是利用三角形内角和定理进行计算或证明.常见于求三角形中相关角的度数及证明角的相等关系.计算或证明时,往往与其他的知识相结合,如特殊三角形、余角、高线、角平分线等性质.(2)利用定理判断三角形的形状根据一个三角形的内角情况判断三角形的形状,关键是利用三角形内角和定理求出各个角,再根据各类三角形的性质判断.①若有两个角相等,则可判定为等腰三角形;②若有三个角相等,则可判定为等边三角形;③若有特殊角90°和两个45°,则为等腰直角三角形.若一个三角形根据角来分类,可先求出最大的角.①若最大的内角是钝角,则三角形为钝角三角形;②若最大的角为直角,则三角形为直角三角形;③若最大的角为锐角,则三角形是锐角三角形.【例3】如图所示的四边形是平行四边形,如何利用ABCD证明三角形内角和定理?分析:三角形内角和定理的证明思路是利用平行线的性质进行转化,让三个内角组成一个平角,或利用同旁内角互补来得以证明.证明:连接BD.∵四边形ABCD是平行四边形(已知),∴AD∥BC(平行四边形的定义),∴∠A+∠ABC=180°(两直线平行,同旁内角互补).∠1=∠3(两直线平行,内错角相等).∴∠A+∠1+∠2=∠A+∠2+∠3=180°(等量代换).同理可证∠3+∠4+∠C=180°,即三角形的内角和为180°.点技巧辅助线的作用辅助线起着桥梁的作用,在画辅助线时,注意与原来的线的区别,要画成虚线.【例4-1】若一个三角形三个内角度数的比为2∶3∶4,那么这个三角形是().A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【例4-2】△ABC中,若∠B=∠A+∠C,则△ABC是__________三角形.【例4-3】如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE 的度数.5.运用三角形内角和定理的推论进行计算或证明(1)三角形内角和定理的推论1推论1:三角形的一个外角等于和它不相邻的两个内角的和.如图,符号表示:∠ACD=∠A+∠B.谈重点三角形的外角①推论是由三角形内角和定理推理得到的,可作为定理使用;②该推论反映的是三角形的外角与和它不相邻内角的关系.(2)三角形内角和定理的推论2推论2:三角形的一个外角大于任何一个和它不相邻的内角.符号表示:∠ACD>∠A或∠ACD>∠B.析规律灵活使用三角形的外角①三角形的一个外角大于和它“不相邻”的任意一个内角,而不是大于任何一个内角;②利用该推论证明角之间的不等关系时,先找到一个适当的三角形,使要证明的那个大角处于外角的位置上,小角处于内角的位置上.【例5-1】如图,△ABC中,∠A=70°,∠B=60°,点D在BC的延长线上,则∠ACD等于().【例5-2】如图,∠1,∠2,∠3的大小关系为().A.∠2>∠1>∠3 B.∠1>∠3>∠2C.∠3>∠2>∠1 D.∠1>∠2>∠3【例5-3】如图,将一副三角板按图示的方法叠在一起,则图中∠α等于________.6.三角形内角和定理的实际应用三角形的内角和在生活中的应用非常广泛,如方位角与折叠问题,零件的合格判定等.用三角形的内角和定理解决生活中的实际问题时,要注意几何图形中与问题中的对应条件.析规律灵活运用三角形的内角和①“三角形的内角和为180°”是隐含条件,在实际应用中必不可少;②在方位角的计算中需要构造三角形,在三角形中计算其度数;③折叠问题中,被折叠部分折叠后的图形与原图形对应角相等,再根据内角和、平角等知识列出方程计算.【例6-1】如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,则这块三角形木板另外一个角的度数为__________.【例6-2】如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上的点F处,若∠B=50°,则∠BDF=__________.7.辅助线与角的转化应用(1)辅助线与角的转化有关三角形角度的计算与比较,常常利用添加不同辅助线的方法,把大角转化为小角,或者把不规则图形转化为规则图形等,从而利用相关性质进行解题.在证明角度不等的问题中,常用“三角形的一个外角大于任何一个和它不相邻的内角”这一性质,当角不在同一个三角形中时,可作辅助线使之转化到同一个三角形中再解.析规律辅助线的作法辅助线的添加有很多种方法,基本方法是延长法和连接法.在本节中主要是构造三角形,利用“三角形内角和定理及其推论”解决角的问题.(2)等腰三角形中内、外角的转换对于等腰三角形,当不知道所给的角为顶角还是底角时,要分情况讨论,不能漏解.①当等腰三角形的外角是钝角时,其相邻的内角一定是锐角.该锐角可能是等腰三角形的顶角,也可能是底角,要分情况讨论.②当等腰三角形的外角是锐角或直角时,其相邻的内角是钝角或直角,所以该内角一定是等腰三角形的顶角,则这个外角一定是顶角的邻补角.【例7-1】如图1,直线a∥b,则∠ACB=__________.【例7-2】等腰三角形的一个外角为110°,则这个等腰三角形的三个内角分别为__________.【例7-3】已知:如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=120°,求∠DAC的度数.点评:注意三角形的内角和定理以及推论的运用,还要注意角之间的等量代换.。
三角形的内角和(林舒韵)

剪拼
为逻辑推理三角形 内角和定理作铺垫
推理证明 辅助线的添加
方法一
方法二
教师示范证明过程 学生书写证明过程
得到定理 (三角形的内角和180°)
课堂练习 例题讲解 课堂小结
课后作业
一、情景导入
1、平角等于_1_80_度。
2、平行线的性质 (1)两直线平行,同位角相等。 (2)两直线平行,内错角相等。 (3)两直线平行,同旁内角互补。
谢谢观赏
You made my day!
我们,还在路上……
3、在运用三角形内角和定理解题时,关键是如何把与 条件和结论有关系的角放在同一个三角形当中,并找出 其中两角的度数。
六、课后作业
1、(必做题)在△ABC 中,∠A =50°, ∠B =80°,则∠C = 度。
2、(必做题) 在△ABC 中,∠A:∠B:∠C =1:2:3,则∠B 为多
少度?
A
3、(必做题)如图:已知在△ABC中,EF 与AC 交于点G,与BC 的延长线交于点F,∠B =45° ,∠F =30°,∠CGF =70°,求∠A
•
13、知人者智,自知者明。胜人者有 力,自 胜者强 。21.8.1 21.8.11 4:32:50 14:32:5 0Augus t 1, 2021
•
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021 年8月1 日星期 日下午2 时32分 50秒14 :32:502 1.8.1
D
∴ ∠ADB=180°-∠B-∠BAD
A
B
=180°-75°-20°=85°.
四、
例 如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80 °方向,
C岛在B岛的北偏西40 °方向。
八年级上册第一章三角形整章复习知识点和对应练习

T ——三角形一、知识梳理:专题一:三角形有关的线段;专题二:三角形有关的角;专题三:多边形及其内角和.二、考点分类专题一:三角形有关的线段考点一:三角形的边1.三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2.三角形分类:(1)按角的关系分类 (2)按边的关系分类⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形 3.三角形的三边关系:两边之和大于第三边,两边之差小于第三边.【例1】【类型一】 判定三条线段能否组成三角形以下列各组线段为边,能组成三角形的是( )A .2cm ,3cm ,5cm ;B .5cm ,6cm ,10cm ;C .1cm ,1cm ,3cm ;D .3cm ,4cm ,9cm 解析:选项A 中2+3=5,不能组成三角形,故此选项错误;选项B 中5+6>10,能组成三角形,故此选项正确;选项C 中1+1<3,不能组成三角形,故此选项错误;选项D 中3+4<9,不能组成三角形,故此选项错误.故选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】 判断三角形边的取值范围一个三角形的三边长分别为4,7,x ,那么x 的取值范围是( )A .3<x <11 ;B .4<x <7 ;C .-3<x <11 ;D .x >3解析:∵三角形的三边长分别为4,7,x ,∴7-4<x <7+4,即3<x <11.故选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.【类型三】等腰三角形的三边关系已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.【类型四】三角形三边关系与绝对值的综合若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.考点二:三角形的高、中线与角平分线1.三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足间的线段叫做三角形的高.2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.3.三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点与交点的线段叫做三角形的角平分线.【例2】探究点一:三角形的高【类型一】三角形高的画法画△ABC的边AB上的高,下列画法中,正确的是( )解:过点C 作边AB 的垂线段,即画AB 边上的高CD ,所以画法正确的是D.故选D. 方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.【类型二】 根据三角形的面积求高如图所示①,在△ABC 中,AB =AC =5,BC =6,AD ⊥BC 于点D ,且AD =4,若点P 在边AC 上移动,则BP 的最小值为________.解析:根据垂线段最短,可知当BP ⊥AC 时,BP 有最小值.由△ABC 的面积公式可知12AD ·BC =12BP ·AC ,解得BP =245方法总结:解答此题可利用面积相等作桥梁(但不求面积)求三角形的高,这种解题方法通常称为“面积法”.① ② ③ ④ 探究点二:三角形的中线【类型一】 应用三角形的中线求线段的长如图②在△ABC 中,AC =5cm ,AD 是△ABC 的中线,若△ABD 的周长比△ADC 的周长大2cm ,则BA =________.解析:如图,∵AD 是△ABC 的中线,∴BD =CD ,∴△ABD 的周长-△ADC 的周长=(BA +BD +AD )-(AC +AD +CD )=BA -AC ,∴BA -5=2,∴BA =7cm.方法总结:通过本题要理解三角形的中线的定义,解决问题的关键是将△ABD 与△ADC 的周长之差转化为边长的差.【类型二】 利用中线解决三角形的面积问题如图③,在△ABC 中,E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF 和△BEF 的面积分别为S △ABC ,S △ADF 和S △BEF ,且S △ABC =12,则S △ADF -S △BEF =________.解析:∵点D 是AC 的中点,∴AD =12AC .∵S △ABC =12,∴S △ABD =12S △ABC =12×12=6.∵EC =2BE ,S △ABC =12,∴S △ABE =13S △ABC =13×12=4.∵S △ABD -S △ABE =(S △ADF +S △ABF )-(S △ABF +S △BEF )=S △ADF -S △BEF ,即S △ADF -S △BEF =S △ABD -S △ABE =6-4=2.故答案为2.方法总结:三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.探究点三:三角形的角平分线如图④,已知:AD 是△ABC 的角平分线,CE 是△ABC 的高,∠BAC =60°,∠BCE =40°,求∠ADB 的度数.解析:根据AD 是△ABC 的角平分线,∠BAC =60°,得出∠BAD =30°,再利用CE 是△ABC 的高,∠BCE =40°,得出∠B 的度数,进而得出∠ADB 的度数.解:∵AD 是△ABC 的角平分线,∠BAC =60°,∴∠DAC =∠BAD =30°.∵CE 是△ABC 的高,∠BCE =40°,∴∠B =50°,∴∠ADB =180°-∠B -∠BAD =180°-50°-30°=100°.方法总结:通过本题要灵活掌握三角形的角平分线的表示方法,同时此类问题往往和三角形的高综合考查.考点三:三角形的稳定性【例3】要使四边形木架(用4根木条钉成)不变形,至少需要加钉1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,…,那么要使一个n 边形木架不变形,至少需要几根木条固定?解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n 边形的一个顶点可以作(n -3)条对角线,把多边形分成(n -2)个三角形,所以,要使一个n 边形木架不变形,至少需要(n -3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.专题二:三角形有关的角考点四:三角形的内角1.三角形的内角和定理:三角形的内角和等于180°2.直角三角形的性质:直角三角形两锐角互余【例4】探究点一:三角形的内角和【类型一】 求三角形内角的度数已知,如图①,D 是△ABC 中BC 边延长线上一点,DF ⊥AB 交AB 于F ,交AC 于E ,若∠A =46°,∠D =50°.求∠ACB 的度数.① ② 解析:在Rt △DFB 中,根据三角形内角和定理,求得∠B 的度数,再在△ABC 中求∠ACB 的度数即可.解:在△DFB 中,∵DF ⊥AB ,∴∠DFB =90°.∵∠D =50°,∠DFB +∠D +∠B =180°,∴∠B =40°.在△ABC 中,∵∠A =46°,∠B =40°,∴∠ACB =180°-∠A -∠B =94°. 方法总结:求三角形的内角,必然和三角形内角和定理有关,解决问题时要根据图形特点,在不同的三角形中,灵活运用三角形内角和定理求解.【类型二】 判断三角形的形状一个三角形的三个内角的度数之比为1∶2∶3,这个三角形一定是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法判定解析:设这个三角形的三个内角的度数分别是x ,2x ,3x ,根据三角形的内角和为180°,得x +2x +3x =180°,解得x =30°,∴这个三角形的三个内角的度数分别是30°,60°,90°,即这个三角形是直角三角形.故选A.方法总结:在解决有关比例问题时,通常先设比例系数,然后列方程求解.【类型三】 三角形的内角与角平分线、高的综合运用如图②,在△ABC 中,∠A =12∠B =13∠ACB ,CD 是△ABC 的高,CE 是∠ACB 的角平分线,求∠DCE 的度数.解析:根据已知条件用∠A 表示出∠B 和∠ACB ,利用三角形的内角和求出∠A ,再求出∠ACB ,∠ACD ,最后根据角平分线的定义求出∠ACE 即可求得∠DCE 的度数.解:∵∠A =12∠B =13∠ACB ,设∠A =x ,∴∠B =2x ,∠ACB =3x .∵∠A +∠B +∠ACB =180°,∴x +2x +3x =180°,解得x =30°,∴∠A =30°,∠ACB =90°.∵CD 是△ABC 的高,∴∠ADC =90°,∴∠ACD =180°-90°-30°=60°.∵CE 是∠ACB 的角平分线,∴∠ACE =12×90°=45°,∴∠DCE =∠ACD -∠ACE =60°-45°=15°.方法总结:本题是常见的几何计算题,解题的关键是利用三角形的内角和定理和角平分线的性质,找出角与角之间的关系并结合图形解答.探究点二:直角三角形的性质【类型一】 直角三角形性质的运用如图,CE ⊥AF ,垂足为E ,CE 与BF 相交于点D ,∠F =40°,∠C =30°,求∠EDF 、∠DBC 的度数.解析:根据直角三角形两锐角互余列式计算即可求出∠EDF ,再根据三角形的内角和定理求出∠C +∠DBC =∠F +∠DEF ,然后求解即可.解:∵CE ⊥AF ,∴∠DEF =90°,∴∠EDF =90°-∠F =90°-40°=50°.由三角形的内角和定理得∠C +∠DBC +∠CDB =∠F +∠DEF +∠EDF ,∴30°+∠DBC =40°+90°,∴∠DBC =100°.方法总结:本题主要利用了直角三角形两锐角互余的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.考点五:三角形的外角1.三角形外角的定义:三角形的一边与另一边的延长线组成的角.2.三角形外角的性质:三角形的外角等于与它不相邻的两内角的和;三角形的一个外角大于与它不相邻的任何一个内角.【例5】探究点:三角形的外角【类型一】 应用三角形的外角求角的度数如图所示,P 为△ABC 内一点,∠BPC =150°,∠ABP =20°,∠ACP =30°,求∠A 的度数.解析:延长BP交AC于E或连接AP并延长,构造三角形的外角,再利用外角的性质即可求出∠A的度数.解:延长BP交AC于点E,则∠BPC,∠PEC分别为△PCE,△ABE的外角,∴∠BPC=∠PEC +∠PCE,∠PEC=∠ABE+∠A,∴∠PEC=∠BPC-∠PCE=150°-30°=120°.∴∠A=∠PEC-∠ABE=120°-20°=100°.方法总结:利用三角形的外角的性质将已知与未知的角联系起来是计算角的度数的方法.【类型二】用三角形外角的性质把几个角的和分别转化为一个三角形的内角和已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.解析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG、∠EGF分别是△BDF、△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.方法总结:解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.【类型三】三角形外角的性质和角平分线的综合应用如图①,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.(1)如果∠A=60°,∠ABC=50°,求∠E的度数;(2)猜想:∠E与∠A有什么数量关系(写出结论即可);(3)如图②,点E是△ABC两外角平分线BE、CE的交点,探索∠E与∠A之间的数量关系,并说明理由.解析:先计算特殊角的情况,再综合运用三角形的内角和定理及其推论结合三角形的角平分线概念解决.解:(1)根据外角的性质得∠ACD =∠A +∠ABC =60°+50°=110°,∵BE 平分∠ABC ,CE 平分∠ACD ,∴∠1=12∠ACD =55°,∠2=12∠ABC =25°.∵∠E +∠2=∠1,∴∠E =∠1-∠2=30°;(2)猜想:∠E =12∠A ; (3)∵BE 、CE 是两外角的平分线,∴∠2=12∠CBD ,∠4=12∠BCF ,而∠CBD =∠A +∠ACB ,∠BCF =∠A +∠ABC ,∴∠2=12(∠A +∠ACB ),∠4=12(∠A +∠ABC ).∵∠E +∠2+∠4=180°,∴∠E +12(∠A +∠ACB )+12(∠A +∠ABC )=180°,即∠E +12∠A +12(∠A +∠ACB +∠ABC )=180°.∵∠A +∠ACB +∠ABC =180°,∴∠E +12∠A =90°. 方法总结:对于本题发现的结论要予以重视:图①中,∠E =12∠A ;图②中,∠E =90°-12∠A .考点六:多边形及其内角和多边形1.定义:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的封闭图形.2.相关概念:顶点、边、内角、对角线.3.多边形的对角线:n 边形从一个顶点出发的对角线条数为(n -3)条;n 边形共有对角线n (n -3)2条(n ≥3).4.正多边形:如果多边形的各边都相等,各内角也都相等,那么就称为正多边形. 多边形的内角和与外角和1.性质:多边形的内角和等于(n -2)·180°;多边形的外角和等于360°.2.多边形的边数与内角和、外角和的关系:(1)n 边形的内角和等于(n -2)·180°(n ≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.(2)多边形的外角和等于360°,与边数的多少无关.(3).正n 边形:正n 边形的内角的度数为(n -2)·180°n ,外角的度数为360°n. 【例6】探究点一:多边形的概念【类型一】 多边形及其概念下列图形不是凸多边形的是( )解析:根据凸多边形的概念,如果多边形的边都在任意一条边所在的直线的同旁,该多边形即是凸多边形,否则即是凹多边形.由此可得选项D 的图形不是凸多边形.故选D. 方法总结:多边形可分为凸多边形和凹多边形,辨别凸多边形可有两种方法:(1)画多边形任何一边所在的直线,整个多边形都在此直线的同一侧;(2)每个内角的度数均小于180°.通常所说的多边形指凸多边形.【类型二】 确定多边形的边数若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为( )A .14或15或16B .15或16C .14或16D .15或16或17解析:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.故选A. 方法总结:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.探究点二:多边形的对角线【类型一】 确定多边形的对角线的条数从四边形的一个顶点出发可画________条对角线,从五边形的一个顶点出发可画________条对角线,从六边形的一个顶点出发可画________条对角线,请猜想从七边形的一个顶点出发有________条对角线,从n 边形的一个顶点出发有________条对角线,从而推导出n 边形共有________条对角线.解析:根据n 边形从一个顶点出发可引出(n -3)条对角线.从n 个顶点出发引出n (n -3)条对角线,而每条重复一次,可得答案.解:从四边形的一个顶点出发可画1条对角线,从五边形的一个顶点出发可画2条对角线,从六边形的一个顶点出发可画3条对角线,从七边形的一个顶点出发有4条对角线,从n 边形的一个顶点出发有(n -3)条对角线,从而推导出n 边形共有n (n -3)2条对角线. 方法总结:(1)多边形有n 条边,则经过多边形的一个顶点的对角线有(n -3)条;(2)多边形有n 条边,对角线的条数为n (n -3)2.【类型二】 根据对角线条数确定多边形的边数从一个多边形的任意一个顶点出发都只有5条对角线,则它的边数是( )A .6B .7C .8D .9解析:设这个多边形是n 边形.依题意,得n -3=5,解得n =8.故这个多边形的边数是8.故选C.【类型三】 根据分成三角形的个数,确定多边形的边数连接多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是( )A .五边形B .六边形C .七边形D .八边形解析:设原多边形是n 边形,则n -2=6,解得n =8.故选D.方法总结:从n 边形的一个顶点出发可引出(n -3)条对角线,这(n -3)条对角线把n 边形分成(n -2)个三角形.探究点三:正多边形的有关概念下列图形中,是正多边形的是( )A .等腰三角形B .长方形C .正方形D .五边都相等的五边形解析:根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形进行解答.正方形四个角相等,四条边都相等,故选C. 方法总结:解答此类问题的关键是要搞清楚正多边形的定义,各个角相等、各条边相等的多边形是正多边形,这两个条件缺一不可.探究点一:多边形的内角和【类型一】利用内角和求边数一个多边形的内角和为540°,则它是( )A.四边形 B.五边形C.六边形 D.七边形解析:熟记多边形的内角和公式(n-2)·180°设它是n边形,根据题意得(n-2)·180=540,解得n=5.故选B.【类型二】求多边形的内角和一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为( )A.1620° B.1800°C.1980° D.以上答案都有可能解析:1800÷180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620°,1800°,1980°.故选D.方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多边形的内角和公式求出原多边形的边数是解题的关键.【类型三】复杂图形中的角度计算如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )A.450° B.540°C.630° D.720°解析:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=五边形的内角和=540°,故选B.方法总结:本题考查了灵活运用五边形的内角和定理和三角形内外角关系.根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.【类型四】利用方程和不等式确定多边形的边数一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?解析:本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形的边数.解:设此多边形的内角和为x,则有1125°<x<1125°+180°,即180°×6+45°<x<180°×7+45°,因为x为多边形的内角和,所以它是180°的倍数,所以x=180°×7=1260°.所以7+2=9,1260°-1125°=135°.因此,漏加的这个内角是135°,这个多边形是九边形.方法总结:解题的关键是由题意列出不等式求出这个多边形的边数.探究点二:多边形的外角和【类型一】已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正( )A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是( )A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n =3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.。
初中数学八年级上册《三角形的内角》优质教案

初中数学八年级上册《三角形的内角》优质教案【教学目标】1、理解三角形的内角和定理与证明过程,能灵活运用三角形的内角和定理解决简单的与三角形中有关角的计算和证明问题。
2、了解辅助线的作用,能规范地书写简单的推理过程。
3、经历猜想、实验、证明、归纳等活动,感受数学思维的严谨性,渗透转化思想。
【教学重点】探索三角形内角和定理的证明过程及其简单的应用。
【教学难点】在三角形内角和定理的证明过程中正确添加辅助线。
【教学过程】一、创设情境导入新课问题1:任意一个三角形的内角和等于多少度?你还记得这个结论的探索过程吗?度量、剪拼(有误差)。
问题2:有没有更严谨的办法进行验证?通过推理的方法去证明问题3:在已学知识中有什么方法可以得到180°?一个平角是180°;两直线平行时,同旁内角的和是180°。
问题4:从刚才拼角的过程你能想出证明的办法吗?拼角的实质是移动角,如果不实际移动角,你有什么方法可达到同样的效果?追问:想到用平角或平行,但没有平角或平行怎么办?添加辅助线思路:构造平角或平行线.为了证明的需要,在原来的图形上添画的线叫做辅助线。
做辅助线是几何证明过程中常用到的方法。
辅助线通常画成虚线。
添加辅助线的实质是通过平行线来移动角——构造平行线间的内错角、同位角、同旁内角,构造平角。
二、合作交流解读探究已知△ABC,求证:∠A+∠B+∠C=180 °. (学生讲解或老师点评)(在证明中,当原来的条件不够时,可添加辅助线,从而构造新图形,形成新关系,找到已知与未知桥梁,把问题转化成自己已经会解的情况,这是解决问题常用方法的方法之一,辅助线通常画成虚线。
)三种推理方法1:(作平行线,构造内错角、平角)过A点作DE∥BC∵DE∥BC∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)∵∠DAB+∠BAC+∠EAC=∠DAE=180°∴∠BAC+∠B+∠C=180°(等量代换)方法2:(作平行线,构造内错角、同位角、平角)作BC的延长线CD,过点C作射线CE∥BA∵CE∥BA∴∠B=∠ECD(两直线平行,同位角相等)∠A=∠ACE(两直线平行,内错角相等)∵∠BCA+∠ACE+∠ECD=∠BCD=180°∴∠A+∠B+∠ACB=180°(等量代换)方法3:(作平行线,构造内错角、同旁内角)过点A作AD∥BC(如图)∵AD∥BC,∴∠1=∠C,∠DAB+∠ABC=180°∴∠BAC+∠B+∠C=∠BAC+∠1+∠B=∠DAB+∠B=180°归纳:三角形内角和定理:三角形三个内角的和等于180 °.符号语言:在△ABC中,∠A+∠B+∠C=180 °.练习 (学生抢答):说出各图中x的值.(1) x= ; (2) x= ; (3) x=;(4) x= .三、应用迁移巩固提高例1:如图,在△ABC中,∠B=38°,∠C=62°,AD是△ABC的角平分线,求∠ADB 的度数.(学生分析,我板书)例2.如图,已知AB∥DE, ∠C DE=30°, ∠C=85°,求∠A的度数.(学生甲、乙讲解)变式:如图,已知∠A=30°,∠B=70°, ∠CDE=25°,求∠CED的度数.(学生板演)练习:如图,△ABC中,CD平分∠ACB,DE∥BC,∠A=70°,∠ADE=50°, 求∠BDC的度数.(投影)四、总结反思拓展升华通过本节课的学习你有什么收获?数学知识:三角形内角和定理的证明及简单应用数学思想:转化思想五、课堂检测1. 已知△ABC中,∠ABC=∠C=2∠A , 则∠C的度数______.2. 已知△ABC中, ∠C=90°, ∠A-∠B=30°,则∠B =_____.3. 如图,已知CD是△ABC的高, ∠ACB=90°, ∠A=60°,则∠BCD =_________.4.如图,∠A+∠B+∠C+∠D+∠E =_________.5.如图,△ABC的角平分线BD与CD相交于点D,(1)若∠A=100°,则∠BDC = ______;(2)若∠A=80°,则∠BDC = ______;(3)猜想:∠BDC与∠A有怎样的数量关系?请说明理由.思考:一个三角形最多有几个直角?为什么?最多有几个钝角? 一个三角形最多有几个锐角?最少有几个锐角?你能否利用三角形的内角和,求出四边形、五边形的内角和?六、板书设计:11.2.1 三角形内角和定理(1)三角形内角和定理:三角形三个内角的和等于180°学生展示的拼图方法:例1例2变式。
人教版八年级上册 三角形的内角第二课时课件

C
=180°-45°-90°=45°
Hale Waihona Puke ∴∠ACB=∠ACD-∠BCD
=60°- 45° =15°
A
B
D
三、研学教材 知识点二 直角三角形的两个锐角的关系
1、直角三角形可以用符号__R_t_△__ 表 示,直角三角形ABC可以写成 _R_t_△__A_B_C___.
三、研学教材
知识点二 直角三角形的两个锐角的关系
三、研学教材
认真阅读课本第12页到第14页 的内容,完成下面练习并体验 知识点的形成过程。
三、研学教材
知识点一 三角形内角和定理的应用 例2 如右下图,C岛在A岛的北偏东50°方 向,B岛在A岛的北偏东80°方向,C岛在B 岛的北偏西40°方向.从B岛看A、C两岛的 视角∠ABC是多少度?从C岛看A、B两岛的 视角是多少度?
三、研学教材
2、已知:如图,△ABC中,∠A+∠B=90°. A 求证:△ABC是直角三角形.
证明:∵∠A+∠B+∠C=__1_8_0__°
( 三角形内角和定理 ) 又∵∠A+∠B=90°
B
C
∴∠C=180°-___9_0__°=___9_0__°
∴△ABC是__直__角___三角形
结论: 有两个角互余的三角形是__直__角__三角形
=180°- 60°- 30°=90° :
答:从B岛看A、C两岛的视角∠ABC是60°, 从C岛看A、B两岛的视角是90°.
三、研学教材 知识点一 三角形内角和定理的应用
解:过点C画CF//AD ∠CAD=50°∠CBE=40° ∴∠1=∠CAD=50° ∵CF//AD, AD//BE ∴CF//BE ∴∠2=∠CBE=40° ∴∠ACB=∠1+∠2=50°+40°=90°
人教版八年级上册11.2.1三角形的内角(教案)

3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形内角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-内角度数的关系:钝角三角形、锐角三角形和直角三角形的内角度数关系容易混淆,需要教师通过具体例子、分类讨论等方式进行详细讲解。
-实际问题的解决:将三角形内角和定理应用于解决生活中的问题时,学生可能面临问题分析、数据提取和计算方法选择等难题。
举例:
难点一:证明三角形内角和定理时,学生可能难以理解以下概念:
-数学思维的培养:在教学过程中,注重培养学生的几何直观、逻辑推理能力和数学建模意识。
举例:在讲解三角形内角和定理时,可以通过以下案例进行强调:
案例一:给定一个三角形,已知两个角的度数,求第三个角的度数。
案例二:证明一个四边形是凸四边形还是凹四边形。
2.教学难点
-证明三角形内角和定理:对于初学者来说,理解并掌握几何证明过程具有一定难度,需要教师通过直观演示、逐步引导等方法帮助学生突破。
4.在小组合作探究中,培养团队合作精神和交流表达能力,提高数学交流与反思的能力。
三、教学难点与重点
1.教学重点
-三角形内角和定理:强调三角形内角和等于180°的概念,通过几何图形和数学证明,让学生深刻理解这一核心内容。
-内角性质的应用:以实际案例为载体,引导学生学会运用三角形内角和定理解决具体问题,如判断三角形类型、计算未知角度等。
人教版八年级上册11.2.1三角形的内角(教案)
人教版八年级数学上册三角形的内角和定理

三角形的内角和定理人教八上初中数学试卷金戈铁骑整理制作11-4一、学习目标理解“三角形的内角和等于180°”及证明过程;证明“三角形内角和定理”,体会证明中辅助线的作用,尝试用多种方法证明三角形内角和定理;运用三角形内角和定理解决问题.二、知识回顾拼拼看,将任意一个三角形的三个内角拼合在一起会形成什么角?三、新知讲解1.三角形内角和定理定理三角形三个内角的和等于180°符号语言在△ABC中,∠A+∠B+∠C=180°图示2.三角形内角和定理的证明已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.〖方法1〗证明:过A点作DE∥BC,∵DE∥BC,(已作)∴∠DAB=∠B,∠EAC=∠C,(两直线平行,内错角相等)∵∠DAB+∠BAC+∠EAC=180°,(平角=180°)∴∠BAC+∠B+∠C=180°,(等量代换)〖方法2〗证明:作BC的延长线CD,过点C作射线CE∥BA.∵CE∥BA,∴∠B=∠ECD(两直线平行,同位角相等),∠A=∠ACE(两直线平行,内错角相等),∵∠BCA+∠ACE+∠ECD=180°,(平角=180°)∴∠A+∠B+∠ACB=180°.(等量代换)3.三角形内角和定理的应用(1)已知三角形的两个内角,利用三角形内角和定理可求第三个角;(2)已知各角之间的关系,利用三角形内角和定理可求各角.四、典例探究扫一扫,有惊喜哦!1.三角形的内角和定理【例1】(2014春•靖江市校级月考)若一个三角形的三个内角之比为3:4:5,则它的最大内角的度数是()A.80°B.75°C.90°D.108°总结:给出三角形三个内角的比求内角度数时,通常要设未知数,通过列方程求解.【例2】(2014•重庆校级模拟)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=45°,则∠A的度数为()A.65°B.75°C.85°D.95°总结:关于三角形与平行线结合的问题,求解时,先从平行线的性质入手,把有关角转化到三角形中,再利用三角形的内角和定理求解.【例3】(2014秋•太和县期末)如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP 平分∠ACB,则∠BPC的大小是()A.100°B.110°C.115°D.120°总结:三角形中两内角平分线相交组成的角等于90°与第三个内角一半的和.练1.(2015•重庆模拟)在△ABC中,已知∠A=4∠B=104°,则∠C的度数是()A.50°B.45°C.40°D.30°练2.(2014秋•安庆期中)在△ABC中,∠A、∠B、∠C的度数之比为3:4:5,那么△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形练3.(2014春•通川区校级期中)如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.2.三角形内角和定理的实际应用【例4】如图,一轮船由B处向C处航行,在B处测得C处在B的北偏东75°方向上,在海岛上的观察所A测得B在A的南偏西30°方向上,若轮船行驶到C处时测得∠BAC=55°,那么从C处看A,B两处的视角∠ACB是多少度?总结:1.“三角形的内角和为180°”是隐含条件,在实际应用中必不可少.2.在有关方位角的计算中,常常构造三角形,在三角形中计算角的度数.练4.(2010•石家庄二模)如图所示是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥面断裂处夹角∠BCD为________度.一、选择题1.(2014•江北区模拟)在△ABC中,已知∠A=3∠C=54°,则∠B的度数是()A.90°B.94°C.98°D.108°2.(2014春•合川区校级期中)已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形3.(2014春•江阴市校级期中)如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50°B.40°C.70°D.35°4.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C 的度数为()A.30°B.40°C.50°D.60°二、填空题5.(2014秋•宁津县校级月考)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A=,∠C=.6.(2014•徐州二模)如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C=.7.(2013春•苏州期末)如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=.三、解答题8.(2014春•庐江县期末)如图,已知∠DAB=70°,AC平分∠DAB,∠1=35°,求∠D的度数.9.(2012春•中山区期中)已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数.10.(2011春•宣威市校级月考)如图所示,已知图①五角星ABCDE,将图①中的A点向下移动得到图②,将图①中的C点向上移动得图③,对于五角星及五角星的变形图,∠A+∠B+∠C+∠D+∠E 的和为多少度?并选择一图加以说明.典例探究答案:【例1】(2014春•靖江市校级月考)若一个三角形的三个内角之比为3:4:5,则它的最大内角的度数是()A.80°B.75°C.90°D.108°分析:设三角形的三个内角的度数分别为3x、4x、5x,根据三角形内角和定理得到3x+4x+5x=180°,然后解方程求出x后计算5x即可.解答:解:设三角形的三个内角的度数分别为3x、4x、5x,所以3x+4x+5x=180°,解得x=15°,所以5x=75°.故选B.点评:本题考查了三角形内角和定理,即三角形内角和是180°.【例2】(2014•重庆校级模拟)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=45°,则∠A的度数为()A.65°B.75°C.85°D.95°分析:根据平行线的性质可得∠C=∠AED=45°,再利用三角形内角和为180°可以计算出∠A的度数.解答:解:∵DE∥BC,∴∠C=∠AED=45°,∴∠A=180°﹣∠B﹣∠C=180°﹣45°﹣60°=75°,故选:B.点评:此题主要考查了三角形内角和定理,即三角形内角和为180°.【例3】(2014秋•太和县期末)如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A.100°B.110°C.115°D.120°分析:根据三角形内角和定理计算.解答:解:∵∠ABC=50°,∠ACB=80°,且BP平分∠ABC,CP平分∠ACB,∴∠PBC=25°,∠PCB=40°,∴∠BPC=115°.故选C.点评:此题主要考查了三角形的内角和定理:三角形的内角和为180°.练1.(2015•重庆模拟)在△ABC中,已知∠A=4∠B=104°,则∠C的度数是()A.50°B.45°C.40°D.30°分析:根据已知条件求出∠B的度数,再根据三角形的内角和等于180°列式计算即可得解.解答:解:∵4∠B=104°,∴∠B=26°,∴∠C=180°﹣∠A﹣∠B=180°﹣104°﹣26°=50°.故选A.点评:本题考查了三角形的内角和定理,是基础题,求出∠B的度数,然后列出∠C的表达式是解题的关键.练2.(2014秋•安庆期中)在△ABC中,∠A、∠B、∠C的度数之比为3:4:5,那么△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形分析:已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.解答:解:设一份为k°,则三个内角的度数分别为3k°,4k°,5k°.则3k°+4k°+5k°=180°,解得k°=15°,∴5k°=75°,3k°=45°,4k°=60°,所以这个三角形是锐角三角形,故选A.点评:此题主要考查三角形的按边分类,直接根据三角形三个内角的度数比来判断是解题的关键.练3.(2014春•通川区校级期中)如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.分析:由三角形的内角和定理,可求∠BAC=70°,又由AE是∠BAC的平分线,可求∠BAE=35°,再由AD是BC边上的高,可知∠ADB=90°,可求∠BAD=25°,所以∠DAE=∠BAE﹣∠BAD=10°.解答:解:在△ABC中,∵∠BAC=180°﹣∠B﹣∠C=70°,∵AE是∠BAC的平分线,∴∠BAE=∠CAE=35°.又∵AD是BC边上的高,∴∠ADB=90°,∵在△ABD中∠BAD=90°﹣∠B=25°,∴∠DAE=∠BAE﹣∠BAD=10°.点评:本题考查三角形的内角和定理及角平分线的性质,高线的性质,解答的关键是三角形的内角和定理,一定要熟稔于心.【例4】如图,一轮船由B处向C处航行,在B处测得处在B的北偏东75°方向上,在海岛上的观察所A测得B在A的南偏西30°方向上,若轮船行驶到C处时测得∠BAC=55°,那么从C处看A,B两处的视角∠ACB是多少度?分析:根据方位角就可求得BA与正北方向的夹角,即可得到∠ABC,在△ABC中,根据三角形内角和定理即可求得∠ACB的度数.解答:解:∵∠BAE=30°,∴∠ABD=30°,∴∠ABC=∠DBC-∠ABD=75°-30°=45°.在△ABC中,根据三角形内角和定理得到:∠ACB=180°-45°-55°=80°,即从C处看A,B两处的视角∠ACB是80°.点评:本题主要考查了方位角的定义,以及三角形的内角和定理.练4.(2010•石家庄二模)如图所示是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥面断裂处夹角∠BCD为_____度.分析:连接BD,根据对顶角相等得到∠1=∠4=38°,∠2=∠3=23°,然后根据三角形内角和定理进行计算即可.解答:解:连接BD,如图,∵∠1=∠4=38°,∠2=∠3=23°,∴∠BCD=180°-∠4-∠3=180°-23°-38°=119°.故答案为:119.点评:本题考查了三角形内角和定理:三角形的内角和为180°.也考查了对顶角相等.课后小测答案:一、选择题1.(2014•江北区模拟)在△ABC中,已知∠A=3∠C=54°,则∠B的度数是()A.90°B.94°C.98°D.108°解:如图所示:∵∠A=3∠C=54°,∴∠C=18°,∴∠B的度数是:180°﹣∠A﹣∠C=108°.故选:D.2.(2014春•合川区校级期中)已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形解:∵∠A=20°,∴∠B=∠C=(180°﹣20°)=80°,∴三角形△ABC是锐角三角形.故选A.3.(2014春•江阴市校级期中)如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50°B.40°C.70°D.35°解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.4.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数为()A.30°B.40°C.50°D.60°解:∵△ABC中,∠A=100°,∠B=40°,∴∠C=180°-∠A-∠B=180°-100°-40°=40°.故选B.二、填空题5.(2014秋•宁津县校级月考)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A=,∠C=.解:设∠A=2x°,则∠B=3x°,∠C=4x°,∵∠A+∠B+∠C=180°,即:2x°+3x°+4x°=180°,解得:x=20∴∠A=40°,则∠B=60°,∠C=80°,故答案为:40°、80°6.(2014•徐州二模)如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C=.解:∵∠A=35°,∠AOB=75°,∠A+∠B+∠C=180°,∴∠B=180°﹣35°﹣75°=70°.又∵AB∥CD,∴∠C=∠B=70°.7.(2013春•苏州期末)如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=.解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.三、解答题8.(2014春•庐江县期末)如图,已知∠DAB=70°,AC平分∠DAB,∠1=35°,求∠D的度数.解:∵∠DAB=70°,AC平分∠DAB,∴∠DAC=35°,又∵∠1=35°,∴∠D=180°﹣(∠1+∠DAC)=180°﹣(35°+35°)=110°.9.(2012春•中山区期中)已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数.解:∵AB∥CD,AE平分∠BAC,CE平分∠ACD,又∠BAC+∠DCA=180°⇒∠CAE+∠ACE=(∠BAC+∠DCA)=90°,∠E=180°﹣(∠CAE+∠ACE)=90°,∴∠E=90°.10.(2011春•宣威市校级月考)如图所示,已知图①五角星ABCDE,将图①中的A点向下移动得到图②,将图①中的C点向上移动得图③,对于五角星及五角星的变形图,∠A+∠B+∠C+∠D+∠E的和为多少度?并选择一图加以说明.解:∠A+∠B+∠C+∠D+∠E=180°,图①:∵∠A+∠D=∠BNM,∠E+∠C=∠BMN,(三角形的外角等于与它不相邻的两个内角的和),又∵∠B+∠BNM+∠BMN=180∴∠A+∠B+∠C+∠D+∠E=180°.图②:延长AD交BE于点F,再根据三角形外角的性质解答;③同①,∵∠A+∠C=∠1,∠B+∠E=∠2,∠1+∠2+∠D=180°,∴∠A+∠B+∠C+∠D+∠E=180°.。
沪科版数学八年级上册13.2命题与证明三角形内角和定理优秀教学案例

3.引导学生运用转化思想,将复杂的几何问题转化为简单的问题,提高学生解决问题的能力。
4.鼓励学生提出自己的疑问,组织讨论,促进学生思维的发展。
(三)小组合作
1.组织学生分组进行讨论,鼓励学生互相交流、分享思路。
3.通过示例,讲解如何运用三角形内角和定理解决实际问题,让学生体会数学的应用价值。
(三)学生小组讨论
1.设计探究活动,让学生分组讨论如何证明三角形内角和定理。
2.引导学生运用归纳推理、类比推理等方法,深入探究三角形内角和成果,互相交流、学习。
(四)总结归纳
1.教师引导学生总结三角形内角和定理的证明方法,巩固所学知识。
2.总结三角形内角和定理在实际生活中的应用,强调数学的实际价值。
3.引导学生反思自己在讨论过程中的表现,总结自己的优点和不足。
(五)作业小结
1.设计课后作业,让学生运用所学知识解决实际问题,巩固所学内容。
2.要求学生在作业中运用转化思想,提高解决问题的能力。
3.鼓励学生在课后进行自主学习,深入研究三角形内角和定理的相关知识。
二、教学目标
(一)知识与技能
1.让学生掌握三角形内角和定理,理解并能够运用该定理解决实际问题。
2.培养学生空间想象能力,通过观察、实践,让学生能够形象地理解三角形内角和定理。
3.培养学生逻辑思维能力,学会运用归纳推理、类比推理等方法,证明三角形内角和定理。
4.培养学生运用数学知识解决实际问题的能力,将所学知识运用到生活中,提高学生解决实际问题的能力。
4.运用多媒体技术辅助教学,为学生提供丰富的学习资源,提高课堂教学效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的内角和(第一课时)
城西一中欧海霞
教学目标:
1、通过操作活动探索发现和验证“三角形的内角和是180度”的规律。
2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。
并运用新知识解决问题。
3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。
教学重点:探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
教学难点:对不同探究方法的指导和学生对规律的灵活应用。
教具学具准备:课件、学生准备不同类型的三角形各一个,量角器。
教学过程:
一、创设情景,引出问题
1、猜谜语:(课件)
形状似座山,稳定性能坚。
三竿首尾连,学问不简单。
(打一图形名称)三角形(板书)
2、猜三角形(课件)
师:老师这有3个三角形,每个三角形的一部分被长方形给遮住了,你知道这是什么三角形吗?
师:提问第3个图形时问:被遮住的两个角是什么角?
会是两个直角吗?为什么?
(引导学生开始对“三角形的内角和是多少”进行思索。
)
3、引出课题。
师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。
(板书课题)
二、探究新知
1、三角形的内角、内角和
(1)什么是三角形内角(课件)
三角形里面的三个角都是三角形的内角。
为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。
(2)三角形内角和
师:内角和指的是什么?
生:三角形的三个角的度数的和,就是三角形的内角和。
(多让几个学生说一说)
2、猜一猜。
师:这个三角形的内角和是多少度?
师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?
预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?
3操作验证:小组合作。
选1个自己喜欢的三角形,选喜欢的方法进行验证。
(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。
)
4学生汇报。
(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?
师:有没有别的方法验证。
(2)剪拼
a、学生上台演示。
B、请大家四人小组合作,用他的方法验证其它三角形。
C、展示学生作品。
D、师展示。
(3)折拼
师:有没有别的验证方法?
师:我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。
(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。
)
(4)数学文化
师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(BlaisePascal,1623~1662) ,法国数学家、物理学家、近代概率论的奠基者。
早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。
5、巩固知识。
(1)师:你对三角形内角和是多少度还有疑问吗?现在我们可以肯定的说:三角形的内角和是?度。
(2)解决课前问题,为什么画不出1个含有2个直角的三角形?
1个三角形中有没有2个钝角?
(3)师:我们对三角形的认识已经非常清晰,
出示2个三角形,生分别说出内角和。
把两个小三角形拼在一起,问:大三角形的内角和是?度。
教师:为什么不是360°?
三、解决相关问题
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
1、看图,求未知角的度数
2、书上88页10题。
教师:刚才,我们利用了三角形的什么?
3、教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?
求出下面三角形各角的度数。
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。
(3)我有一个锐角是40°。
4、判断。
5、求4边形、5边形内角和。
下课的时间就要到了,我们来一个挑战题。
你们敢接受挑战吗?
如果要求10边形的内角和,你会求吗?你有什么发现?
(我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。
)
四、总结。
师:这节课你有什么收获?
五、板书设计:
三角形的内角和是180°
∠1+∠2+∠3=180°
度量
剪拼
折拼。