各种排序方法复杂度总结
十大经典排序算法总结

⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。
它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。
⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。
排序方法实践心得体会

一、引言在计算机科学领域,排序算法是基础且重要的内容之一。
通过对一组数据进行排序,可以使得后续的查找、统计等操作更加高效。
在实际应用中,不同的排序算法有着各自的特点和适用场景。
本文将从实践角度出发,分享我在学习排序方法过程中的心得体会。
二、排序算法概述1. 冒泡排序冒泡排序是一种简单的排序算法,其基本思想是相邻元素两两比较,若逆序则交换,直到整个序列有序。
冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
2. 选择排序选择排序的基本思想是每次从待排序的序列中选出最小(或最大)的元素,放到序列的起始位置,然后继续对剩余未排序的序列进行同样的操作。
选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。
3. 插入排序插入排序的基本思想是将一个记录插入到已经排好序的有序表中,从而得到一个新的、记录数增加1的有序表。
插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。
4. 快速排序快速排序是一种高效的排序算法,其基本思想是选取一个基准值,将序列划分为两个子序列,一个包含小于基准值的元素,另一个包含大于基准值的元素,然后递归地对这两个子序列进行快速排序。
快速排序的平均时间复杂度为O(nlogn),最坏情况时间复杂度为O(n^2),空间复杂度为O(logn)。
5. 归并排序归并排序是一种分治算法,其基本思想是将序列划分为两个子序列,分别对这两个子序列进行排序,然后将排序好的子序列合并成一个有序序列。
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。
6. 堆排序堆排序是一种基于堆的排序算法,其基本思想是将序列构造成一个大顶堆(或小顶堆),然后依次取出堆顶元素,并调整剩余元素,使新堆的堆顶元素仍为最大(或最小)。
堆排序的时间复杂度为O(nlogn),空间复杂度为O(1)。
三、实践心得体会1. 理论与实践相结合在学习排序算法时,首先要掌握各种排序算法的基本思想和原理,然后通过编程实践来加深理解。
数学排序知识点总结

数学排序知识点总结一、排序算法的概念及分类1.1 排序算法的概念排序算法是一种用来对一组数据进行排序的算法。
它使得数据按照一定的顺序排列,方便我们进行查找、统计、分析等操作。
在实际应用中,排序算法扮演着非常重要的角色,例如在数据库检索、数据压缩、图像处理等领域都有着广泛的应用。
1.2 排序算法的分类排序算法一般可以分为两大类,即比较排序和非比较排序。
比较排序是指通过比较待排序元素之间的大小关系来进行排序的算法,其时间复杂度一般为O(nlogn),包括常见的快速排序、归并排序、堆排序等;非比较排序则是通过其他辅助信息来确定元素的顺序,其时间复杂度通常较低,包括计数排序、桶排序、基数排序等。
二、常见的排序算法及其应用2.1 快速排序快速排序是一种常用的比较排序算法,其基本思想是通过一次划分将待排序数组分成两个部分,使得左边的元素均小于右边的元素,然后再对左右部分递归进行排序。
快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。
快速排序可以在很多实际应用中发挥作用,例如在数据库查询、数据压缩、图像处理等领域都有着广泛的应用。
2.2 归并排序归并排序也是一种常用的比较排序算法,其基本思想是将待排序数组分成两个部分,分别进行递归排序,然后再将两个有序的子数组合并成一个有序的数组。
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。
归并排序可以在很多实际应用中发挥作用,例如在文件排序、数据库排序等领域都有着广泛的应用。
2.3 堆排序堆排序是一种利用堆这种数据结构进行排序的算法,其基本思想是通过建立一个大顶堆或小顶堆,然后将堆顶元素与最后一个元素交换,并调整堆,再将堆顶元素与倒数第二个元素交换,以此类推,直到所有元素都有序。
堆排序的时间复杂度为O(nlogn),空间复杂度为O(1)。
堆排序在优先队列、事件排序等领域有着广泛的应用。
2.4 计数排序计数排序是一种非比较排序算法,其基本思想是通过对待排序数组进行统计,然后根据统计信息将元素放置到正确的位置上。
各种排序方法总结

选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法。
冒泡法:这是最原始,也是众所周知的最慢的算法了。
他的名字的由来因为它的工作看来象是冒泡:复杂度为O(n*n)。
当数据为正序,将不会有交换。
复杂度为O(0)。
直接插入排序:O(n*n)选择排序:O(n*n)快速排序:平均时间复杂度log2(n)*n,所有内部排序方法中最高好的,大多数情况下总是最好的。
归并排序:l og2(n)*n堆排序:l og2(n)*n希尔排序:算法的复杂度为n的1.2次幂这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况1.数组的大小是2的幂,这样分下去始终可以被2整除。
假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n所以算法复杂度为O(lo g2(n)*n) 其他的情况只会比这种情况差,最差的情况是每次选择到的midd le都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。
但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。
实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)。
排序题方法总结

排序题方法总结
排序方法可以总结为以下几种:
1. 冒泡排序:重复比较相邻的两个元素,若顺序错误则交换位置,直至整个数组有序。
时间复杂度为O(n^2)。
2. 选择排序:每次从数组中选择最小(或最大)的元素,放到已排序的末尾,直至整个数组有序。
时间复杂度为O(n^2)。
3. 插入排序:将数组分为已排序和未排序两部分,每次从未排序部分中取出一个元素,并插入到已排序部分的适当位置,直至整个数组有序。
时间复杂度为O(n^2)。
4. 归并排序:将数组不断地分割成更小的子数组,然后再将子数组合并,直至整个数组有序。
时间复杂度为O(nlogn)。
5. 快速排序:选择一个基准元素,将数组分为小于和大于基准元素的两部分,再对两部分分别进行快速排序,直至整个数组有序。
时间复杂度为O(nlogn)。
6. 堆排序:将数组构建成大顶堆(或小顶堆),然后不断地将堆顶元素与最后一个元素交换,并重新调整堆,直至整个数组有序。
时间复杂度为O(nlogn)。
7. 计数排序:统计数组中每个元素出现的次数,然后根据计数从小到大将元素重新排列。
时间复杂度为O(n+k),其中k是值的范围。
8. 基数排序:按照位数从低到高的顺序,将数组分配到桶中,然后重组桶中的元素,直至整个数组有序。
时间复杂度为
O(d*(n+k)),其中d是最大位数,k是每个桶的大小。
以上是常见的排序算法,每种算法都有不同的适用场景和特点,需要根据实际问题选择合适的算法。
排序方法实践实验心得体会

排序方法实践实验心得体会排序算法是计算机科学中最基础也是最常用的算法之一,它的作用是将一组数据按照一定的顺序进行排列。
在我进行排序方法实践实验的过程中,我选择了几种常见的排序算法进行了比较和分析,并对每种算法的时间复杂度、空间复杂度以及稳定性进行了评估。
通过这次实验,我深刻理解了每种排序算法的原理和应用场景,并总结出了一些具体的心得和体会。
首先,我选择了冒泡排序算法。
它的原理是通过比较相邻的两个元素,将较大的元素逐渐交换到数组的末尾,从而实现整个数组的排序。
冒泡排序的时间复杂度是O(n^2),空间复杂度是O(1),算法的稳定性很好。
通过实验,我发现冒泡排序的性能在数据量很小时可以接受,但当数据量变大时,其效率明显不如其他排序算法。
其次,我实践了插入排序算法。
插入排序的原理是将数组分为两个区域,已排序区和未排序区,然后逐个将未排序区的元素插入到已排序区的合适位置。
插入排序的时间复杂度为O(n^2),空间复杂度为O(1),算法是稳定的。
在实验中,我发现插入排序在处理接近有序的数组时表现良好,但在处理逆序数组时效率较低。
接下来,我尝试了选择排序算法。
选择排序的原理是每次从未排序区中选择最小的元素,并与未排序区的第一个元素交换位置,从而逐渐将最小元素移到已排序区的末尾。
选择排序的时间复杂度为O(n^2),空间复杂度为O(1),算法是不稳定的。
通过实验,我发现选择排序的效率较低,因为它每次只能确定一个元素的位置。
最后,我实践了快速排序算法。
快速排序的原理是选择一个基准元素,然后将数组分为两个子数组,左边的元素都小于基准,右边的元素都大于基准,再递归地对子数组进行排序。
快速排序的时间复杂度为O(nlogn),空间复杂度取决于递归深度,算法是不稳定的。
通过实验,我发现快速排序的效率非常高,尤其在处理大规模数据时表现出色。
通过这次排序方法实践实验,我深入了解了各种排序算法的原理和性能特点。
在实验中,我发现不同的排序算法适用于不同的数据情况,选择合适的排序算法可以提高排序的效率。
二分归并排序的时间复杂度以及递推式

一、简介二分归并排序是一种常见的排序算法,它通过将问题分解为子问题,并将子问题的解合并来解决原始问题。
该算法的时间复杂度非常重要,因为它直接影响算法的效率和性能。
在本文中,我们将深入探讨二分归并排序的时间复杂度,并通过递推式来进一步分析算法的性能。
二、二分归并排序的时间复杂度1. 分析在二分归并排序中,时间复杂度可以通过以下三个步骤来分析:- 分解:将原始数组分解为较小的子数组。
- 解决:通过递归调用来对子数组进行排序。
- 合并:将排好序的子数组合并为一个整体有序的数组。
2. 时间复杂度在最坏情况下,二分归并排序的时间复杂度为O(nlogn)。
这是因为在每一层递归中,都需要将数组分解为两个规模近似相等的子数组,并且在每一层递归的最后都需要将这两个子数组合并起来。
可以通过递推式来进一步证明算法的时间复杂度。
3. 递推式分析我们可以通过递推式来分析二分归并排序的时间复杂度。
假设对规模为n的数组进行排序所需的时间为T(n),则可以得到以下递推式:T(n) = 2T(n/2) +其中,T(n/2)表示对规模为n/2的子数组进行排序所需的时间表示将两个子数组合并所需的时间。
根据递推式的定义,我们可以得到二分归并排序的时间复杂度为O(nlogn)。
三、结论与个人观点通过以上分析,我们可以得出二分归并排序的时间复杂度为O(nlogn)。
这意味着该算法在最坏情况下也能保持较好的性能,适用于大规模数据的排序。
我个人认为,二分归并排序作为一种经典的排序算法,其时间复杂度的分析对于理解算法的工作原理和性能至关重要。
通过深入研究递推式,可以更加直观地理解算法的性能表现,为进一步优化算法提供了重要的参考依据。
四、总结在本文中,我们探讨了二分归并排序的时间复杂度,通过分析和递推式的方式深入理解了该算法的性能表现。
通过对时间复杂度的分析,我们对算法的性能有了更深入的认识,并且能够更好地理解算法在实际应用中的表现。
相信通过本文的阅读,读者能够对二分归并排序有更全面、深刻和灵活的理解。
各种排序方式和复杂度分析

#include <stdio.h>#define N 10/*************直接插入排序法******************/ void insertSort(int *a) { //时间复杂度:O(n^2) int i, j, t;for(i=1; i<N; i++) {if(a[i] < a[i-1]) {t = a[i];for(j=i-1; j>=0; j--) {if(a[j] > t) a[j+1] = a[j];else break;}a[j+1] = t;}}}/****************希尔排序*********************/ void shellInsert(int *a, int dk) {int i, j, t;for(i=dk; i< N; i++) {if(a[i] < a[i - dk]) {t = a[i];for(j=i-dk; j>=0; j-=dk) {if(a[j] > t) a[j+dk] = a[j];else break;}a[j+dk] = t;}}}void shellSort(int *a) { //时间复杂度:O(n^1.3) int i;int dlka[3] = {5, 3, 1};for(i=0; i<3; i++) shellInsert(a, dlka[i]);}/****************冒泡排序*********************/void bubbleSort(int *a) { //时间复杂度:O(n^2)int i, j, t;for(i=0; i<N;i++) {for(j=0; j<N-i-1; j++) {if(a[j] > a[j+1]) {t = a[j]; a[j] = a[j+1]; a[j+1] = t;}}}}/****************快速排序*********************/int partition(int *a, int low, int high) {int pivotkey = a[low];while(low < high) {while(low < high && a[high] >= pivotkey) high--;a[low] = a[high];while(low < high && a[low] <= pivotkey) low++;a[high] = a[low];}a[low] = pivotkey;return low;}void qSort(int *a, int low, int high) {int pivotloc;if(low < high) {pivotloc = partition(a, low, high);qSort(a, low, pivotloc - 1); qSort(a, pivotloc + 1, high);}}void quickSort(int *a) {qSort(a, 0, N-1);}/****************选择排序*********************/void selectSort(int *a) { //时间复杂度:O(n^2)int i, j, t, k;for(i=0; i<N; i++) {k = i;for(j=i; j<N; j++) if(a[j] < a[k]) k = j;if(i != k) {t = a[i]; a[i] = a[k]; a[k] = t;}}}/****************堆排序***********************/void heapAdjust(int *a, int s, int n) {int j, rc = a[s];for(j=2*s+1; j<n; j*=2) {if(j < n - 1 && a[j] < a[j+1]) j++;if(rc > a[j]) break;a[s] = a[j]; s = j;}a[s] = rc;}void heapSort(int *a) {int t, i;for(i=N/2-1; i>=0; i--) heapAdjust(a, i, N);//创建大顶堆for(i=N-1; i>0; i--) {t = a[0]; a[0] = a[i]; a[i] = t;heapAdjust(a, 0, i-1);}}/****************归并排序*********************/void merge(int *a, int *b, int i, int m, int n) {int t, k, j;for(j=m+1, k=i; i<=m && j<=n; k++) {if(a[i] < a[j]) b[k] = a[i++];else b[k] = a[j++];}if(i <= m) for(t=i; t<=m; t++)b[k++] = a[t];if(j <= n) for(t=j; t<=n; t++) b[k++] = a[t];}void mSort(int *a, int *b, int s, int t) {int m; static int b1[N]; //只初始化一次if(s == t) b[s] = a[s];else {m = (s + t) / 2; //将a[s..t]平分为a[s..m]和a[m+1..t]mSort(a, b1, s, m); //递归地将a[s..m]归并为有序的b1[s..m]mSort(a, b1, m+1, t); //递归地将a[m+1..t]归并为有序的b1[m+1..t]merge(b1, b, s, m, t); //将b1[s..m]和b1[m+1..t]归并到b[s..m] }}void mergeSort(int *a) {mSort(a, a, 0, N-1);}/*****************main函数*******************/ int main() {int i;int a[N] = {12, 23, 32, 12, 29, 62, 19, 90, 27, 56};printf("原数列为:");for(i=0; i<N; i++) printf("%d ", a[i]);shellSort(a);printf("\n现数列为:");for(i=0; i<N; i++) printf("%d ", a[i]);printf("\n");return 0;}。