2019高考数学押中5题
(高考冲刺押题)2019高考数学三轮基础技能闯关夺分必备不等式综合(含解析).doc

(高考冲刺押题)2019高考数学三轮基础技能闯关夺分必备不等式综合(含解析)【考点导读】能利用不等式性质、定理、不等式解法及证明解决有关数学问题和实际问题,如最值问题、恒成立问题、最优化问题等. 【基础练习】 1.假设函数()()()()22112,022x f x x x g x x x -⎛⎫=+>=≠ ⎪-⎝⎭,那么()f x 与()g x 的大小关系是()()f x g x >2.函数()()22f x a x a =-+在区间[]0,1上恒为正,那么a 的取值范围是0<a <23.当点(),x y 在直线320x y +-=上移动时,3271x y z =++的最小值是74.f(x)、g(x)都是奇函数,f(x)>0的解集是(a 2,b ),g (x )>0的解集是(22a ,2b),那么f (x )·g (x )>0的解集是22,,22b b a a ⎛⎫⎛⎫⋃-- ⎪ ⎪⎝⎭⎝⎭5.对于0≤m ≤4的m ,不等式x 2+mx >4x +m -3恒成立,那么x 的取值范围是x >3或x <-1 【范例导析】例1、集合⎥⎦⎤⎢⎣⎡=2,21P ,函数()22log 22+-=x ax y 的定义域为Q〔1〕假设φ≠Q P ,求实数a 的取值范围。
〔2〕假设方程()222log 22=+-x ax在⎥⎦⎤⎢⎣⎡2,21内有解,求实数a 的取值范围。
分析:问题〔1〕可转化为2220ax x -+>在⎥⎦⎤⎢⎣⎡2,21内有有解;从而和问题〔2〕是同一类型的问题,既可以直接构造函数角度分析,亦可以采用分离参数. 解:〔1〕假设φ≠Q P ,0222>+-∴x ax 在⎥⎦⎤⎢⎣⎡2,21内有有解xx a 222+->∴ 令2121122222+⎪⎭⎫⎝⎛--=+-=x x x u当⎥⎦⎤⎢⎣⎡∈2,21x 时,⎥⎦⎤⎢⎣⎡-∈21,4u 所以a>-4,所以a 的取值范围是{}4->a a〔2〕方程()222log 22=+-x ax在⎥⎦⎤⎢⎣⎡2,21内有解那么0222=--x ax 在⎥⎦⎤⎢⎣⎡2,21内有解2121122222-⎪⎭⎫⎝⎛+=+=∴x x x a当⎥⎦⎤⎢⎣⎡∈2,21x 时,⎥⎦⎤⎢⎣⎡∈12,23a 所以⎥⎦⎤⎢⎣⎡∈12,23a 时,()222log 22=+-x ax在⎥⎦⎤⎢⎣⎡2,21内有解点拨:此题用的是参数分离的思想例 2.f (x)是定义在[—1,1]上的奇函数,且f (1)=1,假设m 、n ∈[—1,1],m+n ≠0时有()().0>++nm n f m f 〔1〕判断f (x)在[—1,1]上的单调性,并证明你的结论; 〔2〕解不等式:⎪⎭⎫ ⎝⎛-<⎪⎭⎫ ⎝⎛+1121x f x f ; 〔3〕假设f (x)≤122+-at t 对所有x ∈[—1,1],a ∈[—1,1]恒成立,求实数t 的取值范围、上为增函数、〔2〕∵f (x)在[—1,1]上为增函数,故有⎭⎬⎫⎩⎨⎧-<≤-⎪⎪⎪⎩⎪⎪⎪⎨⎧-<+≤-≤-≤+≤-123,1121,1111,1211x x x x x x 由此解得 〔3〕由(1)可知:f 〔x 〕在[—1,1]上是增函数,且f (1)=1,故对x ∈[—l ,1],恒有f 〔x 〕≤1、所以要使f 〔x 〕≤122+-at t ,对所有x ∈[—1,1],a ∈[—1,1]恒成立, 即要122+-at t ≥1成立,故at t 22-≥0成立、记g(a )=at t 22-对a ∈[—1,1],g(a )≥0恒成立,只需g(a )在[—1,1]上的最小值 大于等于零、 故()()⎩⎨⎧≥-≤⎩⎨⎧≥>.010010g t g t ,或,, 解得:t ≤—2或t=0、 点拨:一般地,假设()[],,y f x x a b =∈与()[],,y g t t m n =∈假设分别存在最大值和最小值,那么()()f x g t ≤恒成立等价于()()max min f x g x ≤.例3.甲、乙两地相距km s ,汽车从甲地匀速行驶到乙地,速度不超过km/h c ,汽车每小..时的运输成本......〔以元为单位〕由可变部分和固定部分组成:可变部分与速度km/h v 的平方成正比,且比例系数为b ;固定部分为a 元、〔1〕把全程运输成本y 元表示为速度km/h v 的函数,并指出这个函数的定义域; 〔2〕为了使全程运输成本最小,汽车应以多大速度行驶?分析:需由实际问题构造函数模型,转化为函数问题求解 解:〔1〕依题意知汽车从甲地匀速行驶到乙地所用的时间为h vs,全程运输成本为 )(2bv vas v s bv v s a y +=⋅+⋅=、故所求函数为)(bv bas y +=,定义域为)0(c v ,∈、〔2〕由于v b a s 、、、都为正数,故有bv bas bv v a s ⋅⋅≥+2)(, 即ab s bv vas 2)(≥+、 当且仅当bv va=,即b a v =时上式中等号成立、 假设c b a ≤时,那么bav =时,全程运输成本y 最小; 当c b a ≤,易证c v <<0,函数)()(bv vas v f y +==单调递减,即c v =时,)(min bc cas y +=、综上可知,为使全程运输成本y 最小,在c b a ≤时,行驶速度应为b a v =; 在c ba≤时,行驶速度应为c v =、 点拨:此题主要考查建立函数关系式、不等式性质〔公式〕的应用、也是综合应用数学知识、思想和方法解决实际问题的一道优秀试题、 反馈练习: 1.设10<<a ,函数)22(log )(2--=x x a a a x f ,那么使0)(<x f 的x 的取值范围是),0(+∞2.一个直角三角形的周长为2P ,其斜边长的最小值122+P3.首项为-24的等差数列,从第10项起开始为正数,那么公差d 的取值范围是833d <≤ 4.如果函数213log (23)y x x =--的单调递增区间是(-∞,a ],那么实数a 的取值范围是____a <-1____5.假设关于x 的不等式m x x ≥-42对任意]1,0[∈x 恒成立,那么实数m 的取值范围为(,3]-∞-6.设实数m ,n ,x ,y 满足ny mx b y x a n m +=+=+则,,2222的最大值ab7、关于x 的方程sin 2x +2cos x +a =0有解,那么a 的取值范围是[-2,2]8.对于满足0≤p ≤4的所有实数p ,使不等式342-+>+p x px x 都成立的x 的取值范围13-<>x x 或9..三个同学对问题“关于x 的不等式2x +25+|3x -52x |≥ax 在[1,12]上恒成立,求实数a 的取值范围”提出各自的解题思路、甲说:“只须不等式左边的最小值不小于右边的最大值”、乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值”、 丙说:“把不等式两边看成关于x 的函数,作出函数图像”、参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是a ≤1010.设曲线cx bx ax y ++=23213在点x 处的切线斜率为()x k ,且()01=-k ,对一切实数x ,不等式()()1212+≤≤x x k x 恒成立〔0≠a 〕.(1)求()1k的值;(2)求函数()x k 的表达式.解:〔1〕设()c bx ax x k ++=2,()()1212+≤≤x x k x , ()()1112111=+≤≤∴k ,()11=∴k (2)解:⎩⎨⎧==-1)1(0)1(k k ⎩⎨⎧+=+-10b a c b a ∴⎪⎪⎩⎪⎪⎨⎧=+=2121c a b x c x ax ≥++∴212,161,0441,0212≥∴≤-=∆≥+-ac ac c x ax , 又()16142=+≤c a ac ,即41,161,161161==∴=∴≤≤c a ac ac ()()22141412141+=++=∴x x x x k 11.二次函数f (x)=()0,,12>∈++a R b a bx ax且,设方程f (x )=x 的两个实根为x 1和x 2、〔1〕如果x 1<2<x 2<4,且函数f (x )的对称轴为x =x 0,求证:x 0>—1; 〔2〕如果∣x 1∣<2,∣x 2—x 1∣=2,求b 的取值范围、 解:(1)设g(x)=f (x)—x=()()0242.011212<<<<>+-+g x x a x b ax得,由,且,且g(4)>0,即,81,221443,221443,03416,0124>-<--<<-∴⎩⎨⎧<-+<-+a a a a b a b a b a 得由∴.1814112,4112832-=⋅->-=->->-ab x a a b a 故〔2〕由g(x)=()同号、可知2121,01,011x x ax x x b ax ∴>==+-+、 ①假设0<x 1<2,那么x 2一x 1=2,即x 2=x 1+2>2,∴g(2)=4a +2b —1<0, 又()()(),负根舍去,得01112441222212>+-=+=--=-a b a aa b x x ,代入上式得();41,231122<-<+-b b b 解得②假设-2<x 1<0,那么x 2=-2+x 1<-2,∴g 〔-2〕<0,即4a -2b +3<0,同理可求得47>b 、 故当0<x 1<2时,41<b ;当-2<x 1<0时,47>b 、 12.A 、B 两地相距200km ,一只船从A 地逆水到B 地,水速为8km/h ,船在静水中的速度为vkm/h(8<v 0v ≤),假设船每小时的燃料费与其在静水中速度的平方成正比,当v=12km/h 时,每小时的燃料费为720元,为了使全程燃料费最省,船的实际速度v 0应为多少?分析:此题是应用不等式知识解决实际问题的应用题,中间表达了分类讨论这一重要的数学思想,此题中的分类讨论思想很隐蔽,它是由均值不等式中“等号”能否成立引起的,解题中要重视。
衡水中学2019年高考文科数学押题最后一卷

22第I 卷(共60分)、选择题:本大题共12个小题,每小题5分,共60分•在每小题给出的四个选项中,只有 一项是符合题目要求的.1 •已知集合 A = fx X 2-2x <0} , B y = log ? x 2 ,x A?,则 AI B 为( )A . 0,1B . [0,1]C . 1,2D . 11,2 ]2 .已知i 是虚数单位,z =◎ _i 2017,且z 的共轭复数为Z ,则z 在复平面内对应的点在(2 +iA .第一象限 B.第二象限Cr r H -3. 已知平面向量 a , b 的夹角为一,且a3A . 1B .,3 C . 2 D4. 已知命题p : “关于x 的方程X 2 -4x • a = 0有实根”,若一 p 为真命题的充分不必要条件为 则实数m 的取值范围是( )A .1, rB . 1, ::C . :;:一~1D.丨一Q ,11x y 30,5已知实数x , y 满足x-2y ,6・0,则z=x-y 的最小值为()3x -y -2 :: 0,A 0B.-1 C . -3D . -56.若lx 1表示不超过x 的最大整数,则图中的程序框图运行之后输出的结果为()•第三象限D •第四象限=1, b=1,贝V a-2b=()3.2a 3m 1,49800 D . 518677.数列 满足印=2,2a n 1 = a n( a n),贝V a n =(A . 10n^B10n4C2“ 1-.102Dn 1-.C8 .《中国诗词大会》的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里22的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成10名学生,则抽选的学生中获得“诗词能手”称号的人数为(uuu uuu一,PF , PF 2=0,双曲线的离心率为 、2「=()数k 的取值范围是(且不小于70分的学生得到“诗词能手” 绩按照称号的不同进行分层抽样抽选1 2 5 6 B 00124578 022******** 022*********A . 2B . 4C . 59.某几何体的正视图和侧视图如图(1),它的俯视图的直观图是矩形 OABiG (如图(2)),其中0A =3,0G =1,则该几何体的侧面积及体积为( 24.2 D . 64, 64.2f x =3sin xcos x-4cos(-0)的最小正周期为二A . -5211213 211.已知双曲线2X_2=1 ( a 0 , b 0)的左、右焦点分别为 F 1 , F 2,点P 在双曲线的右支上,且A .2 B.23 C . 2 2 D .2 J312.已知函数f (X广2-X -4x 5,x _1 ln x, x 1,'若关于x 的方程j1f x 二kx-—恰有四个不相等的实数根,则实2(1)10.已知函数A . 24, 24,2 BA [e1 _J2' e C第U卷(共90 分)、填空题(每题5分,满分20分,将答案填在答题纸上)13•在锐角VABC中,角A ,B所对的边长分别为a ,b,若2岔B 3 £,则o - A %" 丿----------- 14•如图所示,在棱长为2的正方体ABCD - ABC.D,中,E,F分别是CG,AD的中点,那么异面直线D,E和AF所成角的余弦值等于 _____________4 115•若x , y都是正数,且x・y=3,则二—的最小值为x+1 y + 1|2x_1 x 016.已知函数f x 1 1若函数g x = f x r:「3m有3个零点,则实数m的取值范围-x -2x,^0,是__________ .三、解答题(本大题共6小题,共70分•解答应写出文字说明、证明过程或演算步骤.)17 .在V ABC 中,角A,B,C 的对边分别是a,b,c,且.3a cosC 二2b -、一3c cos A .(1)求角A的大小;(2) ------------------------------------------------------------------------------------------------------------------------------------ 已知等差数列{a n}的公差不为零,若a si nA = 1,且a2,a4,a8成等比数列,求〈------------------------ > 的前n项J a n a n 1 I和S n.18•如图,将直角三角形PAO绕直角边PO旋转构成圆锥,四边形ABCD是e O的内接矩形,M为母线PA 的中点,PA=2AO.(1)求证:PC //平面MBD ;(2)当AM =CD =2时,求点B到平面MCD的距离.19•在中学生综合素质评价某个维度的测评中,分优秀、合格、尚待改进三个等级进行学生互评.某校高年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:表一:男生优旁合挤J55表二:女生商序改进153y2参考公式:K2 n-ad一bC,其中n = a b cd.(a+b j(c + d )(a+c)(b+d )2P(K >k0 )0.100.050.01k。
2019年高考押题卷文科数学(二)含答案解析

文 科 数 学(二)本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
第Ⅰ卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合0y A yx ⎧⎫==⎨⎬⎩⎭,集合(){}10B x x x =->,则A B =R ð( ) A .{}|01x x ≤≤ B .{}|01x x << C .{}0D ∅2.已知复数z 满足1i 1z z -=+,则复数z 在复平面内对应点在( ) A .第一、二象限B .第三、四象限C .实轴D .虚轴3.为了得到函数cos 2y x =的图像,可将函数sin 26y x π⎛⎫=-⎪⎝⎭的图像( ) A .向右平移6π个单位长度B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度4.某公司准备招聘了一批员工.有20人经过初试,其中有5人是与公司所需专业不对口,其余都是对口专业,在不知道面试者专业情况下,现依次选取2人进行第二次面试,第一个人已面试后,则第二次选到与公司所需专业不对口的概率是( ) A .519B .119C .14D .125.《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V ,求其直径d,公式为d =13,根据“开立圆术”的方法求球的体积为( ) A .481π B .6π C .481D .61 6.若变量,x y 满足不等式组120x x y x y ⎧⎪⎨⎪++⎩≤≥≥,则(),x y 的整数解有( )A .6B .7C .8D .97.某几何体的三视图如图所示,设正方形的边长为a ,则该三棱锥的表面积为( ) A .2aB2C2 D.28.已知等差数列{}n a 的前n 项和为S n ,且S 2=4,S 4=16,数列{}n b 满足1n n n b a a +=+,则数列{}n b 的前9和9T 为( )A .80B .20C .180D .1669.已知直线:21l y x =+与圆C :221x y +=交于两点A ,B ,不在圆上的一点()1,M m -,若MA 1MB ⋅=,则m 的值为( ) A .1-,75B .1,75C .1,75-D .1-,75-10.已知函数()()22e x f x x x =-,关于()f x 的性质,有以下四个推断: ①()f x 的定义域是(),-∞+∞; ②函数()f x 是区间()0,2上的增函数;③()f x 是奇函数; ④函数()f x在x =其中推断正确的个数是( ) A .0B .1C .2D .311.已知椭圆的标准方程为22154x y +=,12,F F 为椭圆的左右焦点,O 为原点,P 是椭圆在第一象限的点,则12PF PF -的取值范围( ) A .()0,2B .()1,6C.(D .()0,612.已知正方体1111ABCD A B C D -的棱长为1,E 为棱1CC 的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F 、B 、E 、G 、H 为面MBN 过三点B 、E 、F 的截面与正方体1111ABCD A B C D -在棱上的交点,则下列说法错误的是( ) A .HF //BE B.2BM =C .∠MBND .△MBN第Ⅱ卷本卷包括必考题和选考题两部分。
2019年高考数学仿真押题试卷(十九)(含答案解析)

专题19 高考数学仿真押题试卷(十九)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合[1A =-,1],,则(AB = )A .(0,1)B .(0,1]C .(1,1)-D .[1-,1]【解析】解:(0,1)B =;.【答案】A .2.已知z 的共轭复数是z ,且为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【解析】解:设,,∴,∴,解得:322x y ⎧=⎪⎨⎪=-⎩,复数z 在复平面内对应的点为3(,2)2-,此点位于第四象限.【答案】D .3.已知向量(1,3)a =,||3b =,且a 与b 的夹角为3π,则|2|(a b += )A .5B C .7D .37【解析】解:由题可得:向量(1,3)a =,||2a =,所以,所以,.【答案】B .4.已知函数,若,则实数a 的取值范围是( )A .[2-,1]B .[1-,2]C .(-∞,2][1-,)+∞D .(-∞,1][2-,)+∞【解析】解:函数,在各段内都是减函数,并且01e -=,,所以()f x 在R 上递减,又,所以,解得:21a -剟, 【答案】A .5.下图的程序框图的算法思路源于我国古代数学名著《数书九章》中的“中国剩余定理”.已知正整数n 被3除余2,被7除余4,被8除余5,求n 的最小值.执行该程序框图,则输出的(n )A .50B .53C .59D .62【解析】解:【方法一】正整数n 被3除余2,得32n k =+,k N ∈; 被8除余5,得85n l =+,l N ∈; 被7除余4,得74n m =+,m N ∈; 求得n 的最小值是53.【方法二】按此歌诀得算法如图, 则输出n 的结果为按程序框图知n 的初值为1229,代入循环结构得,即输出n 值为53. 【答案】B .6.已知函数,将函数()f x 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A .6πB .4π C .3π D .2π 【解析】解:,将函数()f x 的图象向左平移m 个单位长度后,得到函数的图象,又所得到的图象关于y 轴对称,所以,即6m k ππ=+,k Z ∈,又0m >,所以当0k =时,m 最小为6π. 【答案】A .7.已知命题p :函数21()21x x f x -=+是定义在实数集上的奇函数;命题q :直线0x =是13()g x x =的切线,则下列命题是真命题的是( ) A .p q ∧B .q ⌝C .()p q ⌝∧D .p ⌝【解析】解:,即()f x 是奇函数,故命题p 是真命题,函数的导数,当0x =时,()g x '不存在,此时切线为y 轴,即0x =,故命题q 是真命题,则p q ∧是真命题,其余为假命题, 【答案】A .8.已知双曲线的渐近线与相切,则双曲线的离心率为(= )A .2B C D 【解析】解:取双曲线的渐近线by x a=,即0bx ay -=. 双曲线22221(x y a b-= 0a >,0)b >的渐近线与相切,∴圆心(2,0)到渐近线的距离d r =, ∴1=,化为2b c =,两边平方得,化为2234c a =.∴c e a =【答案】D .9.我国明代著名乐律学家、明宗室王子朱载堉在《律学新说》中提出的十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个1c 键的8个白键与5个黑键(如图)的音频恰成一个公比为的等比数列的原理,也即高音c 的频率正好是中音c 的2倍.已知标准音1a 的频率为440Hz ,那么频率为的音名是( )A .dB .fC .eD .#d【解析】解:从第二个单音起,每一个单音的频率与它的左边一个单音的频率的比1122.故从g 起,每一个单音的频率与它右边的一个单音的比为1122q -=由,解得7n =,频率为的音名是(#d ), 【答案】D . 10.函数的大致图象是( )A .B .C .D .【解析】解:当0x <时,,0x e >,所以()0f x >,故可排除B ,C ;当2x =时,f (2)230e =-<,故可排除D . 【答案】A .11.利用Excel 产生两组[0,1]之间的均匀随机数:(a rand = ),(b rand = ):若产生了2019个样本点(,)a b ,则落在曲线1y =、y =和0x =所围成的封闭图形内的样本点个数估计为( ) A .673B .505C .1346D .1515【解析】解:由曲线1y =、y =和0x =所围成的封闭图形的面积为,所以,则落在曲线1y =、y 0x =所围成的封闭图形内的样本点个数估计为,【答案】A .12.已知点P 为直线:2l x =-上任意一点,过点P 作抛物线的两条切线,切点分别为1(A x ,1)y 、2(B x ,2)y ,则12(x x = )A .2B .24pC .2pD .4【解析】解:不妨设(2,0)P -,过P 的切线方程设为(2)y k x =+, 代入抛物线方程得,又0k ≠,故124x x =.【答案】D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若整数x 、y 满足不等式组,则y z x =的最小值为 12. 【解析】解:整数x 、y 满足不等式组的可行域如图:三角形区域内的点(2,1)A 、(2,2)B 、(2,3)C 、(1,2)D ,AO 连线的斜率是最小值.则y z x =的最小值为:12. 故答案为:12.14.已知椭圆的焦点为1F 、2F ,以原点为圆心、椭圆的焦距为直径的O 与椭圆C 内切于点P ,则12PF F S= .【解析】解:椭圆的焦点为1F 、2F ,以原点为圆心、椭圆的焦距为直径的O 与椭圆C内切于点P , 可得1b c ==, 所以.故答案为:1.15.定义在R 上的函数()f x 满足,若,且(2)2gl n =-,则1()2g ln = . 【解析】解:根据题意,,则,变形可得,,又由122ln ln =-,且,则,则;故答案为:4.16.已知O 是锐角ABC ∆的外接圆圆心,A 是最大角,若,则m 的取值范围为.【解析】解:由O 是锐角ABC ∆的外接圆圆心, 则点O 为三角形三边中垂线的交点, 由向量投影的几何意义有:,则, 所以则,由正弦定理得:,所以,所以2sin m A =, 又[3A π∈,)2π,所以m ∈2),故答案为:,2).三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在平面四边形ABCD 中,已知34ABC π∠=,AB AD ⊥,1AB =.(1)若AC ABC ∆的面积;(2)若,4AD =,求CD 的长.【解析】解:(1)在ABC ∆中,,,解得BC ,∴.(2),∴,∴在ABC∆中,,∴,,∴CD=18.在某市高三教学质量检测中,全市共有5000名学生参加了本次考试,其中示范性高中参加考试学生人数为2000人,非示范性高中参加考试学生人数为3000人.现从所有参加考试的学生中随机抽取100人,作检测成绩数据分析.(1)设计合理的抽样方案(说明抽样方法和样本构成即可);(2)依据100人的数学成绩绘制了如图所示的频率分布直方图,据此估计本次检测全市学生数学成绩的平均分;(3)如果规定成绩不低于130分为特别优秀,现已知语文特别优秀占样本人数的5%,语文、数学两科都特别优秀的共有3人,依据以上样本数据,完成列联表,并分析是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.参考公式:参考数据:【解析】解:(1)由于总体有明显差异的两部分构成,所以采用分层抽样法,由题意知,从示范性高中抽取(人),从非示范性高中抽取(人);(2)由频率分布直方图估算样本平均数为:,据此估计本次检测全市学生数学成绩的平均分为92.4;(3)由题意知,语文特别优秀学生有5人,数学特别优秀的学生有(人),且语文、数学两科都特别优秀的共有3人,填写列联表如下;计算,所以有99%的把握认为语文特别优秀的同学,数学也特别优秀.19.已知点(0,2)P,点A,B分别为椭圆的左右顶点,直线BP交C于点Q,ABP∆是等腰直角三角形,且35PQ PB=.(1)求C的方程;(2)设过点P 的动直线l 与C 相交于M ,N 两点,O 为坐标原点.当MON ∠为直角时,求直线l 的斜率. 【解析】解:(1)由题意ABP ∆是等腰直角三角形,则2a =,(2,0)B , 设点0(Q x ,0)y ,由35PQ PB =,则065x =,045y =,代入椭圆方程解得21b =,∴椭圆方程为2214x y +=.(2)由题意可知,直线l 的斜率存在,令l 的方程为2y kx =+, 则1(M x ,1)y ,2(N x ,2)y , 则22214y kx x y =+⎧⎪⎨+=⎪⎩,整理可得, ∴△,解得234k >, ,,当MON ∠为直角时,1OM ON k k =-,,则,解得24k =,即2k =±,故存在直线l 的斜率为2±,使得MON ∠为直角. 20.如图,在直三棱柱中,ABC ∆是等腰直角三角形,1AC BC ==,12AA =,点D 是侧棱1AA 的上一点.(1)证明:当点D 是1AA 的中点时,1DC ⊥平面BCD ; (2)若二面角1D BC C --,求AD 的长.【解析】解:(1)证明:由题意:BC AC ⊥且1BC CC ⊥,,BC ∴⊥平面11ACC A ,则1BC DC ⊥. 又D 是1AA 的中点,AC AD =,且90CDA ∠=︒,,同理.,则1DC DC ⊥,1DC ∴⊥平面BCD ;(2)以C 为坐标原点,分别以CA ,CB ,1CC 为x 轴,y 轴,z 轴建立空间直角坐标系. 设AD h =,则(1D ,0,)h ,(0B ,1,0),1(0C ,0,2).由条件易知CA ⊥平面1BC C ,故取(1m =,0,0)为平面1BC C 的法向量. 设平面1DBC 的法向量为(n x =,y ,)z , 则n BD ⊥且1n BC ⊥,,,∴,取1z =,得.由,解得12h =,即12AD =.21.已知函数在0x x =处取得极小值1-.(1)求实数a 的值; (2)设,讨论函数()g x 的零点个数.【解析】解:(1)函数()f x 的定义域为(0,)+∞,,函数在0}x x =处取得极小值1-,∴,得01,1a x =-⎧⎨=⎩当1a =-时,()f x lnx '=,则(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '> ()f x ∴在(0,1)上单调递减,在(1,)+∞上单调递增,1x ∴=时,函数()f x 取得极小值1-, 1a ∴=-(2)由(1)知,函数,定义域为(0,)+∞,,令()0g x '<,得0x <令()0g x '>,得x >()g x在上单调递减,在)+∞上单调递增,当x ()g x 取得最小值2eb -, 当02e b ->,即2eb >时,函数()g x 没有零点; 当02e b -=,即2eb =时,函数()g x 有一个零点;当02eb -<,即02e b <<时,g (e )0b =>,g g ∴(e )0<存在1x ∈)e ,使1()0g x =,()g x ∴在)e 上有一个零点1x设,则,当(0,1)x ∈时,()0h x '<,则()h x 在(0,1)上单调递减,()h x h ∴>(1)0=,即当(0,1)x ∈时,11lnx x>-, 当(0,1)x ∈时,,取{m x min b =,1},则()0m g x >,,∴存在2(m x x ∈,,使得2()0g x =,()g x ∴在(m x 上有一个零点2x ,()g x ∴在(0,)+∞上有两个零点1x ,2x ,综上可得,当2eb >时,函数()g x 没有零点; 当2eb =时,函数()g x 有一个零点; 当02eb <<时时,函数()g x 有两个零点. 请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线1C 的参数方程为为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,点A 为曲线1C 上的动点,点B 在线段OA 的延长线上,且满足,点B 的轨迹为2C .(1)求1C ,2C 的极坐标方程;(2)设点C 的极坐标为(2,)2π,求ABC ∆面积的最小值.【解析】解:(1)曲线1C 的参数方程为为参数),∴曲线1C 的普通方程为,∴曲线1C 的极坐标方程为2cos ρθ=.设B 的极坐标为(,)ρθ,点A 的极坐标为0(ρ,0)θ, 则||OB ρ=,0||OA ρ=,002cos ρθ=,0θθ=,,08ρρ∴=,∴82cos θρ=,cos 4ρθ=,2C ∴的极坐标方程为cos 4ρθ=(2)由题意知||2OC =,,当0θ=时,S ABC 取得最小值为2. [选修4-5:不等式选讲]. 23.已知函数的最小值为t .(1)求实数t 的值; (2)若,设0m >,0n >且满足,求证:.【解析】解:(1),显然,()f x 在(-∞,1]上单调递减,在(1,)+∞上单调递增,(1)2=-,2t ∴=-, 证明(2),,由于0m >,0n >,且1122m n+=,,当且仅当22n mm n=,即当12n =,1m =时取“=”, 故。
河北衡水中学2019年高考押题试卷理科数学试题参考答案评分标准

AC ( 3a,0,0) ( 3a,0,0) (2 3a,0,0) , EF (0, a, 2a) (0, a, 2 2a)
(0, 2a, 2a) .
由(1)可知 EF 平面 AFC ,所以平面 AFC 的法向量可取为 EF (0, 2a, 2a) .
设平面 AEC 的法向量为 n (x, y, z) ,
3 4b2
1 ,②
由①②联立,解得 b2 1, a2 2 ,
故所求的椭圆方程为 x2 y2 1. 2
(2)设 A(x1, y1) , B(x2 , y2 ) ,由 OA OB 0 ,
可知 x1x2 y1y2 0 .
y kx m
联立方程组
x
2
2
y2
,
1
消去 y 化简整理得 (1 2k2)x2 4kmx 2m2 2 0 ,
OA OB ,所以分别以 OA , OB , OG 的方向为 x , y , z 轴正方向建立空间直角坐标
系 O xyz (如图示),
则 O(0, 0, 0) , A( 3a,0,0) , C( 3a,0,0) , E(0, a, 2 2a) , F(0, a, 2a) ,
所以 AE (0, a, 2 2a) ( 3a,0,0) ( 3a, a, 2 2a) ,
100 25 则该校高三年级学生获得成绩为 B 的人数约有 800 14 448 .
25 (2)这100 名学生成绩的平均分为 1 (32100 5690 780 3 70 2 60) 91.3,
100 因为 91.3 90 ,所以该校高三年级目前学生的“考前心理稳定整体”已过关.
(3)由题可知用分层抽样的方法抽取11个学生样本,其中 A 级 4 个, B 级 7 个,从而任意
2019年高考数学(理)一轮复习精品资料专题39空间向量及其运算(押题专练)含解析

2019年高考数学(理)一轮复习精品资料1.在空间直角坐标系中,A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB 与CD 的位置关系是( )A .垂直B .平行C .异面D .相交但不垂直答案:B2.空间四边形ABCD 的各边和对角线均相等,E 是BC 的中点,那么( ) A.AE →·BC →<AE →·CD → B.AE →·BC →=AE →·CD → C.AE →·BC →>AE →·CD →D.AE →·BC →与AE →·CD →的大小不能比较解析:取BD 的中点F ,连接EF ,则EF12CD.因为AE ⊥BC ,〈AE →,EF →〉=〈AE →,CD →〉>90°. 所以AE →·BC →=0,AE →·CD →<0, 因此AE →·BC →>AE →·CD →. 答案:C3. O 为空间任意一点,若OP →=34OA →+18OB →+18OC →,则A ,B ,C ,P 四点( )A .一定不共面B .一定共面C .不一定共面D .无法判断 解析:∵OP →=34OA →+18OB →+18OC →,且34+18+18=1.所以P ,A ,B ,C 四点共面. 答案:B4.已知向量a =(1,1,0),b =(-1,0,2),且ka +b 与2a -b 互相垂直,则k 的值是( ) A .-1 B.43 C.53 D.75答案:D5. 在空间四边形ABCD 中,则AB →·CD →+AC →·DB →+AD →·BC →的值为( ) A .-1 B .0 C .1 D .2解析:如图,令AB →=a ,AC →=b ,AD →=c.则AB →·CD →+AC →·DB →+AD →·BC →=a·(c-b)+b·(a-c)+c·(b-a)=a·c-a·b+b·a-b·c+c·b-c·a=0. 答案:B6.正方体ABCD A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC 1→,N 为B 1B 的中点,则|MN →|为( )A.216 aB.66aC.156 a D.153a 解析:以D 为坐标原点建立如图所示的空间直角坐标系Dxyz,答案:A7.向量a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),下列结论正确的是( ) A .a ∥b ,a ∥c B .a ∥b ,a ⊥c C .a ∥c ,a ⊥b D .以上都不对 答案 C解析 因为c =(-4,-6,2)=2(-2,-3,1),所以a ∥c .又a ·b =(-2)×2+(-3)×0+1×4=0,所以a ⊥b .故选C.8.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1) D .(-1,0,1) 答案 B解析 经检验,选项B 中向量(1,-1,0)与向量a =(1,0,-1)的夹角的余弦值为12,即它们的夹角为60°.故选B.9.已知平面α内有一个点M (1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 在平面α内的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)答案A10.已知A (1,-1,3),B (0,2,0),C (-1,0,1),若点D 在z 轴上,且AD →⊥BC →,则|AD →|等于( )A. 2B. 3C. 5D. 6 答案 B解析 ∵点D 在z 轴上,∴可设D 点坐标为(0,0,m ),则AD →=(-1,1,m -3),BC →=(-1,-2,1),由AD →⊥BC →,得AD →·BC →=m -4=0,∴m =4,AD →=(-1,1,1),|AD →|=1+1+1= 3.故选B.11.已知A (1,0,0),B (0,-1,1),OA →+λOB →与OB →的夹角为120°,则λ的值为( ) A .±66 B.66 C .-66D .± 6 答案 C解析 OA →+λOB →=(1,-λ,λ), cos120°=λ+λ1+2λ2·2=-12,得λ=±66. 经检验λ=66不合题意,舍去,∴λ=-66.故选C. 12.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB .12a +12b +cC .-12a -12b +cD .12a -12b +c答案 A13.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°,且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8 答案 A解析 设AB →=a ,AD →=b ,AA 1→=c ,则AC 1→=a +b +c ,|AC 1→|2=a 2+b 2+c 2+2a ·b +2b ·c +2c ·a =25,因此|AC 1→|=5.故选A.14.已知四边形ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则点D 的坐标为________. 答案 (5,13,-3)解析 设D (x ,y ,z ),则AB →=DC →.∴(-2,-6,-2)=(3-x,7-y ,-5-z ). ∴⎩⎪⎨⎪⎧3-x =-2,7-y =-6,-5-z =-2.解得⎩⎪⎨⎪⎧x =5,y =13,z =-3.∴D (5,13,-3).15.在空间直角坐标系中,以点A (4,1,9),B (10,-1,6),C (x,4,3)为顶点的△ABC 是以BC 为斜边的等腰直角三角形,则实数x 的值为________.答案 2解析 由题意知AB →·AC →=0,|AB →|=|AC →|,又AB →=(6,-2,-3),AC →=(x -4,3,-6), ∴⎩⎪⎨⎪⎧x --6+18=0,x -2=4,解得x =2.16.已知O (0,0,0),A (1,2,3),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB →取最小值时,点Q 的坐标是________.答案 ⎝ ⎛⎭⎪⎫43,43,8317.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=________. 解析:由题意知c =xa +yb ,即(7,6,λ)=x(2,1,-3)+y(-1,2,3), ∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9. 答案:-918.已知2a +b =(0,-5,10),c =(1,-2,-2),a·c=4,|b|=12,则以b ,c 为方向向量的两直线的夹角为________.解析:由题意得,(2a +b)·c=0+10-20=-10. 即2a·c+b·c=-10,又∵a·c=4,∴b·c=-18, ∴cos 〈b ,c 〉=b·c |b|·|c|=-1812×1+4+4=-12,∴〈b ,c 〉=120°,∴两直线的夹角为60°. 答案:60°19.已知O(0,0,0),A(1,2,3),B(2,1,2),P(1,1,2),点Q 在直线OP 上运动,当QA →·QB →取最小值时,点Q 的坐标是________.解析:由题意,设OQ →=λOP →,即OQ →=(λ,λ,2λ),则QA →=(1-λ,2-λ,3-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ)=6λ2-16λ+10=6⎝ ⎛⎭⎪⎫λ-432-23,当λ=43时有最小值,此时Q 点坐标为⎝ ⎛⎭⎪⎫43,43,83.答案:⎝ ⎛⎭⎪⎫43,43,83 20.已知空间中三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设a =AB →,b =AC →. (1)若|c|=3,且c ∥BC →,求向量c ; (2)求向量a 与向量b 的夹角的余弦值.(2)∵a =(1,1,0),b =(-1,0,2), ∴a·b=(1,1,0)·(-1,0,2)=-1, 又∵|a|=12+12+02=2, |b|=(-1)2+02+22=5,∴cos 〈a ,b 〉=a·b |a|·|b|=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010. 21.如图,在棱长为a 的正方体ABCD A 1B 1C 1D 1中,G 为△BC 1D 的重心.(1)试证:A 1,G ,C 三点共线;(2)试证:A 1C ⊥平面BC 1D.22.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M 、N 、P 分别是AA 1、BC 、C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N →;(3)MP →+NC 1→。
全国卷Ⅲ2019年高考数学压轴卷理含解析201905140112

满
足
f 1,
f
0 ,且
的最小值为 .
4
(1)求函数 f x 的解析式;
(2)求函数
f
x
在
0,
2
上的单调区间和最大值、最小值.
18.(本题满分 12 分)
由于当前学生课业负担较重,造成青少年视力普遍下降,现从湖口中学随机抽取 16 名 学生,经校医用视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎, 小数点后的一位数字为叶)如下:
何? ”其大意:“已知直角三角形两直角边长分别为 8 步和15 步,问其内切圆的直径为多
少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( )
3
A.
10
3
B.
20
C. 1 3 10
D. 1 3 20
7.长方体 ABCD A1B1C1D1 , AB 1 , AD 2 , AA1 3 ,则异面直线 A1B1 与 AC1 所成 角的余弦值为( )
A. 2
B. 3
C. 3 3
D. 2 2
11. 已 知 ������为 抛 物 线 C : y2 4x 的 焦 点 , A, B, C 为 抛 物 线 C 上 三 点 , 当
FA FB FC 0 时,称 ABC 为“和谐三角形”,则“和谐三角形”有( )
A. 0 个 B. 1 个 C. 3 个 D. 无数个
最大时,求 的值.
20.(本题满分 12 分)
已知双曲线
x2 5
y2
1
的焦点是椭圆
C
:
x2 a2
y2 b2
2019年【高考快递】江苏省高考数学押题卷及答案

高考数学精品复习资料2019.5高考原创押题卷(二)参考公式样本数据x 1,x 2,…,x n 的方差s 2=1n ∑i =1n (x i -x )2,其中x =1n ∑i =1n x i .棱柱的体积V =Sh ,其中S 是棱柱的底面积,h 是高. 棱锥的体积V =13Sh ,其中S 是棱锥的底面积,h 是高.一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.已知集合A ={x |x 2-x -2≤0},集合B ={x |1<x ≤3},则A ∪B =________. {x |-1≤x ≤3} [由x 2-x -2≤0,解得-1≤x ≤2. ∴A ={x |-1≤x ≤2},又集合B ={x |1<x ≤3}, ∴A ∪B ={x |-1≤x ≤3}.]2.已知a ,b ∈R ,i 是虚数单位,若a +i =1-b i ,则(a +b i)8=________. 16 [由a +i =1-b i 可得a =1,b =-1,从而(a +b i)8=(1-i)8=(-2i)4=16.] 3.从某班抽取5名学生测量身高(单位:cm),得到的数据为160,162,159,160,159,则该组数据的方差s 2=________.65[数据160,162,159,160,159的平均数是160,则该组数据的方差s 2=15(02+22+12+02+12)=65.]4.若双曲线x 2+my 2=1过点(-2,2),则该双曲线的虚轴长为________.4 [∵双曲线x 2+my 2=1过点(-2,2), ∴2+4m =1,即4m =-1,m =-14,则双曲线的标准方程为x 2-y 24=1,则b =2,即双曲线的虚轴长2b =4.]5.根据下列的伪代码,可知输出的结果S 为________. i ←1While i <100 i ←i +2S ←2i +3End While Print S205 [该程序的作用是输出满足条件i =2n +1,n ∈N ,i =i +2≥100时,S =2i +3的值.∵i +2=101时,满足条件,∴输出的S 值为S =2×101+3=205.]6.在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为________.13 [设一、二等奖各用A ,B 表示,另1张无奖用C 表示,甲、乙两人各抽取1张的基本事件有AB ,AC ,BA ,BC ,CA ,CB 共6个,其中两人都中奖的有AB ,BA ,共2个,故所求的概率P =26=13.]7.已知函数y=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的图象如图1所示,则该函数的解析式是________.图1y =2sin ⎝ ⎛⎭⎪⎫27x +π6 [由图知A =2,y =2sin(ωx +φ),∵点(0,1)在函数的图象上,∴2sin φ=1,解得sin φ=12,∴利用五点作图法可得φ=π6.∵点⎝ ⎛⎭⎪⎫-7π12,0在函数的图象上,∴2sin ⎝ ⎛⎭⎪⎫-7π12ω+π6=0,∴-7π12ω+π6=k π,k ∈Z ,解得ω=27-12k 7,k ∈Z .∵ω>0,∴当k =0时,ω=27, ∴y =2sin ⎝ ⎛⎭⎪⎫27x +π6.]8.如图2,在长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于E 点.记四棱锥E -A 1B 1C 1D 1的体积为V 1,长方体ABCD -A 1B 1C 1D 1的体积为V 2,则V 1V 2的值是________.图219 [连结B 1D 1,设B 1D 1∩A 1C 1=F ,再连结BF ,平面A 1BC 1∩平面BDD 1B 1=BF ,因为E ∈平面A 1BC 1,E ∈平面BDD 1B 1,所以E ∈BF ,连结BD ,因为F 是A 1C 1的中点,所以BF 是中线,又根据B 1F ═∥12BD ,所以EF EB =12,所以E 是△A 1BC 1的重心,那么点E 到平面A 1B 1C 1D 1的距离是BB 1的13,所以V 1=13SA 1B 1C 1D 1×13BB 1,而V 2=SA 1B 1C 1D 1×BB 1,所以V 1V 2=19.]9.已知实数x ,y 满足⎩⎨⎧x +2y -4≤0,x -y -1≤0,x ≥1,则y +1x 的取值范围是________.⎣⎢⎡⎦⎥⎤1,52 [作出不等式组对应的平面区域,y +1x 的几何意义是区域内的点到定点D (0,-1)的斜率,由图象知,AD 的斜率最大, BD 的斜率最小,此时最小值为1, 由⎩⎨⎧x =1,x +2y -4=0,得⎩⎪⎨⎪⎧x =1,y =32,即A ⎝ ⎛⎭⎪⎫1,32, 此时AD 的斜率k =32+11=52, 即1≤y +1x ≤52,故y +1x 的取值范围是⎣⎢⎡⎦⎥⎤1,52.]10.已知{a n },{b n }均为等比数列,其前n 项和分别为S n ,T n ,若对任意的n ∈N *,总有S n T n =3n+14,则a 3b 3=________.9 [设{a n },{b n }的公比分别为q ,q ′,∵S n T n=3n+14,∴n =1时,a 1=b 1.n =2时,a 1+a 1qb 1+b 1q ′=52.n =3时,a 1+a 1q +a 1q 2b 1+b 1q ′+b 1(q ′)2=7.∴2q -5q ′=3,7q ′2+7q ′-q 2-q +6=0,解得q =9,q ′=3, ∴a 3b 3=a 1q 2b 1(q ′)2=9.]11.已知平行四边形ABCD 中.∠BAD =120°,AB =1,AD =2,点P 是线段BC 上的一个动点,则AP →·DP →的取值范围是________.⎣⎢⎡⎦⎥⎤-14,2 [以B 为坐标原点,以BC 所在的直线为x 轴,建立如图所示的直角坐标系,作AE ⊥BC ,垂足为E ,∵∠BAD =120°,AB =1,AD =2,∴∠ABC =60°, ∴AE =32,BE =12,∴A ⎝ ⎛⎭⎪⎫12,32,D ⎝ ⎛⎭⎪⎫52,32.∵点P 是线段BC 上的一个动点,设点P (x,0),0≤x ≤2, ∴AP →=⎝ ⎛⎭⎪⎫x -12,-32,DP →=⎝ ⎛⎭⎪⎫x -52,-32,∴AP →·DP →=⎝ ⎛⎭⎪⎫x -12⎝ ⎛⎭⎪⎫x -52+34=⎝ ⎛⎭⎪⎫x -322-14,∴当x =32时,有最小值,最小值为-14, 当x =0时,有最大值,最大值为2, 则AP →·DP →的取值范围为⎣⎢⎡⎦⎥⎤-14,2.]12.如图3,已知椭圆x 2a 2+y 2b 2=1(a >b >0)上有一个点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且满足AF ⊥BF ,当∠ABF =π12时,椭圆的离心率为________.图363 [设椭圆的左焦点为F 1,连结AF 1,BF 1,由对称性及AF ⊥BF 可知,四边形AFBF1是矩形,所以|AB |=|F 1F |=2c ,所以在Rt △ABF 中,|AF |=2c sin π12, |BF |=2c cos π12,由椭圆定义得 2c ⎝ ⎛⎭⎪⎫cos π12+sin π12=2a ,即 e =c a =1cos π12+sin π12=12sin ⎝ ⎛⎭⎪⎫π4+π12=63.]13.在斜三角形ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若1tan A +1tan B =1tan C ,则abc 2的最大值为________.32 [由1tan A +1tan B =1tan C 可得,cos A sin A +cos B sin B =cos C sin C ,即sin B cos A +cos B sin A sin A sin B =cos C sin C ,∴sin (B +A )sin A sin B =cos C sin C ,即sin C sin A sin B =cos C sin C,∴sin 2C=sin A sin B cos C .根据正弦定理及余弦定理可得,c 2=ab ·a 2+b 2-c22ab ,整理得a 2+b 2=3c 2,∴ab c 2=ab a 2+b 23=3ab a 2+b 2≤3ab 2ab =32,当且仅当a =b 时等号成立.]14.对于实数a ,b ,定义运算“□”:a □b =⎩⎨⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(x-4)□⎝ ⎛⎭⎪⎫74x -4,若关于x 的方程|f (x )-m |=1(m ∈R )恰有四个互不相等的实数根,则实数m 的取值范围是________.(-1,1)∪(2,4)[由题意得,f (x )=(x -4)□⎝ ⎛⎭⎪⎫74x -4=⎩⎪⎨⎪⎧-34x 2+3x ,x ≥0,2116x 2-3x ,x <0,画出函数f (x )的大致图象如图所示.因为关于x 的方程|f (x )-m |=1(m ∈R ),即f (x )=m ±1(m ∈R )恰有四个互不相等的实数根,所以两直线y =m ±1(m ∈R )与曲线y =f (x )共有四个不同的交点,则⎩⎨⎧ m +1>3,0<m -1<3或⎩⎨⎧ 0<m +1<3,m -1<0或⎩⎨⎧m +1=3,m -1=0,得2<m <4或-1<m <1.] 二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)设α为锐角,且cos ⎝ ⎛⎭⎪⎫α+π6=35. (1)求cos ⎝ ⎛⎭⎪⎫α-π3的值;(2)求cos ⎝ ⎛⎭⎪⎫2α-π6的值.[解] (1)∵α为锐角,∴α+π6∈⎝ ⎛⎭⎪⎫π6,23π.又cos ⎝ ⎛⎭⎪⎫α+π6=35,故sin ⎝ ⎛⎭⎪⎫α+π6=45. 4分∴cos ⎝ ⎛⎭⎪⎫α-π3=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫α+π6=sin ⎣⎢⎡⎦⎥⎤α+π6=45. 6分(2)又sin ⎝ ⎛⎭⎪⎫α-π3=-sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫α+π6=-cos α+⎭⎪⎫π6=-35. 8分 故cos ⎝ ⎛⎭⎪⎫2α-π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6+⎝ ⎛⎭⎪⎫α-π3=cos ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α-π3-sin α+⎭⎪⎫π6sin ⎝ ⎛⎭⎪⎫α-π3 =35×45-45×⎝ ⎛⎭⎪⎫-35=2425.14分16.(本小题满分14分)在直三棱柱ABC -A 1B 1C 1中,CA =CB ,AA 1=2AB ,D 是AB 的中点.图4(1)求证:BC 1∥平面A 1CD ;(2)若点P 在线段BB 1上,且BP =14BB 1,求证:AP ⊥平面A 1CD . [证明] (1)连结AC 1,设交A 1C 于点O ,连结OD . 2分 ∵四边形AA 1C 1C 是矩形,∴O 是AC 1的中点.在△ABC 1中,O ,D 分别是AC 1,AB 的中点, ∴OD ∥BC 1.4分又∵OD ⊂平面A 1CD ,BC 1⊄平面A 1CD , ∴BC 1∥平面A 1CD .6分(2)∵CA =CB ,D 是AB 的中点,∴CD ⊥AB .又∵在直三棱柱ABC -A 1B 1C 1中,底面ABC ⊥侧面AA 1B 1B ,交线为AB , CD ⊂平面ABC ,∴CD ⊥平面AA 1B 1B . 10分∵AP⊂平面A1B1BA,∴CD⊥AP.∵BB1=2BA,BB1=AA1,BP=14BB1,∴BPBA=24=ADAA1,∴Rt△ABP∽Rt△A1AD,12分从而∠AA1D=∠BAP,∴∠AA1D+∠A1AP=∠BAP+∠A1AP=90°,∴AP⊥A1D.又∵CD∩A1D=D,CD⊂平面A1CD,A1D⊂平面A1CD,∴AP⊥平面A1CD. 14分17.(本小题满分14分)如图5,直线l是湖岸线,O是l上一点,弧AB是以O为圆心的半圆形栈桥,C为湖岸线l上一观景亭,现规划在湖中建一小岛D,同时沿线段CD和DP(点P在半圆形栈桥上且不与点A,B重合)建栈桥.考虑到美观需要,设计方案为DP=DC,∠CDP=60°且圆弧栈桥BP在∠CDP的内部,已知BC=2OB=2(km),沿湖岸BC与直线栈桥CD,DP及圆弧栈桥BP围成的区域(图中阴影部分)的面积为S(km2),∠BOP=θ.图5(1)求S关于θ的函数关系式;(2)试判断S是否存在最大值,若存在,求出对应的cos θ的值,若不存在,说明理由.[解](1)在△COP中,CP2=CO2+OP2-2CO·OP cos θ=10-6cos θ,从而△CDP的面积S△CDP =34CP2=32(5-3cos θ). 4分又因为△COP的面积S△COP =12OC·OP sin θ=32sin θ,所以S=S△CDP +S△COP-S扇形OBP=12(3sin θ-33cos θ-θ)+532,0<θ≤θ0<π,cos θ0=1-10512.6分注:当DP 所在直线与半圆相切时,设θ取得最大值θ0,此时在△COP 中,OP =1,OC =3,∠CPO =30°,CP =10-6cos θ0,由正弦定理得10-6cos θ0=6sin θ0,cos θ0=1±10512.(2)存在.由(1)知,S ′=12(3cos θ+33sin θ-1), 令S ′=0,得sin ⎝ ⎛⎭⎪⎫θ+π6=16.当0<θ<θ0时,S ′>0, 所以当θ=θ0时,S 取得最大值.10分或因为0<θ<π,所以存在唯一的θ0∈⎝ ⎛⎭⎪⎫π2,π,使得sin ⎝ ⎛⎭⎪⎫θ0+π6=16.当0<θ<θ0<π时,S ′>0,所以当θ=θ0时,S 取得最大值.此时cos ⎝ ⎛⎭⎪⎫θ0+π6=-356,cos θ0=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫θ0+π6-π6=1-10512. 14分18.(本小题满分16分)在平面直角坐标系xOy 中,设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是e ,定义直线y =±be 为椭圆的“类准线”,已知椭圆C 的“类准线”方程为y =±23,长轴长为4.(1)求椭圆C 的方程;(2)点P 在椭圆C 的“类准线”上(但不在y 轴上),过点P 作圆O :x 2+y 2=3的切线l ,过点O 且垂直于OP 的直线与l 交于点A ,问点A 是否在椭圆C 上?证明你的结论.[解] (1)由题意知⎩⎪⎨⎪⎧ab c=23,a =2,又a 2=b 2+c 2,解得b =3,c =1,4分所以椭圆C 的方程为x 24+y 23=1. 6分(2)点A 在椭圆C 上.证明如下:设切点为Q (x 0,y 0),x 0≠0,则x 20+y 20=3,切线l 的方程为x 0x +y 0y -3=0,当y P =23时,x P =3-23y 0x 0, 即P ⎝ ⎛⎭⎪⎫3-23y 0x 0,23, 10分 则k OP =233-23y 0x 0=2x 03-2y 0, 所以k OA =2y 0-32x 0,直线OA 的方程为y =2y 0-32x 0x . 联立⎩⎨⎧ y =2y 0-32x 0x ,x 0x +y 0y -3=0,解得⎩⎪⎨⎪⎧ x =6x 06-3y 0,y =3(2y 0-3)6-3y 0,即A ⎝ ⎛⎭⎪⎫6x 06-3y 0,3(2y 0-3)6-3y 0. 13分 因为⎝ ⎛⎭⎪⎫6x 06-3y 024+⎣⎢⎡⎦⎥⎤3(2y 0-3)6-3y 023=9(3-y 20)+3(4y 20-43y 0+3)3y 20-123y 0+36=3y 20-123y 0+363y 20-123y 0+36=1, 所以点A 的坐标满足椭圆C 的方程.当y P =-23时,同理可得点A 的坐标满足椭圆C 的方程,所以点A 在椭圆C 上. 16分19.(本小题满分16分)已知数列{a n }满足2a n +1=a n +a n +2+k (n ∈N *,k ∈R ),且a 1=2,a 3+a 5=-4.(1)若k =0,求数列{a n }的前n 项和S n ;(2)若a 4=-1,求数列{a n }的通项公式a n .[解] (1)当k =0时,2a n +1=a n +a n +2,即a n +2-a n +1=a n +1-a n ,所以数列{a n }是等差数列. 4分设数列{a n }的公差为d ,则⎩⎨⎧ a 1=2,2a 1+6d =-4,解得⎩⎪⎨⎪⎧a 1=2,d =-43, 所以S n =na 1+n (n -1)2d =2n +n (n -1)2×⎝ ⎛⎭⎪⎫-43=-23n 2+83n . 6分 (2)由题意,2a 4=a 3+a 5+k ,即-2=-4+k ,所以k =2.又a 4=2a 3-a 2-2=3a 2-2a 1-6,所以a 2=3.由2a n +1=a n +a n +2+2,得(a n +2-a n +1)-(a n +1-a n )=-2.所以,数列{a n +1-a n }是以a 2-a 1=1为首项,-2为公差的等差数列. 所以a n +1-a n =-2n +3, 10分当n ≥2时,有a n -a n -1=-2(n -1)+3.于是,a n -1-a n -2=-2(n -2)+3,a n -2-a n -3=-2(n -3)+3,…a 3-a 2=-2×2+3,a 2-a 1=-2×1+3,叠加得,a n -a 1=-2(1+2+…+(n -1))+3(n -1)(n ≥2),所以a n =-2×n (n -1)2+3(n -1)+2=-n 2+4n -1(n ≥2).14分 又当n =1时,a 1=2也适合.所以数列{a n }的通项公式为a n =-n 2+4n -1,n ∈N *. 16分20.(本小题满分16分)已知函数f (x )=e x ⎝⎛13x 3-2x 2+(a +4)x -2a -4,其中a ∈R ,e 为自然对数的底数.(1)关于x 的不等式f (x )<-43e x 在(-∞,2)上恒成立,求a 的取值范围;(2)讨论函数f (x )极值点的个数.[解] (1)由f (x )<-43e x ,得e x ⎣⎢⎡⎦⎥⎤13x 3-2x 2+(a +4)x -2a -4<-43e x , 即x 3-6x 2+(3a +12)x -6a -8<0对任意x ∈(-∞,2)恒成立,即(6-3x )a >x 3-6x 2+12x -8对任意x ∈(-∞,2)恒成立, 4分因为x <2,所以a >x 3-6x 2+12x -8-3(x -2)=-13(x -2)2, 记g (x )=-13(x -2)2,因为g (x )在(-∞,2)上单调递增,且g (2)=0,所以a ≥0,即a 的取值范围为[0,+∞). 6分(2)由题意,可得f ′(x )=e x ⎝ ⎛⎭⎪⎫13x 3-x 2+ax -a ,可知f (x )只有一个极值点或有三个极值点.令g (x )=13x 3-x 2+ax -a ,①若f (x )有且仅有一个极值点,则函数g (x )的图象必穿过x 轴且只穿过一次, 即g (x )为单调递增函数或者g (x )极值同号.(ⅰ)当g (x )为单调递增函数时,g ′(x )=x 2-2x +a ≥0在R 上恒成立,得a ≥1. (ⅱ)当g (x )极值同号时,设x 1,x 2为极值点,则g (x 1)·g (x 2)≥0,由g ′(x )=x 2-2x +a =0有解,得a <1,且x 21-2x 1+a =0,x 22-2x 2+a =0,所以x 1+x 2=2,x 1x 2=a , 10分所以g (x 1)=13x 31-x 21+ax 1-a =13x 1(2x 1-a )-x 21+ax 1-a =-13(2x 1-a )-13ax 1+ax 1-a =23[(a -1)x 1-a ],同理,g (x 2)=23[(a -1)x 2-a ],所以g (x 1)g (x 2)=23[(a -1)x 1-a ]·23[(a -1)x 2-a ]≥0,化简得(a -1)2x 1x 2-a (a -1)(x 1+x 2)+a 2≥0,所以(a -1)2a -2a (a -1)+a 2≥0,即a ≥0,所以0≤a <1.所以,当a ≥0时,f (x )有且仅有一个极值点;②若f (x )有三个极值点,则函数g (x )的图象必穿过x 轴且穿过三次,同理可得a <0.综上,当a ≥0时,f (x )有且仅有一个极值点,当a <0时,f (x )有三个极值点. 16分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热烈祝贺高老师在2019高考押中2019高考数学5道题
2019全国一卷理6 我国古代典籍 《周易》用卦描述万物变化.每一重卦由从下到上排列的6个爻组成.爻分为阳爻“-”和阴爻“--”在所有重卦中随机选取一重卦,则该重卦中恰好有3个阳爻的概率是( )
A.
165 B. 3211 C. 3221 D. 16
11 2019高考押中率100%
2019高考高老师押题 在《周易》中长横“-”表示阳爻 两个短横“--”表示阴爻.又放回的取阳爻和阴爻三次合成一卦共有8种组和方法.这便是《系辞传》中所说的“太极生两仪,两仪生四象,四象生八卦”所谓的算卦就是两个八卦的叠合。
即又放回的取阳爻和阴爻六次得到六爻,然后对应不同的解析在一次所谓“算卦”中得到六爻,则这六爻中恰好有3个阳爻的概率是( )
A. 71
B. 165
C. 169
D. 8
5 2019全国一卷理1设复数Z 满足1=-i z .在复平面内对应的点位(x,y ),则___.
A. (x+1)²+y ²=1
B. (x-1)²+y ²=1
C. x ²+(y-1)²=1
D. x ²+ (y+1)²=1
2019高考押中率100%
2019高考高老师押题复数Z 满足i i z 43+=-,在复平面内对应的点的轨迹是___.
A. (x-1)²+y ²=5
B. (x-1)²+y ²=25
C. x ²+(y-1)²=25
D. x ²+ (y+1)²=25
2019全国一卷理4 古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长 度之比是215-(2
15-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是
215-若某人满足上述两个黄金分割比例,且腿长105cm ,头顶至脖子下端的长度为26厘米其身高可能是______
A. 165cm
B.175cm
C. 185cm
D. 190cm
2019高考押中率100%
2019高考高老师押题 人以肚脐为界,下半身与身高的比例符合“黄金分割”比例,在人的视觉里看,是最完美的比例,那么身高170cm 的人满足“黄金分割”比例的腿长约是______
A. 100cm
B.104cm
C. 105cm
D. 112cm
2019全国一卷理16已知双曲线左右焦点分别为1F ,2F 率过1F 的直线与C 的两条渐近线分别交于A ,B 两点.若0,211=∙=B F B F AB A F 则C 的离心率___________.
2019高考押中率99%
2019高老师押题过双曲线﹣=1(a >0,b >0)的右焦点F 作直线y=﹣x
的垂线,垂足为A ,交双曲线左支于B 点,若
=2,则该双曲线的离心率为_____ 2019全国一卷理12三棱锥P-ABC 的四个顶点在球O 的球面上,PA=PB=PC,△ABC 是边长为2的正三角形,E,F 分别为PA,AB 的中点,∠CEF=90°,则球O 的体积为____
A .68π
B .64π
C .62π D.6π
2019高考押中率99%
2019高考高老师押题四面体ABCD 的四个顶点都在球O 的表面上,AB ⊥平面BCD ,△BCD 是边长为3的等边三角形.若AB=2,则球O 的表面积为( )
A .8π
B .12π
C .16π
D .32π ()22
2210,0x y C a b a b
-=>>:。