直线的一般式方程附答案
(完整版)直线的一般式方程(附答案)

直线的一般式方程[学习目标] 1.掌握直线的一般式方程.2.了解关于x 、y 的二元一次方程Ax +By +C =0(A 、B 不同时为0)都表示直线,且直线方程都可以化为Ax +By +C =0的形式.3.会进行直线方程不同形式的转化.知识点 直线的一般式方程1.在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x ,y 的二元一次方程;任何关于x ,y 的二元一次方程都表示一条直线.方程Ax +By +C =0(其中A 、B 不同时为0)叫做直线方程的一般式.2.对于直线Ax +By +C =0,当B ≠0时,其斜率为-A B ,在y 轴上的截距为-C B ;当B =0时,在x 轴上的截距为-C A ;当AB ≠0时,在两轴上的截距分别为-C A ,-CB .3.直线一般式方程的结构特征 (1)方程是关于x ,y 的二元一次方程.(2)方程中等号的左侧自左向右一般按x ,y ,常数的先后顺序排列. (3)x 的系数一般不为分数和负数.(4)虽然直线方程的一般式有三个参数,但只需两个独立的条件即可求得直线的方程. 思考 (1)当A ,B 同时为零时,方程Ax +By +C =0表示什么? (2)任何一条直线的一般式方程都能与其他四种形式互化吗?答 (1)当C =0时,方程对任意的x ,y 都成立,故方程表示整个坐标平面; 当C ≠0时,方程无解,方程不表示任何图象.故方程Ax +By +C =0,不一定代表直线,只有当A ,B 不同时为零时,即A 2+B 2≠0时才代表直线.(2)不是.当一般式方程中的B =0时,直线的斜率不存在,不能化成其他形式;当C =0时,直线过原点,不能化为截距式.但其他四种形式都可以化为一般式.题型一 直线的一般形式与其他形式的转化例1 (1)下列直线中,斜率为-43,且不经过第一象限的是( )A.3x +4y +7=0B.4x +3y +7=0C.4x +3y -42=0D.3x +4y -42=0(2)直线3x -5y +9=0在x 轴上的截距等于( ) A. 3 B.-5 C.95 D.-33答案 (1)B (2)D解析 (1)将一般式化为斜截式,斜率为-43的有:B 、C 两项.又y =-43x +14过点(0,14)即直线过第一象限,所以只有B 项正确. (2)令y =0则x =-3 3.跟踪训练1 一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,求此直线方程.解 设所求直线方程为x a +yb =1,∵点A (-2,2)在直线上,∴-2a +2b =1.①又∵直线与坐标轴围成的三角形面积为1, ∴12|a |·|b |=1.② 由①②可得⎩⎪⎨⎪⎧ a -b =1,ab =2,或⎩⎪⎨⎪⎧a -b =-1,ab =-2. 解得⎩⎪⎨⎪⎧ a =2,b =1,或⎩⎪⎨⎪⎧a =-1,b =-2.第二个方程组无解.故所求直线方程为x 2+y 1=1或x -1+y-2=1,即x +2y -2=0或2x +y +2=0.题型二 直线方程的应用例2 已知直线l 的方程为3x +4y -12=0,求满足下列条件的直线l ′的方程: (1)过点(-1,3),且与l 平行; (2)过点(-1,3),且与l 垂直.解 方法一 l 的方程可化为y =-34x +3,∴l 的斜率为-34.(1)∵l ′与l 平行,∴l ′的斜率为-34.又∵l ′过点(-1,3),由点斜式知方程为y -3=-34(x +1),即3x +4y -9=0.(2)∵l ′与l 垂直,∴l ′的斜率为43,又l ′过点(-1,3),由点斜式可得方程为y -3=43(x +1),即4x -3y +13=0.方法二 (1)由l ′与l 平行,可设l ′的方程为3x +4y +m =0.将点(-1,3)代入上式得m =-9.∴所求直线的方程为3x +4y -9=0.(2)由l ′与l 垂直,可设l ′的方程为4x -3y +n =0. 将(-1,3)代入上式得n =13. ∴所求直线的方程为4x -3y +13=0.跟踪训练2 a 为何值时,直线(a -1)x -2y +4=0与x -ay -1=0. (1)平行;(2)垂直.解 当a =0或1时,两直线既不平行,也不垂直;当a ≠0且a ≠1时,直线(a -1)x -2y +4=0的斜率为k 1=-1+a2,b 1=2;直线x -ay -1=0的斜率为k 2=1a ,b 2=-1a .(1)当两直线平行时,由k 1=k 2,b 1≠b 2, 得1a =-1+a 2,a ≠-12, 解得a =-1或a =2.所以当a =-1或2时,两直线平行. (2)当两直线垂直时,由k 1·k 2=-1, 即1a ·(-1+a )2=-1,解得a =13. 所以当a =13时,两直线垂直.题型三 由含参一般式方程求参数的值或取值范围例3 (1)若方程(m 2+5m +6)x +(m 2+3m )y +1=0表示一条直线,则实数m 满足______. (2)当实数m 为何值时,直线(2m 2+m -3)x +(m 2-m )y =4m -1.①倾斜角为45°;②在x 轴上的截距为1. (1)答案 m ≠-3解析 若方程不能表示直线,则m 2+5m +6=0且m 2+3m =0.解方程组⎩⎪⎨⎪⎧m 2+5m +6=0,m 2+3m =0,得m =-3,所以m ≠-3时,方程表示一条直线. (2)解 ①因为已知直线的倾斜角为45°, 所以此直线的斜率是1, 所以-2m 2+m -3m 2-m=1,所以⎩⎪⎨⎪⎧m 2-m ≠0,2m 2+m -3=-(m 2-m ), 解得⎩⎪⎨⎪⎧m ≠0且m ≠1,m =-1或m =1.所以m =-1.②因为已知直线在x 轴上的截距为1, 令y =0得x =4m -12m 2+m -3,所以4m -12m 2+m -3=1,所以⎩⎪⎨⎪⎧2m 2+m -3≠0,4m -1=2m 2+m -3,解得⎩⎨⎧m ≠1且m ≠-32,m =-12或m =2.所以m =-12或m =2.跟踪训练3 已知直线l :5ax -5y -a +3=0. (1)求证:不论a 为何值,直线l 总经过第一象限; (2)为使直线l 不经过第二象限,求a 的取值范围. (1)证明 直线方程变形为y -35=a ⎝⎛⎭⎫x -15, 它表示经过点A ⎝⎛⎭⎫15,35,斜率为a 的直线. ∵点A ⎝⎛⎭⎫15,35在第一象限,∴直线l 必过第一象限.(2)解 如图所示,直线OA 的斜率k=35-015-0=3.∵直线不过第二象限, ∴直线的斜率a ≥3. ∴a 的取值范围为[3,+∞).一般式求斜率考虑不全致误例4 设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y -(2m -6)=0,若此直线的斜率为1,试确定实数m 的值.分析 由直线方程的一般式,可转化为斜截式,利用斜率为1,建立方程求解,但要注意分母不为0.解 由题意,得⎩⎪⎨⎪⎧-m 2-2m -32m 2+m -1=1,①2m 2+m -1≠0. ② 由①,得m =-1或m =43.当m =-1时,②式不成立,不符合题意,故应舍去; 当m =43时,②式成立,符合题意.故m =43.1.若方程Ax +By +C =0表示直线,则A 、B 应满足的条件为( ) A.A ≠0 B.B ≠0 C.A ·B ≠0 D.A 2+B 2≠02.已知ab <0,bc <0,则直线ax +by =c 通过( ) A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限3.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A.x -2y -1=0B.x -2y +1=0C.2x +y -2=0D.x +2y -1=04.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m 等于( ) A.-1 B.1 C.12 D.-125.已知两条直线y =ax -2和3x -(a +2)y +1=0互相平行,则a =________.一、选择题1.直线x +y -3=0的倾斜角的大小是( ) A.45° B.135° C.1 D.-12.直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角为45°,则m 的值为( ) A.-2 B.2 C.-3 D.33.直线l 的方程为Ax +By +C =0,若直线l 过原点和二、四象限,则( ) A.C =0,B >0 B.A >0,B >0,C =0 C.AB <0,C =0D.AB >0,C =04.直线ax +3my +2a =0(m ≠0)过点(1,-1),则直线的斜率k 等于( ) A.-3 B.3 C.13 D.-135.直线y =mx -3m +2(m ∈R )必过定点( ) A.(3,2) B.(-3,2) C.(-3,-2) D.(3,-2)6.若三条直线x +y =0,x -y =0,x +ay =3构成三角形,则a 的取值范围是( ) A.a ≠±1 B.a ≠1,a ≠2 C.a ≠-1D.a ≠±1,a ≠27.直线l 1:ax -y +b =0,l 2:bx -y +a =0(a ≠0,b ≠0,a ≠b )在同一坐标系中的图形大致是( )二、填空题8.已知直线l 1:ax +3y -1=0与直线l 2:2x +(a -1)y +1=0垂直,则实数a =_______.9.若直线mx+3y-5=0经过连接点A(-1,-2),B(3,4)的线段的中点,则m=______.10.直线l:ax+(a+1)y+2=0的倾斜角大于45°,则a的取值范围是______________.11.已知两条直线a1x+b1y+4=0和a2x+b2y+4=0都过点A(2,3),则过两点P1(a1,b1),P2(a2,b2)的直线方程为________________.三、解答题12.设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.13.(1)已知直线l1:2x+(m+1)y+4=0与直线l2:mx+3y-2=0平行,求m的值.(2)当a为何值时,直线l1:(a+2)x+(1-a)y-1=0与直线l2:(a-1)x+(2a+3)y+2=0互相垂直?当堂检测答案1.答案D解析 方程Ax +By +C =0表示直线的条件为A 、B 不能同时为0,即A 2+B 2≠0. 2.答案 C解析 由ax +by =c ,得y =-a b x +cb ,∵ab <0,∴直线的斜率k =-ab >0,直线在y 轴上的截距cb<0.由此可知直线通过第一、三、四象限. 3.答案 A解析 由题意,得所求直线斜率为12,且过点(1,0).故所求直线方程为y =12(x -1),即x -2y-1=0. 4.答案 B解析 由两直线垂直,得12×⎝⎛⎭⎫-2m =-1,解得m =1. 5.答案 -3或1解析 两条直线y =ax -2和3x -(a +2)y +1=0互相平行,所以a 3=1a +2≠-21,解得a =-3或a =1.课时精练答案一、选择题 1.答案 B解析 直线x +y -3=0,即y =-x +3,它的斜率等于-1,故它的倾斜角为135°,故选B. 2.答案 D 解析 由已知得m 2-4≠0,且2m 2-5m +2m 2-4=1,解得:m =3. 3.答案 D解析 通过直线的斜率和截距进行判断. 4.答案 D解析 由点(1,-1)在直线上可得a -3m +2a =0(m ≠0),解得m =a ,故直线方程为ax +3ay +2a =0(a ≠0),即x +3y +2=0,其斜率k =-13.5.答案 A解析 由y =mx -3m +2,得y -2=m (x -3).所以直线必过点(3,2). 6.答案 A解析 因为直线x +ay =3恒过点(3,0),所以此直线只需不和x +y =0,x -y =0两直线平行就能构成三角形.所以a ≠±1. 7.答案 C解析 将l 1与l 2的方程化为斜截式得: y =ax +b ,y =bx +a ,根据斜率和截距的符号可得选C. 二、填空题 8.答案 35解析 由两直线垂直的条件,得2a +3(a -1)=0,解得a =35.9.答案 2解析 线段AB 的中点为(1,1),则m +3-5=0,即m =2. 10.答案 (-∞,-12)∪(0,+∞)解析 当a =-1时,直线l 的倾斜角为90°,符合要求; 当a ≠-1时,直线l 的斜率为-aa +1,只要-a a +1>1或者-aa +1<0即可,解得-1<a <-12或者a <-1或者a >0.综上可知,实数a 的取值范围是 (-∞,-12)∪(0,+∞).11.答案 2x +3y +4=0解析 由条件知⎩⎪⎨⎪⎧2a 1+3b 1+4=0,2a 2+3b 2+4=0,易知两点P 1(a 1,b 1),P 2(a 2,b 2)都在直线2x +3y +4=0上,即2x +3y +4=0为所求.三、解答题12.解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距都为0,当然相等,所以a =2,方程即为3x +y =0.当a ≠2时,截距存在且均不为0,所以a -2a +1=a -2,即a +1=1.所以a =0,方程即为x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,所以⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0,所以a ≤-1.综上,a 的取值范围是a ≤-1.13.解 方法一 (1)由l 1:2x +(m +1)y +4=0, l 2:mx +3y -2=0知:①当m =0时,显然l 1与l 2不平行. ②当m ≠0时,l 1∥l 2,需2m =m +13≠4-2.解得m =2或m =-3,∴m 的值为2或-3. (2)由题意知,直线l 1⊥l 2.①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0显然垂直. ②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直.③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3.当l 1⊥l 2时,k 1·k 2=-1, 即(-a +21-a )·(-a -12a +3)=-1,∴a =-1.综上可知,当a =1或a =-1时,直线l 1⊥l 2. 方法二 (1)令2×3=m (m +1), 解得m =-3或m =2.当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0, 显然l 1与l 2不重合,∴l 1∥l 2.同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0, 显然l 1与l 2不重合,∴l 1∥l 2. ∴m 的值为2或-3. (2)由题意知直线l 1⊥l 2,∴(a +2)(a -1)+(1-a )(2a +3)=0, 解得a =±1,将a=±1代入方程,均满足题意.故当a=1或a=-1时,直线l1⊥l2.。
专题3.2.3 直线的一般式方程-高一数学人教版(必修2)(解析版)

一、选择题1.已知直线0Ax By C ++=不经过第一象限,且A ,B ,C 均不为零,则有 A .0C < B .0C > C .0BC >D .0BC <【答案】C【名师点睛】本题考查了直线的斜率与截距的意义,属于基础题. 2.经过点A (2,-1),B (-4,5)的直线的一般式方程为 A .x+y+1=0B .x-y+1=0C .x-y-1=0D .x+y-1=0【答案】D【解析】因为直线过A (2,-1),B (-4,5),所以由直线方程的两点式得直线方程为()()125142y x ---=----,化为一般式得x+y-1=0.故选D.3.已知直线()410a x y -++=与直线2350x y +-=垂直,则a =A .143 B .52C .112D .3【答案】B【解析】直线(a ﹣4)x +y +1=0与直线2x +3y ﹣5=0垂直,可得2(a ﹣4)+3=0,解得a =52. 故选B .【名师点睛】本题考查两直线垂直的条件,考查方程思想和运算能力,属于基础题.运用两直线垂直的条件,可得2(a ﹣4)+3=0,解方程即可得到所求值.4.把直线310x y -+-=绕点()1,3逆时针旋转15°后,所得直线l 的方程是 A .3y x =-B .3y x =C .320x y -+=D .320x y +-=【答案】B【解析】已知直线310x y -+-=的斜率为1,则其倾斜角为45°,所以直线l 的倾斜角α=45°+15°=60°,直线l 的斜率为tan α=tan 60°=3,∴直线l 的方程为y -3=3(x -1),即y =3x . 故选B.【名师点睛】本题主要考查由直线方程求得斜率及倾斜角及结合象灵活运用,还有由点斜式写直线方程. 5.已知直线ax +by +c =0的图象如图,则下列结论正确的是A .若c >0,则a >0,b >0B .若c >0,则a <0,b >0C .若c <0,则a >0,b <0D .若c <0,则a >0,b >0【答案】D6.过点P (1,3),且与x ,y 轴的正半轴围成的三角形的面积等于6的直线l 的一般式方程是A .3x +y −6=0B .x +3y −10=0C .3x −y =0D .x −3y +8=0【答案】A【解析】设所求直线l 的方程为1x y a b +=(a >0,b >0),则有162ab =,且131a b+=.由122 1361ababab=⎧=⎧⎪⇒⎨⎨=+=⎩⎪⎩,∴直线l 的方程为126x y+=,即为3x +y−6=0.7.已知直线(2m 2-m+3)x+(m2+2m)y=4m+1在x轴上的截距为1,则实数m的值为A.2或12B.2或-12C.-2或-12D.-2或12【答案】A【名师点睛】本题考查直线的截距,注意验证直线是正确解题的关键,属于基础题.由题意可知,直线过点()1,0,代入可得关于m的方程,解方程注意验证直线即可.二、填空题8.已知直线过定点,且倾斜角为60︒,则直线的一般式方程为________.【答案】【解析】由题可得,该直线的斜率为,所以该直线的点斜式方程为,其一般式方程为.9.已知直线222()(0)32a x a a y a++---=在x轴上的截距为3,则该直线在y轴上的截距为________.【答案】415-【解析】把(3,0)代入已知方程,得(a+2)×3−2a=0,∴a=−6,∴直线方程为−4x+45y+12=0.令x=0,得415y=-.10.已知直线1:210l ax y--=,直线2:l320x y+-=,则1l过定点_________;当a=________时,1l 与2l平行.【答案】10,2⎛⎫-⎪⎝⎭23-【解析】直线1l 的方程变形为()210ax y -+=,令0210x y =⎧⎨+=⎩,解得012x y =⎧⎪⎨=-⎪⎩,所以直线1l 过定点10,2⎛⎫- ⎪⎝⎭.当1l 与2l 平行时,则有23=-,解得23a =-,即23a =-时,1l 与2l 平行. 【名师点睛】直线过定点的问题实质上是恒成立的问题,判断直线过定点时,先把直线方程整理成()(),,0f x y kg x y +=(k 为参数)的形式,解方程组()(),0,0f x yg x y ⎧=⎪⎨=⎪⎩可得定点的坐标.将直线1l 的方程变形为()210ax y -+=,令0210x y =+=且可得定点坐标;根据两直线平行的等价条件可得a 的值. 三、解答题11.把直线的一般式方程化成斜截式,求出直线的斜率以及它在轴与轴上的截距,并画出图形.12.根据下列条件求解直线的一般式方程.(1)直线的斜率为2,且经过点A (1,3); (2)斜率为,且在y 轴上的截距为4;(3)经过两点A (2,-3),B (-1,-5); (4)在x ,y 轴上的截距分别为2,-4.13.已知直线l 的方程为34120x y +-=,求:(1)过点()1,3-,且与l 平行的直线方程; (2)过点()1,3-,且与l 垂直的直线方程. 【解析】由直线34120x y +-=,得其斜率为34-, (1)因为所求直线与l 平行,则所求直线的斜率34k =-, 又直线过点()1,3-,所以由直线的点斜式方程可得()3314y x -=-+,即3490x y +-=. (2)因为所求直线与l 垂直,则所求直线的斜率43k =,又直线过点()1,3-,所以由直线的点斜式方程可得()4313y x -=+,即43130x y -+=. 【名师点睛】本题主要考查了直线方程的求解,其中熟记两条直线的位置关系的判定方法是解答的关键,着重考查了学生的推理与运算能力.14.已知直线l 平行于直线,直线l 与两坐标轴围成的三角形的周长是15,求直线l 的方程.15.已知直线()1:280l m x my -+-=与直线2:30l mx y +-=,其中m 为常数.(1)若12l l ⊥,求m 的值;(2)若点()1,2P m 在2l 上,直线l 过P 点,且在两坐标轴上的截距之和为0,求直线l 的方程. 【解析】(1)∵12l l ⊥,∴()20m m m -+=,解得0m =或1m =.(2)当0m =时,P 为(1,0),2:3l y =,不合题意; 当1m =时,P 为(1,2),2:30l x y +-=,符合题意. ∵直线l 在两坐标轴上的截距之和为0,当直线l 过原点时,可设l 的方程为y kx =,将点P (1,2)代入得2k =, ∴此时l 为2y x =;当直线l 不经过原点时,可设l 的方程为x y λ-=,将点P (1,2)代入得1λ=-, ∴此时l 为10x y -+=.综上可得直线l 的方程为2y x =或10x y -+=.。
直线的一般式方程练习一

直线的一般式方程练习一1. 已知直线过A(3,m+1),B(4,2m+1)两点且倾斜角为56π,则m的值为()A.−√3B.√3C.−√33D.√332. 直线l:y=√3x+1的倾斜角为()A.π3B.π6C.π4D.5π123. 过点(1, −3)且垂直于直线x−2y+3=0的直线方程为()A.x−2y−7=0B.2x+y+1=0C.x−2y+7=0D.2x+y−1=04. 已知直线过点(1, 2),且纵截距为横截距的两倍,则直线l的方程为()A.2x−y=0B.2x+y−4=0C.2x−y=0或x+2y−2=0D.2x−y=0或2x+y−4=05. 已知直线kx−y+1−3k=0,当k变化时,所有的直线恒过定点________.6. 已知直线l1:ax+4y−1=0,l2:x+ay−12=0,若l1 // l2,则实数a=________.7. 设直线l1:(3+m)x+4y=5−3m与l2:2x+(5+m)y=8,若l1 // l2,则m=________;若l1⊥l2,则m=________.8. 直线ax+2y+6=0与直线x+(a−1)y+a2−1=0平行,则a=________.9. 过点(−1, 2)且在两坐标轴上截距相等的直线方程为________.10. 直线AB的方程为x−√3y+√3=0,则直线AB的倾斜角为()A.30∘B. 45∘C. 60∘D. 120∘11. 已知两条直线l1:ax−by+4=0和l2:(a−1)x+y+b=0,若l1⊥l2且l1过点(−3, −1),求a,b的值.12. 已知直线l过点P(3, 2).(1)若直线l在两坐标轴上的截距相等,求直线l的方程;(2)若直线l与x轴、y轴的正半轴分别交于A、B两点,如图所示,求△ABO的面积的最小值及此时直线l的方程.13. 设直线l的方程为(a+1)x+y+2−a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.14. 分别求经过下列两点的直线的斜率:(1)(−3, 2),(2, −1);(2)(2, 0),(0.−4);(3)(2, 1),(3, 1);(4)(a, a),(a−1, a+3).15. 直线l过点P(−2, 1)且斜率为k(k>1),将直线l绕P点按逆时针方向旋转45∘得直线m,若直线l和m分别与y轴交于Q,R两点.(1)用k表示直线m的斜率;(2)当k为何值时,△PQR的面积最小?并求出面积最小时直线l的方程.参考答案与试题解析直线的一般式方程练习一一、选择题(本题共计 4 小题,每题 5 分,共计20分)1.【答案】C【考点】直线的斜率直线的倾斜角【解析】根据题意,由直线的倾斜角可得直线AB的斜率,又由AB的坐标结合两点间连线的斜率公式可得k的值,分析可得答案.【解答】解:根据题意,直线AB的倾斜角为56π,则其斜率k=tan56π=−√33,又因为A(3,m+1),B(4,2m+1),则AB的斜率k=(2m+1)−(m+1)4−3=m,则有m=−√33.故选C.2.【答案】A【考点】直线的倾斜角【解析】此题暂无解析【解答】解:设直线l的倾斜角为θ,由题意知k=tanθ=√3,∴ θ=π3.故选A.3.【答案】B【考点】直线的一般式方程与直线的垂直关系直线的点斜式方程【解析】设与直线x−2y+3=0垂直的直线的方程为2x+y+c=0,把点(1, −3)的坐标代入求出c值,即得所求的直线的方程.【解答】解:设所求的直线方程为2x+y+c=0,把点(1, −3)的坐标代入得2−3+c=0,∴c=1,故所求的直线方程为2x+y+1=0.故选B.4.【答案】D【考点】直线的截距式方程【解析】此题暂无解析【解答】此题暂无解答二、填空题(本题共计 5 小题,每题 5 分,共计25分)5.【答案】(3, 1)【考点】过两条直线交点的直线系方程【解析】化直线方程为点斜式,由点斜式的特点可得答案.【解答】直线方程kx−y+1−3k=0可化为y−1=k(x−3),由直线的点斜式可知直线过定点(3, 1);6.【答案】−2【考点】直线的一般式方程与直线的平行关系【解析】利用直线平行的性质求解.【解答】解:∵直线l1:ax+4y−1=0,l2:x+ay−12=0,∴a1=4a≠−1−12,解得a=−2.故答案为:−2.7.【答案】−7,−133【考点】直线的一般式方程与直线的垂直关系直线的一般式方程与直线的平行关系【解析】由直线的平行和垂直关系分别可得m的方程,解方程验证可得.【解答】解:∵两直线l1:(3+m)x+4y=5−3m与l2:2x+(5+m)y=8,∴若l1 // l2,则(3+m)(5+m)−4×2=0,解得m=−1或m=−7,当m=−1时两直线重合应舍去,∴m=−7;若l1⊥l2,则2(3+m)+4(5+m)=0,解得m=−133.故答案为:−7;−133.8.【答案】−1【考点】直线的一般式方程与直线的平行关系【解析】根据两直线平行,直线方程中一次项系数之比相等,但不等于常数项之比,由此求得a 的值.【解答】解:∵直线ax+2y+6=0与直线x+(a−1)y+a2−1=0平行,∴a1=2a−1≠6a2−1,解得a=−1.故答案为:−1.9.【答案】2x+y=0或x+y−1=0【考点】直线的截距式方程【解析】分直线过原点和不过原点两种情况讨论,直线过原点时直接求出斜率得直线方程;不过原点时设出直线方程,代入点的坐标得答案.【解答】解:当直线过原点时,直线的斜率k=−2,直线方程为y=−2x,即2x+y=0;当直线不过原点时设直线方程为x+y=a,代入点(−1, 2)得:−1+2=a,即a=1.∴直线方程为:x+y−1=0.∴过点(−1, 2)且在两坐标轴上截距相等的直线方程为2x+y=0或x+y−1=0.故答案为:2x+y=0或x+y−1=0.三、解答题(本题共计 6 小题,每题 5 分,共计30分)10.【答案】A【考点】直线的倾斜角【解析】此题暂无解析【解答】解:由题意可得,直线的斜率k=√33,设直线的倾斜角为α,则tanα=√33.因为α∈[0∘,180∘),所以α=30∘.故选A.11.【答案】解:由l1⊥l2,得:a(a−1)−b=0①;由l1过点(−3, −1),得−3a−b+4=0②;由①②解方程组得:a=−1+√5,b=7−3√5;或a=−1−√5,b=7+3√5.【考点】直线的一般式方程与直线的垂直关系【解析】由l1⊥l2,得a(a−1)−b=0①;l1过点(−3, −1),得−3a−b+4=0②;由①②组成方程组,解方程组即可.【解答】解:由l1⊥l2,得:a(a−1)−b=0①;由l1过点(−3, −1),得−3a−b+4=0②;由①②解方程组得:a=−1+√5,b=7−3√5;或a=−1−√5,b=7+3√5.12.【答案】解:(1)当直线经过原点时,可得直线方程为y=23x.当直线不经过原点时,可设直线方程为x+y=a,把点(3, 2)代入可得3+2=a,可得a=5.∴直线方程为x+y=5.综上可得直线方程为:y=23x,x+y=5.(2)设直线的方程xa +yb=1,把点P(3, 2)代入可得3a+2b=1.∴1≥2√3a ×2b,化为ab≥24,当且仅当3a=2b=12,即a=6,b=4时取等号.∴△ABO的面积的最小值为12ab=12,此时直线l的方程为x6+y4=1.【考点】直线的截距式方程【解析】(1)当直线经过原点时,可得直线方程为y=23x.当直线不经过原点时,可设直线方程为x+y=a,把点(3, 2)代入即可得出;(2)设直线的方程xa +yb=1,把点P(3, 2)代入可得3a+2b=1.利用基本不等式的性质即可得出.【解答】解:(1)当直线经过原点时,可得直线方程为y=23x.当直线不经过原点时,可设直线方程为x+y=a,把点(3, 2)代入可得3+2=a,可得a=5.∴直线方程为x+y=5.综上可得直线方程为:y=23x,x+y=5.(2)设直线的方程xa +yb=1,把点P(3, 2)代入可得3a+2b=1.∴1≥2√3a ×2b,化为ab≥24,当且仅当3a=2b=12,即a=6,b=4时取等号.∴△ABO的面积的最小值为12ab=12,此时直线l的方程为x6+y4=1.13.【答案】解:(1)由题意可知,若2−a=0,解得a=2,化为3x+y=0.若a+1=0,解得a=−1,化为y+3=0,舍去.若a≠−1,2,化为:x a−2a+1+ya−2=1,令a−2a+1=a−2,化为a+1=1,解得a=0,可得直线l的方程为:x+y+2=0.综上所述直线l的方程为:x+y+2=0或3x+y=0.(2)y=−(a+1)x+a−2,∵l不经过第二象限,∴{−(a+1)≥0,a−2≤0,解得:a≤−1.∴实数a的取值范围是(−∞, −1].【考点】直线的截距式方程直线的斜截式方程直线的图象特征与倾斜角、斜率的关系【解析】(1)对a分类讨论,利用截距式即可得出;(2)y =−(a +1)x +a −2,由于l 不经过第二象限,可得{−(a +1)≥0a −2≤0,解出即可得出.【解答】解:(1)由题意可知,若2−a =0,解得a =2,化为3x +y =0.若a +1=0,解得a =−1,化为y +3=0,舍去.若a ≠−1,2,化为:x a−2a+1+y a−2=1,令a−2a+1=a −2,化为a +1=1,解得a =0,可得直线l 的方程为:x +y +2=0.综上所述直线l 的方程为:x +y +2=0或3x +y =0.(2)y =−(a +1)x +a −2,∵ l 不经过第二象限,∴ {−(a +1)≥0,a −2≤0,解得:a ≤−1.∴ 实数a 的取值范围是(−∞, −1].14.【答案】由斜率公式得:k =2−(−1)−3−2=−35; 由斜率公式得:k =0−(−4)2−0=2; 由斜率公式得:k =1−12−3=0;由斜率公式得:k =a−(a+3)a−(a−1)=−3.【考点】直线的斜率【解析】利用斜率公式即可求解.【解答】由斜率公式得:k =2−(−1)−3−2=−35; 由斜率公式得:k =0−(−4)2−0=2; 由斜率公式得:k =1−12−3=0;由斜率公式得:k =a−(a+3)a−(a−1)=−3.15.【答案】设直线l的倾斜角为α,则直线m的倾斜角为α+45∘,k m=tan(45+α)=1+tanα1−tanα=1+k1−k,∴直线l的方程为y−1=k(x+2),直线m的方程为y−1=1+k1−k(x+2)令x=0,得y Q=2k+1,y R=3+k1−k,∴S△PQR=12|y Q−y R|⋅|x P|=|2(k2+1)k−1|∵k>1,∴S△PQR=|2(k2+1)k−1|=2⋅k2+1k−1=2[(k−1)+2k−1+2]≥4(√2+1)由k−1=2k−1得k=√2+1(k=1−√2舍去),∴当k=√2+1时,△PQR的面积最小,最小值为4(√2+1),此时直线l的方程是(√2+1)x−y+2√2+3=0.【考点】直线的图象特征与倾斜角、斜率的关系【解析】(1)用点斜式求出m和l的方程,利用直线l绕P点按逆时针方向旋转45∘得直线m求出直线m的倾斜角为α+45∘;进而得到直线m的斜率;(2)求出R,Q两点的坐标,计算△PQR的面积,变形后应用基本不等式求出它的最小值.【解答】设直线l的倾斜角为α,则直线m的倾斜角为α+45∘,k m=tan(45+α)=1+tanα1−tanα=1+k1−k,∴直线l的方程为y−1=k(x+2),直线m的方程为y−1=1+k1−k(x+2)令x=0,得y Q=2k+1,y R=3+k1−k,∴S△PQR=12|y Q−y R|⋅|x P|=|2(k2+1)k−1|∵k>1,∴S△PQR=|2(k2+1)k−1|=2⋅k2+1k−1=2[(k−1)+2k−1+2]≥4(√2+1)由k−1=2k−1得k=√2+1(k=1−√2舍去),∴当k=√2+1时,△PQR的面积最小,最小值为4(√2+1),此时直线l的方程是(√2+1)x−y+2√2+3=0.。
3.2.3直线的一般式方程 Word版含答案

第三章直线与方程3.2直线的方程3.2.3直线的一般式方程学习目标1.明确直线方程一般式的形式特征,了解直线与二元一次方程的关系;2.会把直线方程的一般式化为斜截式,进而求斜率和截距;3.会把直线方程的点斜式、两点式化为一般式.合作学习一、设计问题、创设情境问题1:我们前面学习了直线的几种形式的方程,它们分别是什么形式?这些方程中都有几个变量,为什么?这些方程的共同特征是什么?问题2:平面直角坐标系中的每一条直线都可以用一个关于x,y的二元一次方程表示吗?问题3:设直线l是平面内任意一条直线,它的方程可以怎样写出?由于直线l是任意的,其斜率一定存在吗?应该怎样处理?二、学生探索、尝试解决问题4:二元一次方程有没有一般形式?能写出来吗?其中的系数A,B可以任意取值吗?问题5:方程2x+3y+6=0表示直线吗?它表示的是怎样的一条直线?每一个关于x,y的二元一次方程Ax+By+C=0(A,B不同时为0)都表示一条直线吗?三、信息交流、揭示规律问题6:方程x-2y+=0表示的直线与方程2x-4y+3=0表示的直线是否相同?只有当A,B,C 都确定时,方程Ax+By+C=0表示的直线才确定吗?四、运用规律、解决问题【例题】把直线l的一般式方程x-2y+6=0化成斜截式,求出直线l的斜率以及它在x轴与y轴上的截距,并画出图形.问题7:结合例题思考:二元一次方程的解和对应的直线上的点有什么关系?方程和直线能联系起来是谁的“功劳”?五、变式演练、深化提高变式训练:(1)直线l过点P(-6,3),且它在x轴上的截距是它在y轴上截距的3倍,求直线l的方程.(2)设P0(x0,y0)是直线Ax+By+C=0(其中A,B不同时为0)上一点.证明:这条直线的方程可以写成A(x-x0)+B(y-y0)=0.六、信息交流、教学相长问题8:直线的一般式方程与前面学习的其他形式的直线方程的联系与区别是什么?七、反思小结,观点提炼问题9:(1)求直线方程应具有多少个条件?求出直线方程后应该将方程化为哪种形式?(2)二元一次方程Ax+By+C=0描述的是数x和y之间的一种关系,而直线是几何图形,它们是如何联系起来的?这体现了什么数学思想?今后我们能用直线的方程研究直线的问题吗?布置作业课本P100习题3.2A组第11题,B组第3,4,5题.参考☆答案☆一、问题1:四种;点斜式、斜截式、两点式、截距式;两个,x和y,因为直线的方程是描述直线上任意一点的坐标(x,y)的方程;都是关于x和y的二元一次方程.问题2:对任意一条直线l,在其上任取一点P0(x0,y0),然后可以按照其斜率k是否存在,分两种情形求其方程.①当直线l的斜率k存在时,其方程为y-y0=k(x-x0),这是关于x,y的二元一次方程;②当直线l的斜率k不存在时,即直线l的倾斜角α=90°时,直线的方程为x-x0=0,也可以认为是关于x,y的二元一次方程,此时方程中y的系数为0.由①②可知,平面上的任意一条直线都可以用一个关于x,y的二元一次方程表示.问题3:可以在直线上任取一点P0(x0,y0),再设其斜率为k,然后用点斜式写出来;不一定;按照斜率是否存在分类讨论.二、问题4:有;二元一次方程的一般形式Ax+By+C=0;A,B不可以同时为零.问题5:表示过(0,-2)且斜为-的直线;当B≠0时,方程可变形为y=-x-,它表示过点(0,-),斜率为-的直线.当B=0时,A一定不为0,方程可变形为x=-,它表示过点(-,0),且垂直于x轴的直线.三、问题6:将两方程都化成斜截式后得到的方程都为y=x+,因此两方程表示的直线是相同(重合)的.当B≠0时,方程Ax+By+C=0可变形为y=-x-,因此只需确定两个比值即能确定直线;当B=0时,方程Ax+By+C=0可变形为x=-,因此只需再确定的值即可.四、【例题】解:将直线l的一般式化成斜截式y=x+3.因此,直线l的斜率k=,它在y轴上的截距是3.在直线l的方程x-2y+6=0中,令y=0,得x=-6.即直线l在x轴上的截距是-6.由上面可得直线l与x轴、y轴的交点分别为A(-6,0),B(0,3).过点A,B作直线,就得直线l的图形.问题7:一一对应,即二元一次方程的每一组解都可以看成平面直角坐标系中一个点的坐标,这个方程的全体解组成的集合,就是坐标满足二元一次方程的全体点的集合,这些点的集合就组成一条直线;直角坐标系.五、变式演练习,深化提高变式训练:(1)x+3y-3=0或x+2y=0.(2)证明:因为点P0(x0,y0)是直线Ax+By+C=0上一点,所以Ax0+By0+C=0,即C=-Ax0-By0,代入Ax+By+C=0,得A(x-x0)+B(y-y0)=0.六、信息交流,教学相长问题8:其他形式的方程都可以转化为一般式方程;其他形式的方程都不能表示与x轴垂直的直线,而一般式方程可以表示平面上任何位置的所有直线,也就是说它更具有一般性.七、反思小结、观点提炼问题9:(1)两个;一般式.(2)通过直角坐标系使得二元一次方程Ax+By+C=0的每一组解(x,y)与直线上的每一个点有了一一对应的关系;数形结合;应该可以.。
2.2.3直线的一般式方程

般式.
成套的课件成套的教案成套的试题成套
题型二 直线一般式下的平行与垂直问题 例 1 (1)已知直线 l1:2x+(m+1)y+4=0 与直线 l2:mx+3y -2=0 平行,求 m 的值; (2)当 a 为何值时,直线 l1:(a+2)x+(1-a)y-1=0 与直线 l2: (a-1)x+(2a+3)y+2=0 互相垂直? 分析:注意考虑斜率不存在情况
解得
a>1 a≤-2或a>1
,所以a>1.综上可知a≥1.
成套的课件成套的教案成套的试题成套
[方法技巧] 求直线过定点的策略
1.将方程化为点斜式,求得定点的坐标; 2.将方程变形,把 x,y 看作参数的系数,因为此式子对于任 意的参数的值都成立,故需系数为零,解方程组可得 x,y 的值, 即为直线过的定点.
成套的课件成套的教案成套的试题成套
解析:(1)方法一 将直线 l 的方程整理为 y-35=a(x-15), ∴直线 l 的斜率为 a,且过定点 A(1,3),
55 而点 A(1,3)在第一象限内,故不论 a 为何值,l 恒过第一象限.
55
成套的课件成套的教案成套的试题成套
方法二 直线 l 的方程可化为(5x-1)a-(5y-3)=0.
成套的课件成套的教案成套的试题成套
方法二 (1)由 l′与 l 平行,可设 l′方程为 3x+4y+m=0. 将点(-1,3)代入上式得 m=-9. ∴所求直线方程为 3x+4y-9=0. (2)由 l′与 l 垂直,可设其方程为 4x-3y+n=0. 将(-1,3)代入上式得 n=13. ∴所求直线方程为 4x-3y+13=0.
成套的课件成套的教案成套的试题成套
变式训练 1 已知直线 l 的方程为 3x+4y-12=0,求直线 l′ 的一般式方程,l′满足:
2.2.3 直线的一般式方程 导学案答案

2.2.3 直线的一般式方程【课前预习】知识点一1.Ax+By+C=0 一般式方程诊断分析(1)√ (2)× (3)√ (4)× (5)× [解析] (2)当a ≠0且a ≠-1时,直线方程ax+(a+1)y=a (a+1)可化为截距式x a+1+y a =1.(4)y 轴经过原点,其所在直线的方程为x=0,斜率不存在,所以不能写成斜截式.(5)若斜率为0的直线经过点P (x 0,y 0),则其点斜式方程为y-y 0=0·(x-x 0).【课中探究】探究点一例1 解:(1)因为直线经过点A (8,-2),斜率是-12,所以直线的点斜式方程是y-(-2)=-12(x-8),化为一般式,得x+2y-4=0. (2)因为直线平行于x 轴,所以直线的斜率为0,又直线经过点B (4,2),所以直线的点斜式方程是y-2=0(x-4),化为一般式,得y-2=0.(3)直线的截距式方程是x 32+y -3=1,化为一般式,得2x-y-3=0.(4)直线的两点式方程是y -(-2)-4-(-2)=x -35-3,化为一般式,得x+y-1=0.变式 解:(1)因为直线经过点A (3,-1),斜率是√2,所以直线的点斜式方程为y+1=√2(x-3),即√2x-y-1-3√2=0.(2)因为直线经过点B (-√2,2),倾斜角是30°,所以斜率为√33,所以直线的点斜式方程为y-2=√33(x+√2),即√33x-y+2+√63=0.(3)设所求直线的斜率为k ,则依题意得k=-4×13=-43, 又直线经过点C (1,3),所以所求直线的方程为y-3=-43(x-1),即4x+3y-13=0. (4)当直线不过原点时,设所求直线的方程为x 2a +y a =1(a ≠0),将点D (-5,2)的坐标代入,可得-52a +2a =1,解得a=-12,所以直线的方程为x+2y+1=0;当直线过原点时,设所求直线的方程为y=kx ,则-5k=2,解得k=-25,所以直线的方程为y=-25x ,即2x+5y=0.综上,所求直线的方程为2x+5y=0或x+2y+1=0.(5)当m=2时,直线的方程为x=2,即x-2=0;当m ≠2时,直线的方程为y -13-1=x -2m -2,即2x-(m-2)y+m-6=0.因为当m=2时,方程2x-(m-2)y+m-6=0即为x=2,所以所求直线的方程为2x-(m-2)y+m-6=0.探究点二例2 解:令m 2-1≠0,解得m ≠±1,所以当m ≠±1时,l 1与l 2相交.当m=0时,l 1与l 2垂直.令m 2-1=0,解得m=±1.当m=1时,l 1的方程为x+y=2,l 2的方程为x+y=2,l 1与l 2重合;当m=-1时,l 1的方程为x-y=0,l 2的方程为x-y=-2,l 1∥l 2.所以当m ≠±1时,l 1与l 2相交,其中当m=0时,l 1与l 2垂直;当m=1时,l 1与l 2重合;当m=-1时,l 1∥l 2.变式 解:(1)设直线的方程为 x-2y+c=0(c ≠3),把点 P (-1,3) 的坐标代入直线的方程,得 -1-6+c=0,所以c=7,所以所求直线的方程为 x-2y+7=0.(2)因为所求直线与直线x-2y+4=0垂直,所以所求直线的斜率为-2,又所求直线经过点M (2,4),所以所求直线的方程为y-4=-2(x-2),即2x+y-8=0.探究点三例3 (1)D [解析] 方法一:直线mx+4y-2=0的斜率为-m 4,直线2x-5y+n=0的斜率为25,由两条直线互相垂直得-m 4·25=-1,解得m=10,故选D .方法二:由两条直线互相垂直得m ·2+4×(-5)=0,解得m=10.故选D .(2)解:①证明:直线l 的方程可化为(x-1)a=2(y-2),令{x -1=0,y -2=0,解得{x =1,y =2,即直线l 过定点A (1,2),而点A (1,2)在第一象限内,故不论a 为何值,直线l 总经过第一象限. ②方法一:设O 为坐标原点,连接OA ,则直线OA 的斜率为2-01-0=2,故要使直线l 不经过第二象限,只需直线l 的斜率k=a 2≥2,解得a ≥4,即a 的取值范围为[4,+∞). 方法二:当a=0时,直线l 的方程为y=2,直线l 经过第二象限,不符合题意,故a ≠0.由题意可知直线l 在x 轴上的截距为a -4a ,在y 轴上的截距为4-a 2,故要使直线l 不经过第二象限,只需{a -4a ≥0,4-a 2≤0,解得a ≥4,故a 的取值范围为[4,+∞). 变式 (1)C (2)D [解析] (1)直线l 的方程可化为k (x-3)-y+1=0,令{x -3=0,-y +1=0,得{x =3,y =1,所以当k 变化时,直线l 恒过定点的坐标为(3,1).故选C .(2)直线l 1的方程是ax-y+b=0,可化为y=ax+b ,l 2的方程是bx+y-a=0,可化为y=-bx+a (ab ≠0).在A 中,若直线l 1的位置正确,则a>0,b>0,所以-b<0,则l 2的位置不正确,故A 错误;在B 中,若直线l 1的位置正确,则a>0,b<0,所以-b>0,则l 2的位置不正确,故B 错误;在C 中,若直线l 1的位置正确,则a>0,b>0,所以-b<0,则l 2的位置不正确,故C 错误;在D 中,若直线l 1的位置正确,则a<0,b>0,所以-b<0,则l 2的位置正确,故D 正确.故选D .拓展 解:(1)当直线l 的斜率存在且不为0,即A ≠0,B ≠0,且C ∈R 时,直线l 与两坐标轴都相交.(2)当直线l 的斜率不存在,且直线l 不与y 轴重合,即A ≠0,B=0,且C ≠0时,直线l 只与x 轴相交.(3)证明:∵P (x 0,y 0)为直线l :Ax+By+C=0上一点,∴Ax 0+By 0+C=0,即C=-Ax 0-By 0,∴直线l 的方程为Ax+By+(-Ax 0-By 0)=0,整理得A (x-x 0)+B (y-y 0)=0.。
【精品】高中数学 必修2_直线的一般式方程及综合 讲义 知识点讲解+巩固练习(含答案) _基础

直线的一般式方程及综合【学习目标】1.掌握直线的一般式方程;2.能将直线的点斜式、两点式等方程化为直线的一般式方程,并理解这些直线的不同形式的方程在表示直线时的异同之处;3.能利用直线的一般式方程解决有关问题.【要点梳理】要点一:直线方程的一般式关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0,这个方程(其中A、B不全为零)叫做直线方程的一般式.要点诠释:1.A、B不全为零才能表示一条直线,若A、B全为零则不能表示一条直线.当B≠0时,方程可变形为A Cy xB B=--,它表示过点0,CB⎛⎫-⎪⎝⎭,斜率为AB-的直线.当B=0,A≠0时,方程可变形为Ax+C=0,即CxA=-,它表示一条与x轴垂直的直线.由上可知,关于x、y的二元一次方程,它都表示一条直线.2.在平面直角坐标系中,一个关于x、y的二元一次方程对应着唯一的一条直线,反过来,一条直线可以对应着无数个关于x、y的一次方程(如斜率为2,在y轴上的截距为1的直线,其方程可以是2x―y+1=0,也可以是1122x y-+=,还可以是4x―2y+2=0等.)要点二:直线方程的不同形式间的关系直线方程的五种形式的比较如下表:要点诠释:在直线方程的各种形式中,点斜式与斜截式是两种常用的直线方程形式,要注意在这两种形式中都要求直线存在斜率,两点式是点斜式的特例,其限制条件更多(x 1≠x 2,y 1≠y 2),应用时若采用(y 2―y 1)(x ―x 1)―(x 2―x 1)(y ―y 1)=0的形式,即可消除局限性.截距式是两点式的特例,在使用截距式时,首先要判断是否满足“直线在两坐标轴上的截距存在且不为零”这一条件.直线方程的一般式包含了平面上的所有直线形式.一般式常化为斜截式与截距式.若一般式化为点斜式,两点式,由于取点不同,得到的方程也不同.要点三:直线方程的综合应用1.已知所求曲线是直线时,用待定系数法求.2.根据题目所给条件,选择适当的直线方程的形式,求出直线方程.对于两直线的平行与垂直,直线方程的形式不同,考虑的方向也不同.(1)从斜截式考虑已知直线111:b x k y l +=,222:b x k y l +=,12121212//()l l k k b b αα⇒=⇒=≠;12121211221tan cot 12l l k k k k παααα⊥⇒-=⇒=-⇒=-⇒=- 于是与直线y kx b =+平行的直线可以设为1y kx b =+;垂直的直线可以设为21y x b k=-+. (2)从一般式考虑:11112222:0,:0l A x B y C l A x B y C ++=++=1212120l l A A B B ⊥⇔+=121221//0l l A B A B ⇔-=且12210A C A C -≠或12210B C B C -≠,记忆式(111222A B C A B C =≠) 1l 与2l 重合,12210A B A B -=,12210A C A C -=,12210B C B C -=于是与直线0Ax By C ++=平行的直线可以设为0Ax By D ++=;垂直的直线可以设为0Bx Ay D -+=.【典型例题】类型一:直线的一般式方程例1.根据下列条件分别写出直线方程,并化成一般式:(1A (5,3);(2)过点B (―3,0),且垂直于x 轴;(3)斜率为4,在y 轴上的截距为―2;(4)在y 轴上的截距为3,且平行于x 轴;(5)经过C (―1,5),D (2,―1)两点;(6)在x ,y 轴上的截距分别是―3,―1.【答案】(130y -+-=(2)x+3=0(3)4x ―y ―2=0(4)4x ―y ―2=0(5)2x+y ―3=0(6)x+3y+3=0【解析】 (1)由点斜式方程得35)y x -=-30y -+-=.(2)x=―3,即x+3=0.(3)y=4x ―2,即4x ―y ―2=0.(4)y=3,即y ―3=0.(5)由两点式方程得5(1)152(1)y x ---=----,整理得2x+y ―3=0. (6)由截距式方程得131x y +=--,整理得x+3y+3=0. 【总结升华】本题主要是让学生体会直线方程的各种形式,以及各种形式向一般式的转化,对于直线方程的一般式,一般作如下约定:x 的系数为正,x ,y 的系数及常数项一般不出现分数,一般按含x 项、y 项、常数项顺序排列.求直线方程的题目,无特别要求时,结果写成直线方程的一般式.举一反三:【变式1】已知直线l 经过点A (―5,6)和点B (―4,8),求直线的一般式方程和截距式方程,并画图.【答案】2x -y+16=0 1816x y +=- 【解析】 所求直线的一般式方程为2x -y+16=0,截距式方程为1816x y +=-.图形如右图所示. 【高清课堂:直线的一般式 381507 例4】例2.ABC ∆的一个顶点为(1,4)A --,B ∠、C ∠ 的平分线在直线10y +=和10x y ++=上,求直线BC 的方程.【答案】230x y +-=【解析】由角平分线的性质知,角平分线上的任意一点到角两边的距离相等,所以可得A 点关于B ∠的平分线的对称点'A 在BC 上,B 点关于C ∠的平分线的对称点'B 也在BC 上.写出直线''A B 的方程,即为直线BC 的方程.例3.已知直线1:310l ax y ++=,2:(2)0l x a y a +-+=,求满足下列条件的a 的值.(1)12//l l ;(2)12l l ⊥.【思路点拨】利用直线平行和垂直的条件去求解。
2.2.3 直线的一般式方程

@《创新设计》
1
课前预习
课堂互动
素养达成
@《创新设计》
课标要求
素养要求
1.根据确定直线位置的几何要素,探索并 通过学习直线的一般式方程,提
掌握直线方程的一般式. 升数学抽象及逻辑推理素养.
2.会进行直线方程的五种形式间的转化.
2
课前预习
课堂互动
素养达成
@《创新设计》
新知探究
课前预习
课堂互动
素养达成
@《创新设计》
二、素养训练
1.若方程Ax+By+C=0表示直线,则A,B应满足的条件为( )
A.A≠0
B.B≠0
C.AB≠0
D.A2+B2≠0
解析 方程Ax+By+C=0表示直线的条件为A,B不能同时为0,即A2+B2≠0.
答案 D
28
课前预习
课堂互动
素养达成
@《创新设计》
29
课前预习
课堂互动
素养达成
@《创新设计》
3.过点A(2,3)且垂直于直线2x+y-5=0的直线方程为( ) A.x-2y+4=0 B.2x+y-7=0 C.x-2y+3=0 D.x-2y+5=0 解析 过点 A(2,3)且垂直于直线 2x+y-5=0 的直线的斜率为12,由点斜式求得 直线的方程为 y-3=12(x-2),化简可得 x-2y+4=0,故选 A. 答案 A
26
课前预习
课堂互动
素养达成
@《创新设计》
3.直线的一般式方程的结构特征 (1)方程是关于x,y的二元一次方程. (2)方程中等号的左侧自左向右一般按x,y,常数的先后顺序排列. (3)x的系数一般不为分数和负数. (4)虽然一般式直线方程有三个系数,但只需两个独立的条件即可求得直 线的方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线的一般式方程[学习目标] 1.掌握直线的一般式方程.2.了解关于x、y的二元一次方程Ax+By+C=0(A、B不同时为0)都表示直线,且直线方程都可以化为Ax+By+C=0的形式.3.会进行直线方程不同形式的转化.知识点直线的一般式方程1.在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x,y的二元一次方程;任何关于x,y的二元一次方程都表示一条直线.方程Ax+By+C=0(其中A、B 不同时为0)叫做直线方程的一般式.2.对于直线Ax+By+C=0,当B≠0时,其斜率为-AB,在y轴上的截距为-CB;当B=0时,在x轴上的截距为-CA;当AB≠0时,在两轴上的截距分别为-CA,-CB.3.直线一般式方程的结构特征(1)方程是关于x,y的二元一次方程.(2)方程中等号的左侧自左向右一般按x,y,常数的先后顺序排列.(3)x的系数一般不为分数和负数.(4)虽然直线方程的一般式有三个参数,但只需两个独立的条件即可求得直线的方程. 思考(1)当A,B同时为零时,方程Ax+By+C=0表示什么?(2)任何一条直线的一般式方程都能与其他四种形式互化吗?答(1)当C=0时,方程对任意的x,y都成立,故方程表示整个坐标平面;当C≠0时,方程无解,方程不表示任何图象.故方程Ax +By +C =0,不一定代表直线,只有当A ,B 不同时为零时,即A 2+B 2≠0时才代表直线.(2)不是.当一般式方程中的B =0时,直线的斜率不存在,不能化成其他形式;当C =0时,直线过原点,不能化为截距式.但其他四种形式都可以化为一般式.题型一 直线的一般形式与其他形式的转化例1 (1)下列直线中,斜率为-43,且不经过第一象限的是( )A.3x +4y +7=0B.4x +3y +7=0C.4x +3y -42=0D.3x +4y -42=0(2)直线3x -5y +9=0在x 轴上的截距等于( ) A. 3 B.-5 C.95 D.-3 3答案 (1)B (2)D解析 (1)将一般式化为斜截式,斜率为-43的有:B 、C 两项.又y =-43x +14过点(0,14)即直线过第一象限,所以只有B 项正确. (2)令y =0则x =-3 3.跟踪训练1 一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,求此直线方程.解 设所求直线方程为x a +y b=1,∵点A (-2,2)在直线上,∴-2a +2b=1.①又∵直线与坐标轴围成的三角形面积为1, ∴12|a |·|b |=1.② 由①②可得⎩⎨⎧ a -b =1,ab =2,或⎩⎨⎧a -b =-1,ab =-2.解得⎩⎨⎧ a =2,b =1,或⎩⎨⎧a =-1,b =-2.第二个方程组无解.故所求直线方程为x2+y1=1或x-1+y-2=1,即x +2y -2=0或2x +y +2=0.题型二 直线方程的应用例2 已知直线l 的方程为3x +4y -12=0,求满足下列条件的直线l ′的方程: (1)过点(-1,3),且与l 平行; (2)过点(-1,3),且与l 垂直.解 方法一 l 的方程可化为y =-34x +3,∴l 的斜率为-34.(1)∵l ′与l 平行,∴l ′的斜率为-34.又∵l ′过点(-1,3),由点斜式知方程为y -3=-34(x +1),即3x +4y -9=0.(2)∵l ′与l 垂直,∴l ′的斜率为43,又l ′过点(-1,3),由点斜式可得方程为y -3=43(x +1),即4x -3y +13=0.方法二 (1)由l ′与l 平行,可设l ′的方程为3x +4y +m =0.将点(-1,3)代入上式得m =-9.∴所求直线的方程为3x +4y -9=0.(2)由l ′与l 垂直,可设l ′的方程为4x -3y +n =0. 将(-1,3)代入上式得n =13.∴所求直线的方程为4x -3y +13=0.跟踪训练2 a 为何值时,直线(a -1)x -2y +4=0与x -ay -1=0. (1)平行;(2)垂直.解 当a =0或1时,两直线既不平行,也不垂直;当a ≠0且a ≠1时,直线(a -1)x -2y +4=0的斜率为k 1=-1+a 2,b 1=2;直线x -ay -1=0的斜率为k 2=1a ,b 2=-1a.(1)当两直线平行时,由k 1=k 2,b 1≠b 2,得1a =-1+a 2,a ≠-12, 解得a =-1或a =2.所以当a =-1或2时,两直线平行. (2)当两直线垂直时,由k 1·k 2=-1, 即1a ·-1+a 2=-1,解得a =13. 所以当a =13时,两直线垂直.题型三 由含参一般式方程求参数的值或取值围例3 (1)若方程(m 2+5m +6)x +(m 2+3m )y +1=0表示一条直线,则实数m 满足______. (2)当实数m 为何值时,直线(2m 2+m -3)x +(m 2-m )y =4m -1. ①倾斜角为45°;②在x 轴上的截距为1. (1)答案 m ≠-3解析 若方程不能表示直线,则m 2+5m +6=0且m 2+3m =0.解方程组⎩⎨⎧m 2+5m +6=0,m 2+3m =0,得m =-3,所以m ≠-3时,方程表示一条直线. (2)解 ①因为已知直线的倾斜角为45°, 所以此直线的斜率是1, 所以-2m 2+m -3m 2-m=1,所以⎩⎨⎧m 2-m ≠0,2m 2+m -3=-m 2-m , 解得⎩⎨⎧m ≠0且m ≠1,m =-1或m =1.所以m =-1.②因为已知直线在x 轴上的截距为1, 令y =0得x =4m -12m 2+m -3,所以4m -12m 2+m -3=1,所以⎩⎨⎧2m 2+m -3≠0,4m -1=2m 2+m -3,解得⎩⎪⎨⎪⎧m ≠1且m ≠-32,m =-12或m =2.所以m =-12或m =2.跟踪训练3 已知直线l :5ax -5y -a +3=0. (1)求证:不论a 为何值,直线l 总经过第一象限; (2)为使直线l 不经过第二象限,求a 的取值围. (1)证明 直线方程变形为y -35=a ⎝ ⎛⎭⎪⎫x -15,它表示经过点A ⎝ ⎛⎭⎪⎫15,35,斜率为a 的直线.∵点A ⎝ ⎛⎭⎪⎫15,35在第一象限,∴直线l 必过第一象限.(2)解 如图所示,直线OA 的斜率k =35-015-0=3.∵直线不过第二象限, ∴直线的斜率a ≥3. ∴a 的取值围为[3,+∞).一般式求斜率考虑不全致误例4 设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y -(2m -6)=0,若此直线的斜率为1,试确定实数m 的值.分析 由直线方程的一般式,可转化为斜截式,利用斜率为1,建立方程求解,但要注意分母不为0.解 由题意,得⎩⎨⎧-m 2-2m -32m 2+m -1=1,①2m 2+m -1≠0. ②由①,得m =-1或m =43.当m =-1时,②式不成立,不符合题意,故应舍去;当m =43时,②式成立,符合题意.故m =43.1.若方程Ax +By +C =0表示直线,则A 、B 应满足的条件为( ) A.A ≠0 B.B ≠0 C.A ·B ≠0 D.A 2+B 2≠02.已知ab <0,bc <0,则直线ax +by =c 通过( ) A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限3.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A.x -2y -1=0 B.x -2y +1=0 C.2x +y -2=0D.x +2y -1=0 4.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m 等于( ) A.-1 B.1 C.12 D.-125.已知两条直线y =ax -2和3x -(a +2)y +1=0互相平行,则a =________.一、选择题1.直线x +y -3=0的倾斜角的大小是( ) A.45° B.135° C.1 D.-12.直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角为45°,则m 的值为( ) A.-2 B.2 C.-3 D.33.直线l 的方程为Ax +By +C =0,若直线l 过原点和二、四象限,则( ) A.C =0,B >0 B.A >0,B >0,C =0 C.AB <0,C =0D.AB >0,C =04.直线ax +3my +2a =0(m ≠0)过点(1,-1),则直线的斜率k 等于( ) A.-3 B.3 C.13 D.-135.直线y =mx -3m +2(m ∈R )必过定点( ) A.(3,2) B.(-3,2) C.(-3,-2) D.(3,-2)6.若三条直线x +y =0,x -y =0,x +ay =3构成三角形,则a 的取值围是( ) A.a ≠±1 B.a ≠1,a ≠2 C.a ≠-1D.a ≠±1,a ≠27.直线l 1:ax -y +b =0,l 2:bx -y +a =0(a ≠0,b ≠0,a ≠b )在同一坐标系中的图形大致是( )二、填空题8.已知直线l1:ax+3y-1=0与直线l2:2x+(a-1)y+1=0垂直,则实数a=_______.9.若直线mx+3y-5=0经过连接点A(-1,-2),B(3,4)的线段的中点,则m=______.10.直线l:ax+(a+1)y+2=0的倾斜角大于45°,则a的取值围是______________.11.已知两条直线a1x+b1y+4=0和a2x+b2y+4=0都过点A(2,3),则过两点P1(a1,b1),P2(a2,b2)的直线方程为________________.三、解答题12.设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,数a的取值围.13.(1)已知直线l1:2x+(m+1)y+4=0与直线l2:mx+3y-2=0平行,求m的值.(2)当a为何值时,直线l1:(a+2)x+(1-a)y-1=0与直线l2:(a-1)x+(2a+3)y+2=0互相垂直?当堂检测答案1.答案 D解析 方程Ax +By +C =0表示直线的条件为A 、B 不能同时为0,即A 2+B 2≠0.2.答案 C解析 由ax +by =c ,得y =-a b x +c b, ∵ab <0,∴直线的斜率k =-a b>0, 直线在y 轴上的截距c b <0.由此可知直线通过第一、三、四象限.3.答案 A解析 由题意,得所求直线斜率为12,且过点(1,0).故所求直线方程为y =12(x -1),即x -2y -1=0.4.答案 B解析 由两直线垂直,得12×⎝ ⎛⎭⎪⎫-2m =-1,解得m =1. 5.答案 -3或1解析 两条直线y =ax -2和3x -(a +2)y +1=0互相平行,所以a 3=1a +2≠-21,解得a =-3或a =1.课时精练答案1.答案 B解析 直线x +y -3=0,即y =-x +3,它的斜率等于-1,故它的倾斜角为135°,故选B.2.答案 D解析 由已知得m 2-4≠0,且2m 2-5m +2m 2-4=1, 解得:m =3.3.答案 D解析 通过直线的斜率和截距进行判断.4.答案 D解析 由点(1,-1)在直线上可得a -3m +2a =0(m ≠0),解得m =a ,故直线方程为ax+3ay +2a =0(a ≠0),即x +3y +2=0,其斜率k =-13. 5.答案 A解析 由y =mx -3m +2,得y -2=m (x -3).所以直线必过点(3,2).6.答案 A解析 因为直线x +ay =3恒过点(3,0),所以此直线只需不和x +y =0,x -y =0两直线平行就能构成三角形.所以a ≠±1.7.答案 C解析 将l 1与l 2的方程化为斜截式得:y =ax +b ,y =bx +a ,根据斜率和截距的符号可得选C.8.答案 35解析 由两直线垂直的条件,得2a +3(a -1)=0,解得a =35. 9.答案 2解析 线段AB 的中点为(1,1),则m +3-5=0,即m =2.10.答案 (-∞,-12)∪(0,+∞) 解析 当a =-1时,直线l 的倾斜角为90°,符合要求;当a ≠-1时,直线l 的斜率为-aa +1,只要-aa +1>1或者-aa +1<0即可,解得-1<a <-12或者a <-1或者a >0. 综上可知,实数a 的取值围是(-∞,-12)∪(0,+∞). 11.答案 2x +3y +4=0解析 由条件知⎩⎨⎧2a 1+3b 1+4=0,2a 2+3b 2+4=0,易知两点P 1(a 1,b 1),P 2(a 2,b 2)都在直线2x +3y +4=0上,即2x +3y +4=0为所求.三、解答题12.解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距都为0,当然相等,所以a =2,方程即为3x +y =0.当a ≠2时,截距存在且均不为0, 所以a -2a +1=a -2,即a +1=1. 所以a =0,方程即为x +y +2=0.(2)将l 的方程化为y =-(a +1)x +a -2,所以⎩⎨⎧ -a +1>0,a -2≤0或⎩⎨⎧-a +1=0,a -2≤0,所以a ≤-1.综上,a 的取值围是a ≤-1.13.解 方法一 (1)由l 1:2x +(m +1)y +4=0, l 2:mx +3y -2=0知:①当m =0时,显然l 1与l 2不平行.②当m ≠0时,l 1∥l 2,需2m =m +13≠4-2. 解得m =2或m =-3,∴m 的值为2或-3.(2)由题意知,直线l 1⊥l 2.①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0显然垂直.②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直.③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3. 当l 1⊥l 2时,k 1·k 2=-1,即(-a +21-a )·(-a -12a +3)=-1, ∴a =-1.综上可知,当a =1或a =-1时,直线l 1⊥l 2. 方法二 (1)令2×3=m (m +1), 解得m =-3或m =2.当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0, 显然l 1与l 2不重合,∴l 1∥l 2. 同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0, 显然l 1与l 2不重合,∴l 1∥l 2. ∴m 的值为2或-3.(2)由题意知直线l 1⊥l 2,∴(a +2)(a -1)+(1-a )(2a +3)=0, 解得a =±1,将a =±1代入方程,均满足题意. 故当a =1或a =-1时,直线l 1⊥l 2.。