直线的一般式方程

合集下载

直线方程公式大全

直线方程公式大全

直线方程公式大全一、一般式方程直线的一般式方程表示为 Ax + By + C = 0,其中 A、B、C 为常数。

直线方程大全中的其他形式可以通过一般式方程推导得出。

二、斜截式方程斜截式方程是直线方程的另一种常见形式。

它表示为 y = mx + c,其中 m 为斜率,c 为截距。

三、截距式方程截距式方程也是直线方程的一种常见形式,表示为 x/a + y/b = 1,其中 a、b 分别为 x 轴和 y 轴的截距。

四、两点式方程两点式方程通过直线上的两个点来表示直线方程。

设直线上的两个点为 (x1, y1) 和 (x2, y2),则两点式方程表示为 (y - y1) = ((y2 - y1)/(x2 - x1))(x - x1)。

五、点斜式方程点斜式方程利用直线上的一个已知点的坐标和该直线的斜率来表示方程。

设已知点为 (x1, y1),斜率为 m,则点斜式方程表示为 y - y1 = m(x - x1)。

六、垂直线方程垂直线的特点是斜率不存在,所以其方程可以表示为 x = a,其中 a 为与 y 轴垂直的线在 x 轴上的截距。

七、水平线方程水平线的特点是斜率为零,所以其方程可以表示为 y = a,其中 a 为与 x 轴平行的线在 y 轴上的截距。

八、点式方程点式方程是直线方程中最简单的形式,利用直线上的一个已知点的坐标来表示直线方程。

设已知点为 (x1, y1),则点式方程表示为 (y - y1) = m(x - x1),其中 m 为直线的斜率。

九、角平分线方程角平分线是将一个角平分成两个相等的角的线段。

设角的两边斜率分别为 m1 和 m2,角平分线的斜率可表示为 m = (m1 + m2)/2,将平分线上的一个点坐标 (x1, y1) 代入点斜式方程可得到角平分线方程。

十、法线方程直线的法线是与该直线垂直的直线。

设直线的斜率为 m,法线的斜率可表示为-1/m,再通过已知点 (x1, y1) 可以得到法线方程。

3.2.3直线的一般式方程(最新)

3.2.3直线的一般式方程(最新)
1 当a≠0时, k1 , k2 a 2 , a 若 l1 l2 , 则 k1 k2 1,
所以 a 1; 综上, a 0 或 a 1.
练习3:直线x+m2y+6=0与直线 (m-2)x+3my+2m=0没有公共点,求实数m的值.
解:当m=0时, l1 : x 6 0, l2 : 2 x 0,
P0 ( x0 , y0 )
也具有形式Ax+By+C=0(B=0).
综上,都具有形式:Ax+By+C=0.
二、方程Ax+By+C=0表示直线
A C x , 1、当B≠0时, 方程可化为 y B B A 这是直线的斜截式方程,它表示斜率是
C 在y轴上的截距是 的直线. B
2、当B=0时,
4 x 3 y 12 0.
练习1:根据下列条件, 写出直线的方程, 并 把它化成一般式:
1 ⑴ 经过点 A(8, 2) , 斜率是 ; 2 ⑵ 经过点 B (4, 2) , 平行于 x 轴;
⑶ 经过点 P (3, 2) , P2 (5, 4) ; 1
x 2y 4 0 y20 x y 1 0
y
l
(1) A=0 , B≠0 ,C≠0
o
x
四、A、B、C对直线的位置的影响:
在方程Ax+By+C=0中,A,B,C为何值时, 方程表示的直线: (1)平行于x轴;(2)平行于y轴;
y
l
(2) B=0 , A≠0 , C≠0
o
x
四、A、B、C对直线的位置的影响:
在方程Ax+By+C=0中,A,B,C为何值时, 方程表示的直线: (1)平行于x轴;(2)平行于y轴;(3)与x轴重合;

直线的一般式方程

直线的一般式方程
因为方程表示直线,所以 m2-3m+2 与 m-2 不能同时为 0,故 m≠2.
(2)由直线的方程可求出斜率 k=-m2-m-3m2+2=1,解得 m=0.
探究:课本P65
在方程Ax By C 0中,A, B,C为何值时,方程表示的直线
k 0, y y0
y
y0
l
yAxC C BB B
l与x轴平行 B 0, A 0,C 0 x l与x轴重合 B 0, A 0,C 0
法二 由l′与l平行,可设l′的方程为3x+4y+m=0. 将点(-1,3)代入上式得m=-9.
∴所求直线的方程为3x+4y-9=0.
练习2.已知直线l的方程为3x+4y-12=0,求满足下列条件的直线l′的方程: (1)过点(-1,3),且与l平行; (2)过点(-1,3),且与l垂直
解(2)法一 ∵ kl=-34, l′与 l 垂直,∴l′的斜率为43,又 l′过点(-1,3),
练习2.已知直线l的方程为3x+4y-12=0,求满足下列条件的直线l′的方程: (1)过点(-1,3),且与直线l平行; (2)过点(-1,3),且与直线l垂直
解(1)法一 l 的方程可化为 y=-34x+3,∴l 的斜率为-34. ∵l′与 l 平行,∴l′的斜率为-34. 又∵l′过点(-1,3) ∴由点斜式知方程为 y-3=-34(x+1),即3x+4y-9=0.
(1)已知直线 l
过点
A(5, 3)
,倾斜角为
2
,则直线 l
y 3 3(x 5)
方程为________________.
3
y 5x 3 (2)已知直线 l 过点 A(0, 3) ,斜率为 5 ,则直线 l 方程为________________.

直线的一般式方程

直线的一般式方程

直线的一般式方程直线一般式方程适用于所有的二维空间直线。

它的基本形式是Ax+By+C=0 (A,B不全为零)。

因为这样的特点特别适合在计算机领域直线相关计算中用来描述直线。

方程表达式直线的一般式方程能够表示坐标平面内的任何直线。

(A,B不全为零即A^2+B^2≠0)该直线的斜率为(当B=0时没有斜率)平行于x轴时,A=0,C≠0;平行于y轴时,B=0,C≠0;与x轴重合时,A=0,C=0;与y轴重合时,B=0,C=0;过原点时,C=0;与x、y轴都相交时,A*B≠0。

结论两直线平行时:普遍适用:,方便记忆运用:(A2B2C2≠ 0)两直线垂直时:两直线重合时:两直线相交时:两直线一般式垂直公式的证明:设直线l1:A1x+B1y+C1=0直线l2:A2x+B2y+C2=0(必要性)∵l1⊥l2∴k1×k2=-1∵k1=-A1/B1,k2=-A2/B2 ∴(-A1/B1)(A2/B2)=-1 ∴(B1B2)/(A1A2)=-1∴B1B2=-A1A2∴A1A2+B1B2=0(充分性)∵A1A2+B1B2=0∴B1B2=-A1A2∴(B1B2)(1/A1A2)=-1∴(A1/B1)(A2/B2)=-1∴(-A1/B1)(-A2/B2)=-1∵k1=-A1/B1, k2=-A2/B2∴k1×k2=-1∴l1⊥l2方程求解一般式方程在计算机领域的重要性常用的直线方程有一般式、点斜式、截距式、斜截式、两点式等等。

除了一般式方程,它们要么不能支持所有情况下的直线(比如跟坐标轴垂直或者平行),要么不能支持所有情况下的点(比如x坐标相等,或者y坐标相等)。

所以一般式方程在用计算机处理二维图形数据时特别有用。

已知直线上两点求直线的一般式方程已知直线上的两点P1(X1,Y1) P2(X2,Y2), P1 P2两点不重合。

对于AX+BY+C=0:当x1=x2时,直线方程为x-x1=0当y1=y2时,直线方程为y-y1=0当x1≠x2,y1≠y2时,直线的斜率k=(y2-y1)/(x2-x1) 故直线方程为y-y1=(y2-y1)/(x2-x1)×(x-x1)即x2y-x1y-x2y1+x1y1=(y2-y1)x-x1(y2-y1)即(y2-y1)x-(x2-x1)y-x1(y2-y1)+(x2-x1)y1=0即(y2-y1)x+(x1-x2)y+x2y1-x1y2=0 ①可以发现,当x1=x2或y1=y2时,①式仍然成立。

直线的一般式方程

直线的一般式方程

④经过两点P1(3,-2),P2(5,-4);
x+y-1=0,
⒊求下列直线的斜率和在Y轴上的截距,并 画出图形: ① k= - 3,B=5; ① 3x+y-5=0 ② x/4 -y/5 =1 ③ x+2y=0
② k=5/4,b= -5 ; ③ k= -1/2,b=0; ④ k=7/6,b=2/3 ⑤ k=0,b=7/2。
㈠复习提问:
点斜式:已知直线上一点P1(x1,y1)的坐标, 和直线的斜率k,则直线的方程是
y y1 k ( x x1 )
有斜率的直线
斜截式:已知直线的斜率k,和直线在y轴上的 截距b则直线方程是
y kx b
有斜率的直线
x x 0 过点 与 x 轴垂直的直线可表示成 , (x0 , y0) 过点(x0 , y0) 与y轴垂直的直线可表示成 y y0。
④ 7x-6y+4=0
⑤ 2y-7=0
1、直线方程的一般式Ax+By+C=0(A,B不同时为零)
A k 斜率为: B
纵截距为:
C B
2、掌握直线方程的一般式与特殊式的互化。
布置作业:课本P54-1、2;课本P55第六题
4 y 4 x 6 3
4x+3y – 12=0
巩固训练(一)
若直线l在x轴上的截距-4时,倾斜角的余弦值 是-3/5, 则直线l的点斜式方程是
直线l的斜截式方程是___________ 4x+3y+16=0 直线l的一般式方程是___________
例2:把直线L的方程x –2y+6= 0化成斜截式, 求出直线L的斜率和它在x轴与y轴上的截距, 并画图。 y

直线方程的一般式

直线方程的一般式

3 2 x y 设 线 l的 程 直 方 的 + =1 得a + b =1(a > 0, b > 0) a b
3 2 3 2 ⋅ 由 + =1 ≥ 2 a b a b
得ab ≥ 24
3 2 1 1 时 S∆AOB = ab ≥ 12 当 = = 时 即a = 6, b = 4 , a b 2 2 x y S∆AOB的 小 的 12 此 最 值 , 时 + =1 6 4
对截距概念的深刻理解
求过(1,2)并且在两个坐标轴上的截距相等的直线? 求过(1,2)并且在两个坐标轴上的截距相等的直线? (1,2)并且在两个坐标轴上的截距相等的直线
当两截距都不的0时 当两截距都不的 时 解:设 直线的方程的: x + y =1 a a 代入得: 把(1,2)代入得: 代入得
1 2 + =1 a a
解:三条 设
x y 1 a+b= a =b
解得:a=b=3或a=-b=-1 解得: 或 直线方程的: 直线方程的:y+x-3=0、y-x-1=0或y=2x 或
(1,2)并且在 轴上的截距是x 并且在y 变:过(1,2)并且在y轴上的截距是x轴上的截 距的2倍的直线是( 距的2倍的直线是( )
即:a=3 所以直线方程的: 所以直线方程的:x+y-3=0 那还有一条呢? 那还有一条呢?
法二:用点斜式求解 法二:
当两截距都等于0时 当两截距都等于 时 y=2x (与x轴和 轴的截距都的 轴和y轴的截距都的 与 轴和 轴的截距都的0)
对截距概念的深刻理解
(1,2)并且在两个坐标轴上的截距的 变: 过(1,2)并且在两个坐标轴上的截距的 绝对值相等的直线有几条? 绝对值相等的直线有几条?

直线的两点式方程直线的一般式方程

直线的两点式方程直线的一般式方程

直线的两点式方程直线的一般式方程直线是平面几何中的基本元素之一,可以用各种不同的方程表示。

其中,最常用的两种方式是直线的两点式方程和直线的一般式方程。

1.直线的两点式方程:(x-x₁)/(x₂-x₁)=(y-y₁)/(y₂-y₁)在这个公式中,表示直线上任意一点的坐标为(x,y)。

通过运算化简,可以得到直线的两点式方程的另一种形式:(y₁-y₂)*x+(x₂-x₁)*y+(x₁*y₂-x₂*y₁)=0这就是直线的两点式方程,也叫做点斜式方程。

2.直线的一般式方程:直线的一般式方程是通过直线的斜率和截距来表示的。

斜率表示了直线在坐标平面上的倾斜程度,截距表示了直线与坐标轴的交点。

假设直线的斜率为m,截距为b。

那么直线的一般式方程可以写为:y = mx + b这就是直线的一般式方程。

直线的斜率通过两点式方程的公式可以求解:m=(y₂-y₁)/(x₂-x₁)而直线的截距b可以通过将已知点的坐标代入直线方程求解。

例如,已知点A(x₁,y₁)在直线上,我们可以将其代入直线方程,然后解出截距b 的值。

另外,一般式方程也可以变形为标准式方程。

标准式方程表示为Ax+By+C=0,其中A、B、C是常数。

可以通过对一般式方程进行整理和变形,将其转化为标准式方程。

总结:直线的两点式方程通过已知直线上的两个点来表示直线方程,可以求解出直线上任意一点的坐标。

直线的一般式方程通过斜率和截距来表示直线方程,可以清晰地表示直线的特征。

两种方程都可以用于求解直线与其他几何元素的交点、直线的长度等问题。

在解题过程中,根据实际情况选择使用哪种方程比较方便。

直线的一般式方程

直线的一般式方程

x轴上截距a y轴上截距b (a≠0,b≠0)
不能表示倾斜角 为0。、90。的x=x0
x=x1 y=y1
x=a y=b y=kx
巩固练习:
写出满足下列条件的直线方程 :
1.斜率是 3 , 经过点A(8, 2); 3
2.经过点B(2, 0),且与x轴垂直; 3.斜率为 4, 在y轴上的截距为7; 4.经过点A(1,8), B(4, 2); 5.在y轴上的截距是2, 且与x轴平行; 6.在x轴, y轴上的截距分别是4, 3.
思考2:二元一次方程的一般形式是什么?
Ax+By+C=0
直线的一般式方程
新知探究
思考1:平面直角坐标系中的每一条直线都可 以用一个关于x, y的二元一次方程表示吗?
任意一条直线l,在其上任取一点P0(x0,y0). 当直线l斜率为k时,方程为y-y0=k(x-x0)是关于 x,y的二元一次方程; 当直线l斜率不存在时, 方程为 x-x0=0也是关于 x,y的二元一次方程,其中y的系数为0.
复习回顾
1.直线的点斜式方程 3.直线的两点式方程
y y0 k(x x0 )
y y1 x x1 y2 y1 x2 x1
2.直线的斜截式方程 4.直线的截距式方程
y=kx+b
x y 1 ab
直线方程的形式及其适用范围
方程名称 方程形式
确定条件 适用范围
点斜式 y y0 k(x x0)
且A1A2+B1B2=0,求证: l1⊥l2.
解 :由A1A2 B1B2 0,
(1)设B1B2
0, 有直线l1的斜率k1
A1 B1
,
直线l2的斜率k2
A2 B2
,且
A1 B1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2.3 直线的一般式方程
一、教学目标
1.掌握直线方程的一般式,了解直角坐标系中直线与关于x 和y 的一次方程的对应关系,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.
2.会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式,培养学生归纳、概括能力,渗透分类讨论、化归、数形结合等数学思想.
3.通过教学,培养相互合作意识,培养学生思维的严谨性,注意学生语言表述能力的训练. 二、重点难点
教学重点:直线方程的一般式及各种形式的互化.
教学难点:在直角坐标系中直线方程与关于x 和y 的一次方程的对应关系,关键是直线方程
各种形式的互化
三、教学过程 1、导入新课
前面所学的直线方程的几种形式,有必要寻求一种更好的形式,那么怎样的形式才能表示一切直线方程呢?这节课我们就来研究这个问题. 提出问题
①坐标平面内所有的直线方程是否均可以写成关于x,y 的二元一次方程?
②关于x,y 的一次方程的一般形式Ax+By+C=0(其中A 、B 不同时为零)是否都表示一条直线?
③我们学习了直线方程的一般式,它与另四种形式关系怎样,是否可互相转化? ④特殊形式如何化一般式?一般式如何化特殊形式?特殊形式之间如何互化?
⑤我们学习了直线方程的一般式Ax+By+C=0,系数A 、B 、C 有什么几何意义?什么场合下需要化成其他形式?各种形式有何局限性?
讨论结果:①分析:在直角坐标系中,每一条直线都有倾斜角α. 1°当α≠90°时,它们都有斜率,且均与y 轴相交,方程可用斜截式表示:y=kx+b. 2°当α=90°时,它的方程可以写成x=x 1的形式,由于在坐标平面上讨论问题,所以这个方程应认为是关于x 、y 的二元一次方程,其中y 的系数是零. 结论1°:直线的方程都可以写成关于x 、y 的一次方程.
②分析:a 当B≠0时,方程可化为y=-B A x-B C ,这就是直线的斜截式方程,它表示斜率为-B
A
,在y 轴上的截距为-B C 的直线.b 当B=0时,由于A 、B 不同时为零必有A≠0,方程化为x=-A
C

表示一条与y 轴平行或重合的直线.
结论2°:关于x,y 的一次方程都表示一条直线.
综上得:这样我们就建立了直线与关于x,y 的二元一次方程之间的对应关系.我们把Ax+By+C=0(其中A,B 不同时为0)叫做直线方程的一般式. 注意:一般地,需将所求的直线方程化为一般式. 在这里采用学生最熟悉的直线方程的斜截式(初中时学过的一次函数)把新旧知识联系起来. 师生小结:特殊形式必能化成一般式;一般式不一定可以化为其他形式(如特殊位置的直线),由于取点的任意性,一般式化成点斜式、两点式的形式各异,故一般式化斜截式和截距式较常见;特殊形式的互化常以一般式为桥梁,但点斜式、两点式、截距式均能直接化成一般式.各种形式互化的实质是方程的同解变形(如图1).
图1
列表:
思考探究:P98
例题讲解:
P98 例5、6
知能训练:
课本本节练习1、2、3.
拓展提升:
《名师金典》P60 例1 P61 例2、例3
.
3.3 直线的交点坐标与距离公式
3.3.1 两条直线的交点坐标
一、教学目标
1.掌握两直线方程联立方程组解的情况与两直线不同位置的对立关系,并且会通过直线方程系数判定解的情况,培养学生树立辩证统一的观点.
2.当两条直线相交时,会求交点坐标.培养学生思维的严谨性,注意学生语言表述能力的训练.
3.学生通过一般形式的直线方程解的讨论,加深对解析法的理解,培养转化能力.
4.以“特殊”到“一般”,培养学生探索事物本质属性的精神,以及运动变化的相互联系的观点.
二、重点难点
教学重点:根据直线的方程判断两直线的位置关系和已知两相交直线求交点.
教学难点:对方程组系数的分类讨论与两直线位置关系对应情况的理解.
三、教学过程: 1、导入新课
思路1.作出直角坐标系中两条直线,移动其中一条直线,让学生观察这两条直线的位置关系. 课堂设问:由直线方程的概念,我们知道直线上的一点与二元一次方程的解的关系,那如果两直线相交于一点,这一点与这两条直线的方程有何关系?你能求出它们的交点坐标吗?说说你的看法.
思路2.你认为该怎样由直线的方程求出它们的交点坐标?这节课我们就来研究这个问题.
2、提出问题
①已知两直线l 1:A 1x+B 1y+C 1=0,l 2:A 2x+B 2y+C 2=0,如何判断这两条直线的关系? ②如果两条直线相交,怎样求交点坐标?交点坐标与二元一次方程组有什关系? ③解下列方程组(由学生完成):
(ⅰ)⎩⎨⎧=++=-+022,0243y x y x ; (ⅱ)⎪⎩⎪⎨⎧+==+-2131,0362x y y x ; (ⅲ)⎪⎩
⎪⎨⎧+==-2131,
062x y y x .
如何根据两直线的方程系数之间的关系来判定两直线的位置关系?
设两条直线的方程是l 1:A 1x+B 1y+C 1=0,l 2:A 2x+B 2y+C 2=0,
如果这两条直线相交,由于交点同时在这两条直线上,交点的坐标一定是这两个方程的唯一公共解,那么以这个解为坐标的点必是直线l 1和l 2的交点,因此,两条直线是否有交点,就要看这两条直线方程所组成的方程组⎪⎩⎪⎨
⎧=++=++0
,
0222111C y B x A C y B x A 是否有唯一解.
(ⅰ)若二元一次方程组有唯一解,则l 1与l 2相交;
(ⅱ)若二元一次方程组无解,则l 1与l 2平行;
(ⅲ)若二元一次方程组有无数解,则l 1与l 2重合.即
直线l 1、l 2联立得方程组⎪⎩⎪⎨⎧⇔⎪⎩⎪
⎨⎧.
,,212121平行重合相交无解无穷多解唯一解
转化、l l 、l l 、l l
(代数问题) (几何问题)
一般地,对于直线l 1:A 1x+B 1y+C 1=0,l 2:A 2x+B 2y+C 2=0(A 1B 1C 1≠0,A 2B 2C 2≠0),有
方程组⎪⎪⎪⎪

⎪⎪⎪


⎧⇔≠=⇔⇔==⇔⇔≠⇔⎪⎩⎪⎨⎧=++=++.,,002121212121212121212
121222111平行无解重合无穷多解相交唯一解l l C C
B B A A l l
C C B B A A l l B B A A C y B x A C y B x A 3、例题讲解:P103 例1、2,《名师金典》P63 例1、2
4、练习巩固:P104 第1、2题
5、作业:课本习题3.3 A 组1、2、3,选做4题.
3.3.2 两点间的距离
一、教学目标
1.使学生掌握平面内两点间的距离公式及其推导过程;通过具体的例子来体会坐标法对于证明简单的平面几何问题的重要性.
2.能灵活运用此公式解决一些简单问题;使学生掌握如何建立适当的直角坐标系来解决相应问题,培养学生勇于探索,善于发现,独立思考的能力以及不断超越自我的创新品质. 二、重点难点
教学重点:1、平面内两点间的距离公式.
2、如何建立适当的直角坐标系.
教学难点:如何根据具体情况建立适当的直角坐标系来解决问题. 三、教学过程: 1、导入新课
思路1.已知平面上的两点P 1(x 1,y 1),P 2(x 2,y 2),如何求P 1(x 1,y 1),P 2(x 2,y 2)的距离|P 1P 2|?
思路2.(1)如果A 、B 是x 轴上两点,C 、D 是y 轴上两点,它们的坐标分别是x A 、x B 、y C 、y D ,那么|AB|、|CD|怎样求?(2)求B(3,4)到原点的距离.(3)设A(x 1,y 1),B(x 2,y 2),求|AB|. 2、提出问题
已知平面上的两点P 1(x 1,y 1),P 2(x 2,y 2),如何求P 1(x 1,y 1),P 2(x 2,y 2)的距离|P 1P 2|.
图1
在直角坐标系中,已知两点P 1(x 1,y 1)、P 2(x 2,y 2),如图1,从P 1、P 2分别向x 轴和y 轴作垂线P 1M 1、P 1N 1和P 2M 2、P 2N 2,垂足分别为M 1(x 1,0)、N 1(0,y 1)、M 2(x 2,0)、N 2(0,y 2),其中直线P 1N 1和P 2M 2相交于点Q.
在Rt △P 1QP 2中,|P 1P 2|2=|P 1Q|2+|QP 2|2.
因为|P 1Q|=|M 1M 2|=|x 2-x 1|,|QP 2|=|N 1N 2|=|y 2-y 1|, 所以|P 1P 2|2=|x 2-x 1|2+|y 2-y 1|2.
由此得到两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:|P 1P 2|=2
12212)()(y y x x -+-.
3、例题讲解:P105 例3、4,《名师金典》P65 例1、2、3
4、练习巩固:P106 第1、2题
5、作业:课本习题3.3 A 组
6、
7、8;B 组6.。

相关文档
最新文档