直线与椭圆相切

直线与椭圆相切
直线与椭圆相切

切线方程

1、已知直线l 过点(4,0),且与椭圆22

143

x y +=相切,求直线l 的方程

解:设直线l 的方程:(4)y k x =-

联立直线与椭圆得:22(4)143

y k x x y =-???+=?? 消y 整理得:2222(34)324(163)0k x k x k +-+-=

直线l 与椭圆相切,2222(32)4(34)4(163)0k k k ?=--+?-= 解得:12

k =± 直线l 的方程:1(4)2y x =±

- 即122y x =-或122y x =-+

设所求直线方程为:y=k*(x-4) 把直线方程代入椭圆x^2/4+y^2/3=1之中,可以得到关于x 的二元一次方程: (4*k^2+3)*x^2-(32k^2)*x+64k^2-12=0

令方程的判别式=0 得到k=-1/2或1/2即为直线的斜率.

弦长公式(高二版椭圆)

圆锥曲线综合问题 1. 直线方程的处理:若直线方程未给出,应先假设。 (1)若已知直线过点00(,)x y ,则假设方程为00()y y k x x ; (2)若已知直线的斜率k ,则假设方程为y kx m ; (3)若仅仅知道是直线,则假设方程为y kx m 【注】以上三种假设方式都要注意斜率是否存在的讨论; (4)若已知直线恒过x 轴上一点(,0)t ,且水平线不满足条件(斜率为0),可以假设 直线为x my t 。 【反斜截式,1 m k 】不含垂直于y 轴的情况(水平线) 2.弦长公式:若直线:l y kx m =+与椭圆22 221(0)x y a b a b +=>>相交于,P Q 两点,求弦长 ||PQ 的步骤: 设1122(,),(,)P x y Q x y ,联立方程组(将直线方程代入椭圆方程): 222222 ,, y kx m b x a y a b =+??+=?消去y 整理成关于x 的一元二次方程:2 0Ax Bx C ++=, 则12,x x 是上式的两个根,2 40B AC ?=->;由韦达定理得:12,B x x A +=- 12,C x x A = 又,P Q 两点在直线l 上,故1122,y kx m y kx m =+=+,则2121()y y k x x -=-,从而 ||PQ === =【注意:如果联立方程组消去x 整理成关于y 的一元二次方程:2 0Ay By C ,则 ||PQ ==反斜截式 22 (1) m A 】 3、其他常见问题处理 (1)等腰(使用垂直平分),平行四边形(使用向量的平行四边形法则或者对角线中点重合) (2)直径(圆周角为直角,向量垂直或斜率乘积等于1),其次考虑是否需要求圆的方程。 (3)锐角和钝角使用数量积正负求解;涉及到其它角的问题使用正切值,转化为斜率求解; (4)三角形内切圆的半径与三角形面积的关系:,()2 a b c S rp p 这里; (5)圆的弦长用垂径定理;(6)涉及到焦点要联想到定义; (7)三点共线,长度之比尽量使用相似三角形转化为坐标之比,利用韦达定理。

椭圆的焦点弦长公式

椭圆的焦点弦长公式 θ 2 2 2 2 21cos 2c a ab F F -= 及其应用 在有关椭圆的综合题中,常常遇到椭圆焦点弦的问题,如何解决这类问题呢?首先我们有命题: 若椭圆的焦点弦21F F 所在直线的倾斜角为θ,a 、b 、c 分别表示椭圆的长半轴长、 短半轴长和焦半距,则有θ 2 2 2 2 21cos 2c a ab F F -= 。 上面命题的证明很容易得出,在此笔者只谈谈该命题的应用。 例1、已知椭圆的长轴长AB 8=,焦距21F F =24,过椭圆的焦点1F 作一直线交椭圆于P 、Q 两点,设X PF 1∠=α)0(πα<<,当α取什么值时,PQ 等于椭圆的短轴长? 分析:由题意可知PQ 是椭圆的焦点弦,且4=a ,22=c ,从而22=b ,故由焦 点弦长公式θ 2 2 2 2 21cos 2c a ab F F -= 及题设可得: 24c o s 816)22(422 2 =-??α ,解得 αc o s ±=22-,即α=arc 22cos -或arc -π22cos -。 例2、在直角坐标系中,已知椭圆E 的一个焦点为F (3,1),相应于F 的准线为Y 轴, 直线l 通过点F ,且倾斜角为3 π ,又直线l 被椭圆E 截得的线段的长度为5 16,求椭圆E 的 方程。 分析:由题意可设椭圆E 的方程为 1)1() 3(2 2 2 2 =-+ --b y a c x ,又椭圆E 相应于F 的准线 为Y 轴,故有 32 +=c c a (1), 又由焦点弦长公式有 3 cos 22 2 2 2 πc a ab -= 5 16 (2) 又 222c b a += (3)。解由(1)、(2)、(3)联列的方程组得:42=a ,32 =b ,1=c , 从而所求椭圆E 的方程为 13 ) 1(4) 4(2 2 =-+ -y x 。 例3、已知椭圆C : 12 22 2=+ b y a x (0>>b a ),直线1l : 1=- b y a x 被椭圆C 截得的

直线与椭圆的位置关系之弦长公式

直线与椭圆的位置关系之弦长公式 一、知识点 1) 弦长公式的推导、几何解释、作用 2) 弦长公式的应用 二、教学过程 1 弦长公式 引例:经过椭圆2 212 x y +=的左焦点F 作倾斜角为60 的直线l ,直线l 与椭圆相交于,A B 两点,求AB 的长. 分析:左焦点(1,0)F - ,则直线:1)l y x =+代入椭圆方程2 212x y +=,得到 271240x x ++=,则=32? 设1122(,),(,)A x y B x y ,则 ||AB == 122||2 || x x a - ==7 一般: 若直线l 上两点111222(,),(,)P x y P x y ,则121212||||PP x x y y =-=-,上述公式称为弦长公式,有推导过程知,其实质是直线上两点距离公式的简化式; 说明: 1) 计算12||x x -,可以通过12||x x -= 但通常利用12||x x -= 算,其中a 为对应x 的方程的二次项系数,?为判别式;12||y y -也同理计算,弦长公式体现了“设而不求”的思想 2 ) 如图,因为2112||:||:|||P M P M P P k = ,又1 12||||PM x x =-,212||||P M y y =-,则可 知 ,12 1212||||PP x x y y =-=- 这里体现了“化斜为直”的思想 2 例题

例1 经过椭圆2 212 x y +=的左焦点F 作直线l ,直线l 与椭圆相交于,A B 两点,若||7 AB = l 的方程. 解:设:(1)l y k x =+,代入椭圆方程:2 2 220x y +-=,得到 2222(12)4220k x k x k +++-=,所以28(1)k ?=+ 则 ||7 AB === 所以k = 又当k 不存在时,||AB = 所以,直线l 的方程1)y x =+ 配套练习:上述例题中,也可以将直线l 设为1x y λ=-,请你计算 解:将1x y λ=-代入椭圆方程22220x y +-=,得到: 22(2)210y y λλ+--=,则2=8 +1λ?(), 则||AB == 所以,λ= 当λ不存在,即 0y =时,||AB = 所以直线l 的方程为1x y = - 例2 经过椭圆2 212 x y +=的左焦点F 作直线l ,直线l 与椭圆相交于,A B 两点,求OAB ?面积的最大值. 解:设直线1x y λ=-,代入椭圆方程2 2 220x y +-=,得到:

《椭圆的弦长公式》专题

《椭圆的弦长公式》专题 2018年()月()日班级姓名从善如登,从恶如崩。——《国语》 两点间距离公式:|AB|=(x1-x2)2+(y1-y2)2 完全平方公式:(a+b) 2=① 完全平方公式:(a-b) 2=② ①-②,得: 问题:设直线l:y=kx+m交椭圆x2 a2+y2 b2=1 (a>b>0)于A(x1,y1),B(x2,y2)两点,则|AB|=(x1-x2)2+(y1-y2)2 = = = 同理可得|P1P2|=|y1-y2|·1+1 k2(k≠0).

1.已知椭圆22 12521 x y +=的直线交椭圆于,A B 两点,求AB . 2.已知直线y =2x -5与圆x 2+y 2=25相交于A ,B 两点,求AB 3.已知直线y =x +2与椭圆9 2 x +2y =1相交于A ,B 两点,求AB 4.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为( ) A .3 2 B .2 3 C.303 D.32 6 5.过椭圆x 25+y 2 4 =1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.

6.已知椭圆x 236+y 29 =1和点P (4,2),直线l 经过点P 且与椭圆交于A 、B 两点. (1)当直线l 的斜率为12 时,求线段AB 的长度; (2)当P 点恰好为线段AB 的中点时,求l 的方程. 7.已知动点P 与平面上两定点A (-2,0),B (2,0)连线的斜率的积为定值-12 . (1)试求动点P 的轨迹方程C ; (2)设直线l :y =kx +1与曲线C 交于M 、N 两点,当|MN |= 423 时,求直线l 的方程. 8.在平面直角坐标系xOy 中,点P 到两点(0,-3),(0,3)的距离之和等于4,设点P 的轨迹为C . (1)写出C 的方程; (2)设直线y =kx +1与C 交于A 、B 两点,k 为何值时OA →⊥OB →?此时|AB |的值是多少?

相关文档
最新文档