七上实数经典例题及习题
(完整版)新浙教版七年级上册数学第三章《实数》知识点及典型例题

新浙教版七年级上册数学第三章《实数》知识点及典型例题注意掌握以下公式:① 2a⎧=⎨⎩② 33a a =-将考点与相关习题联系起来考点一、关于“……说法正确的是……”的题型 1、下列说法正确的是( )A .有理数只是有限小数B .无理数是无限小数C .无限小数是无理数D .4π是分数 2、有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17是17的平方根。
其中正确的有( ) A .0个 B .1个 C .2个 D .3个 3、下列结论中正确的是 ( )A .数轴上任一点都表示唯一的有理数B .数轴上任一点都表示唯一的无理数 C. 两个无理数之和一定是无理数 D. 数轴上任意两点之间还有无数个点 考点二、有关概念的识别1、下面几个数:.0.34,1.010********.064-3π,2275 ) A. 1 B. 2 C. 3 D. 4 2、下列说法中正确的是( ) A.813 B. 1的立方根是±1 C. 1=±1 D. 55的平方根的相反数3、一个自然数的算术平方根为a ,则与之相邻的前一个自然数是 考点三、计算类型题126,则下列结论正确的是( )A.4.5<a<5.0B.5.0<a<5.5C.5.5<a<6.0D.6.0<a<6.5 4、对于有理数x 120132013x x x--的值是 322(39)(310)ππ-- 4、4(x-1)2=9考点四、数形结合1. 点A 在数轴上表示的数为35,点B 在数轴上表示的数为5A ,B 两点的距离为______2、如图,数轴上表示12的对应点分别为A ,B ,点B 关于点A 的对称点为C ,则点C 表示的数是( ) A 2-1 B .12 C .22 D 2-2考点五、实数绝对值的应用1、32232+23考点六、实数非负性的应用123|49|7a baa--=+,求实数a,b的值。
七年级实数计算题

七年级实数计算题一、平方根的计算。
1. 计算√(16)- 解析:因为4^2 = 16,所以√(16)=4。
2. 计算√(25)+√(9)- 解析:√(25) = 5,因为5^2=25;√(9)=3,因为3^2 = 9。
所以√(25)+√(9)=5 + 3=8。
3. 计算√(121)-√(49)- 解析:√(121) = 11,因为11^2=121;√(49)=7,因为7^2 = 49。
所以√(121)-√(49)=11-7 = 4。
4. 计算√(0.09)- 解析:因为0.3^2=0.09,所以√(0.09)=0.3。
5. 计算√(1frac{9){16}}- 解析:先将带分数化为假分数,1(9)/(16)=(25)/(16)。
因为((5)/(4))^2=(25)/(16),所以√(1frac{9){16}}=(5)/(4)。
二、立方根的计算。
6. 计算sqrt[3]{8}- 解析:因为2^3 = 8,所以sqrt[3]{8}=2。
7. 计算sqrt[3]{ - 27}- 解析:因为( - 3)^3=-27,所以sqrt[3]{-27}=-3。
8. 计算sqrt[3]{64}+sqrt[3]{ - 1}- 解析:sqrt[3]{64}=4,因为4^3 = 64;sqrt[3]{-1}=-1,因为( - 1)^3=-1。
所以sqrt[3]{64}+sqrt[3]{-1}=4+( - 1)=3。
9. 计算sqrt[3]{0.001}- 解析:因为0.1^3 = 0.001,所以sqrt[3]{0.001}=0.1。
10. 计算sqrt[3]{1-(19)/(27)}- 解析:先计算1-(19)/(27)=(8)/(27)。
因为((2)/(3))^3=(8)/(27),所以sqrt[3]{1-(19)/(27)}=(2)/(3)。
三、实数的混合运算。
11. 计算√(4)+sqrt[3]{ - 8}- - 3- 解析:√(4)=2,sqrt[3]{-8}=-2,| - 3|=3。
七年级数学实数测试题及答案

七年级数学实数测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.1415926B. √2C. 0.33333(无限循环小数)D. 1/32. 以下哪个表达式的结果不是实数?A. √(-1)B. √(9)C. √(16)D. √(4)3. 两个实数相除,结果为实数的条件是:A. 两个数都是正数B. 两个数都是负数C. 除数不为零D. 被除数不为零4. 如果a和b是实数,且a > b,那么下列哪个表达式一定大于0?A. a - bB. b - aC. a * bD. a / b5. 下列哪个数是实数?A. 5.6C. √(-4)D. 0.333...(无限循环小数)6. 如果a是一个正实数,那么下列哪个表达式的结果也是正实数?A. 1/aB. -1/aC. a^2D. -a^27. 以下哪个数是实数的平方根?A. √3B. √(-3)C. -√3D. √98. 如果a是一个实数,那么下列哪个表达式的结果不是实数?A. a + 1B. a - 1C. a / aD. a * a9. 下列哪个数是实数的立方根?A. ³√8B. ³√(-1)C. ³√(-8)D. ³√110. 如果a是一个实数,那么下列哪个表达式的结果总是实数?A. √aB. a^2D. a^3二、填空题(每题2分,共20分)11. √25的值是______。
12. 一个数的立方根是2,那么这个数是______。
13. 两个实数相除,如果除数是正数,结果的符号与______相同。
14. 如果一个数的平方根是5,那么这个数是______。
15. 一个数的绝对值是3,那么这个数可以是______或______。
16. √(-1)的值是______。
17. 一个数的平方是16,那么这个数是______或______。
18. 如果a是一个实数,那么1/a的值是实数的条件是a不等于______。
七年级实数经典例题

七年级实数经典例题一、实数的概念相关例题1. 下列各数中,哪些是有理数?哪些是无理数?√(4),(1)/(3),π,0.575̇7,0.1010010001·s(相邻两个1之间0的个数逐次加1),sqrt[3]{ 8}。
解析:有理数是整数与分数的统称。
√(4)=2,是整数,所以是有理数。
-(1)/(3)是分数,属于有理数。
0.575̇7是无限循环小数,属于有理数。
sqrt[3]{ 8}=-2,是整数,是有理数。
π是无限不循环小数,是无理数。
0.1010010001·s(相邻两个1之间0的个数逐次加1)是无限不循环小数,是无理数。
2. 把下列各数分别填入相应的集合里:-√(16),(π)/(3),3.1415926,0.456,3.030030003·s(相邻两个3之间0的个数逐次加1),0,(22)/(7),sqrt[3]{ 8},7.5,√(81)。
有理数集合:{};无理数集合:{}。
解析:先对各数进行化简:-√(16)=-4。
√(81)=9。
-sqrt[3]{ 8}=2。
有理数集合:{-√(16),3.1415926,0.456,0,(22)/(7),sqrt[3]{ 8},7.5,√(81)}。
无理数集合:{(π)/(3),3.030030003·s(相邻两个3之间0的个数逐次加1)}。
二、实数的大小比较例题1. 比较√(5)与2.236的大小。
解析:因为(√(5))^2 = 5,2.236^2=4.999696。
又因为5>4.999696。
根据一个正数,它的平方越大,这个正数越大,所以√(5)>2.236。
2. 比较-√(3)与1.732的大小。
解析:因为|-√(3)|=√(3)≈1.7321,| 1.732| = 1.732。
两个负数比较大小,绝对值大的反而小。
由于1.7321>1.732。
所以-√(3)< 1.732。
三、实数的运算例题1. 计算:√(16)-sqrt[3]{ 8}+√(frac{1){4}}。
七年级数学 实数 练习题及答案

26
(2)
n-
n n2 1
n
n n2 1
(n 为大于 0 的自然数).
小结: 此类规律型问题的特点是给定一列数或等式或图形,要求适当地计算,必要的观察,猜想,归纳,验 证,利用从特殊到一般的数学思想,分析特点,探索规律,总结结论.
举一反三:
1. 某正数的平方根为 a 和 2a 9 ,则这个数为(). 33
表示的数为( ).
A. -2- 3 B. -1- 3
C. -2+ 3
D. 1+ 3
解析:∵AB= 3 +1, ∴C 点表示的数为-1-( 3 +1)=-2- 3 . 选 A
5/6
3. (1)1 的平方根是
;立方根为
;算术平方根为
.
(2)平方根是它本身的数是
.
(3)立方根是其本身的数是
.
(4)算术平方根是其本身的数是
例 3 求下列各式中的 x:(1)x2-144=0;(2)25x2-16=0;(3)(x-3)2=25.
解析: 先通过移项、系数化为 1,将原式变形为 x2=a(a≥0)的形式,再根据平方根的定义求出未知数 x 的 值.
答案: 解:(1)x2-144=0
x2=144 x=±12;(下) (2)25x2-16=0 x2= 16
A. 1 B. 2 C. 4
D. 9
解析:由平方根定义知 a 与 2a 9 互为相反数, 33
所以 a + 2a 9 =0, 33
解得 a=3, 所以这个数的平方根为±1, 所以这个数为 1.选 A.
2. 如图 3-3,数轴上 A,B 两点表示的数分别为-1 和 3 ,点 B 关于点 A 的对称点为点 C,则点 C 所
初一数学实数计算题专题训练(含答案)

专题一计算题训练一.计算题1.计算题:|﹣2|﹣(1+)0+.2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)3.4 . ||﹣.5.计算题:.6.计算题:(1);7 .8.(精确到0.01).9.计算题:.10.(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2);11.| ﹣|+﹣12. ﹣12+×﹣213. .14. 求x的值:9x2=121.15. 已知,求xy的值.16. 比较大小:﹣2,﹣(要求写过程说明)17.求x的值:(x+10)2=1618. .19. 已知m<n,求+的值;20.已知a<0,求+的值.专题一计算题训练参考答案与试题解析一.解答题(共13小题)1.计算题:|﹣2|﹣(1+)0+.解答:解:原式=2﹣1+2,=3.2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)解答:解:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2),=﹣1+4×9+3,=38.3.4. ||﹣.原式=14﹣11+2=5;(2)原式==﹣1.点评:此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.5.计算题:.考点:有理数的混合运算。
801377分析:首先进行乘方运算、然后根据乘法分配原则进行乘法运算、同时进行除法运算,最后进行加减法运算即可.解答:解:原式=﹣4+8÷(﹣8)﹣(﹣1)=﹣4﹣1﹣(﹣)=﹣5+=﹣.点评:本题主要考查有理数的混合运算,乘方运算,关键在于正确的去括号,认真的进行计算即可.6.;7..考点:实数的运算;立方根;零指数幂;二次根式的性质与化简。
801377分析:(1)注意:|﹣|=﹣;(2)注意:(π﹣2)0=1.解答:解:(1)(==;(2)=1﹣0.5+2=2.5.点评:保证一个数的绝对值是非负数,任何不等于0的数的0次幂是1,注意区分是求二次方根还是三次方根.8.(精确到0.01).考点:实数的运算。
七年级数学-实数习题精选(含答案)

实数单元练习题1填空题:(本题共10小题,每小题2分,共20分)1、()26-的算术平方根是__________。
2、ππ-+-43= _____________。
3、2的平方根是__________.4、实数a,b,c 在数轴上的对应点如图所示 化简c b c b a a ---++2=________________。
5、若m 、n 互为相反数,则n m +-5=_________。
6、若2)2(1-+-n m =0,则m =________,n =_________。
7、若 a a -=2,则a______0.8、12-的相反数是_________。
9、 38-=________,38-=_________。
10、绝对值小于π的整数有__________________________。
选择题:(本题共10小题,每小题3分,共30分)11、代数式12+x ,x ,y ,2)1(-m ,33x 中一定是正数的有( )。
A 、1个B 、2个C 、3个D 、4个12、若73-x 有意义,则x 的取值范围是( )。
A 、x >37-B 、x ≥ 37- C 、x >37 D 、x ≥37 13、若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。
A 、0B 、21 C 、2 D 、不能确定 14、下列说法中,错误的是( ). A 、4的算术平方根是2 B 、81的平方根是±3C 、8的立方根是±2 D、立方根等于-1的实数是-115、64的立方根是( )。
A 、±4B 、4C 、-4D 、1616、已知04)3(2=-+-b a ,则ba 3的值是( )。
A 、 41 B 、- 41 C 、433 D 、43 17、计算33841627-+-+的值是( )。
A 、1B 、±1C 、2D 、718、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。
七年级数学实数计算题练习(含答案)

七年级数学实数计算题练习(含答案)1.求下列各式中x的值.(1)4x2﹣9=0;(2)64(x﹣2)3﹣1=0.2.求下列各式中的x.(1)(x﹣1)2﹣8=1.(2)27+(1﹣2x)3=0.3.计算:(1);(2).4.(1);(2).5.(1)计算:;(2)已知8(x﹣1)2=16,求x的值.6.已知=x,,z是﹣8的立方根,求2x+y﹣z的平方根.7.求下列式子中x的值.(1);(2)3x3=﹣81.8.求等式中x的值:3(x+1)2=12.9.计算:.10.(1)若(x﹣1)3=8求x的值;(3)计算.11.计算:﹣12+﹣.12.计算:(1).(2)﹣|﹣2|+(﹣).13.计算:(1);(3).14.已知:实数a、b、c在数轴上的位置如图:且|a|=|b|,化简:|a|﹣|a+b|﹣|c﹣a|+|c+b|﹣|﹣b|.15.计算:(1)(﹣1)2021+﹣+|﹣2|;(2)﹣﹣++.16.计算题:(1);(2).17.计算:(1);(2).答案:1.求下列各式中x的值.(1)4x2﹣9=0;(2)64(x﹣2)3﹣1=0.【解答】解:(1)4x2﹣9=0,移项得:4x2=9,系数化为1得:,∴;(2)64(x﹣2)3﹣1=0,移项得:64(x﹣2)3=1,系数化为1得:,∴,∴.2.求下列各式中的x.(1)(x﹣1)2﹣8=1.(2)27+(1﹣2x)3=0.【解答】解:(1)(x﹣1)2﹣8=1,(x﹣1)2=9,x﹣1=3或x﹣1=﹣3,x=4或x=﹣2;(2)27+(1﹣2x)3=0,(1﹣2x)3=﹣27,1﹣2x=﹣3,x=2.3.计算:(1);(2).【解答】解:(1)===;(2)===9+5=14.4.(1);(2).【解答】解:(1)=﹣27+2﹣﹣3+4=﹣24;(2)=2﹣﹣=.5.(1)计算:;(2)已知8(x﹣1)2=16,求x的值.【解答】解:(1)=+3;(2)8(x﹣1)2=16,(x﹣1)2=2,x﹣1=±,x﹣1=或x﹣1=﹣,x=1+或x=1﹣.6.已知=x,,z是﹣8的立方根,求2x+y﹣z的平方根.【解答】解:∵=x,,z是﹣8的立方根,∴x=5,y=4,z=﹣2,∴2x+y﹣z=10+4+2=16,∴2x+y﹣z的平方根是±4.7.求下列式子中x的值.(1);(2)3x3=﹣81.【解答】解:(1)∵,∴,解得:,;(2)∵3x3=﹣81,∴x3=﹣27,解得:x=﹣3.8.求等式中x的值:3(x+1)2=12.【解答】解:∵3(x+1)2=12,∴(x+1)2=4,∴x+4=±2,∴x+4=2或x+4=﹣2,解得:x=﹣3或x=1.9.计算:.【解答】解:=1+×4﹣(﹣4)=1+2+4=7.10.(1)若(x﹣1)3=8求x的值;(2)计算.【解答】解:(1)∵(x﹣1)3=8,∴x﹣1=2,∴x=3.(2)原式=4﹣(﹣3)+6﹣(4﹣)=4+3+6﹣4+=9+.11.计算:﹣12+﹣.【解答】解:原式=﹣1+3﹣2=0.12.计算:(1).(2)﹣|﹣2|+(﹣).【解答】解:(1)=﹣1+2+8×=﹣1+2+4=5;(2)﹣|﹣2|+(﹣)=4+﹣2+3﹣1=4+.13.计算:(1);(2).【解答】解:(1)原式=1+﹣1+3=3+;(2)原式=3﹣2+=1+.14.已知:实数a、b、c在数轴上的位置如图:且|a|=|b|,化简:|a|﹣|a+b|﹣|c﹣a|+|c+b|﹣|﹣b|.【解答】解:根据图示,可得:a<c<0<b,且|c|<|b|,∴c﹣a>0,c+b>0,﹣b<0,∵a<0<b,且|a|=|b|,∴a+b=0,∴|a|﹣|a+b|﹣|c﹣a|+|c+b|﹣|﹣b|=﹣a﹣0﹣(c﹣a)+(c+b)﹣b=﹣a﹣0﹣c+a+c+b﹣b=0.15.计算:(1)(﹣1)2021+﹣+|﹣2|;(2)﹣﹣++.【解答】解:(1)(﹣1)2021+﹣+|﹣2|=﹣1+2﹣4+2﹣=﹣1﹣;(2)﹣﹣++=3﹣0﹣++=3.16.计算题:(1);(2).【解答】解:(1)=﹣1+4﹣3=0;(2)=﹣1+3+2﹣2=3.17.计算:(1);(2).【解答】解:(1)原式=5+1=6;(2)原式=5+﹣=5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点总结及题型考点一、实数的概念及分类 (3分) 1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分) 1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分) 1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0 3、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
考点四、科学记数法和近似数 (3—6分) 1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法把一个数写做n a 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。
考点五、实数大小的比较 (3分) 1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=-b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a bab a b a b a b a <⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。
(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。
考点六、实数的运算 (做题的基础,分值相当大)1、加法交换律 a b b a +=+2、加法结合律 )()(c b a c b a ++=++3、乘法交换律 ba ab =4、乘法结合律 )()(bc a c ab =5、乘法对加法的分配律 ac ab c b a +=+)(6、实数混合运算时,对于运算顺序有什么规定?实数混合运算时,将运算分为三级,加减为一级运算,乘除为二能为运算,乘方为三级运算。
同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。
7、有理数除法运算法则就什么?两有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个数的倒数;第二,两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不为零的数,商都是零。
8、什么叫有理数的乘方?幂?底数?指数?相同因数相乘积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数。
记作: a n9、有理数乘方运算的法则是什么?负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数。
零的任何正整数幂都是零。
10、加括号和去括号时各项的符号的变化规律是什么?去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去(加)括号后式子各项的符号与原括号内式子相应各项的符号相反。
经典例题类型一.有关概念的识别1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数故选C举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【答案】本题主要考察平方根、算术平方根、立方根的概念,∵=9,9的平方根是±3,∴A正确.∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确.【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1B、1.4C、D、【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A表示数为,故选C.【变式3】【答案】∵π= 3.1415…,∴9<3π<10因此3π-9>0,3π-10<0∴类型二.计算类型题2.设,则下列结论正确的是()A. B.C. D.解析:(估算)因为,所以选B举一反三:【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是__________. 3)___________,___________,___________.【答案】1);.2)-3. 3),,【变式2】求下列各式中的(1)(2)(3)【答案】(1)(2)x=4或x=-2(3)x=-4类型三.数形结合3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().A.-1 B.1-C.2-D.-2【答案】选C[变式2]已知实数、、在数轴上的位置如图所示:化简【答案】:类型四.实数绝对值的应用4.化简下列各式:(1) |-1.4|(2) |π-3.142|(3) |-| (4) |x-|x-3|| (x≤3)(5) |x2+6x+10|分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。
解:(1) ∵=1.414…<1.4∴|-1.4|=1.4-(2) ∵π=3.14159…<3.142∴|π-3.142|=3.142-π(3) ∵<, ∴|-|=-(4) ∵x≤3, ∴x-3≤0,∴|x-|x-3||=|x-(3-x)|=|2x-3| =说明:这里对|2x-3|的结果采取了分类讨论的方法,我们对这个绝对值的基本概念要有清楚的认识,并能灵活运用。
(5) |x2+6x+10|=|x2+6x+9+1|=|(x+3)2+1|∵(x+3)2≥0, ∴(x+3)2+1>0∴|x2+6x+10|= x2+6x+10举一反三:【变式1】化简:【答案】=+-=类型五.实数非负性的应用5.已知:=0,求实数a, b的值。
分析:已知等式左边分母不能为0,只能有>0,则要求a+7>0,分子+|a2-49|=0,由非负数的和的性质知:3a-b=0且a2-49=0,由此得不等式组从而求出a, b的值。
解:由题意得由(2)得a2=49 ∴a=±7由(3)得a>-7,∴a=-7不合题意舍去。
∴只取a=7把a=7代入(1)得b=3a=21∴a=7, b=21为所求。
举一反三:【变式1】已知(x-6)2++|y+2z|=0,求(x-y)3-z3的值。
解:∵(x-6)2++|y+2z|=0且(x-6)2≥0, ≥0, |y+2z|≥0,几个非负数的和等于零,则必有每个加数都为0。
∴解这个方程组得∴(x-y)3-z3=(6-2)3-(-1)3=64+1=65【变式2】已知那么a+b-c的值为___________【答案】初中阶段的三个非负数:,a=2,b=-5,c=-1; a+b-c=-2类型六.实数应用题6.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。
解:设新正方形边长为xcm,根据题意得x2=112+13×8∴x2=225∴x=±15∵边长为正,∴x=-15不合题意舍去,∴只取x=15(cm)答:新的正方形边长应取15cm。
举一反三:【变式1】拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下的空白区域恰好是一个小正方形。
(4个长方形拼图时不重叠)(1)计算中间的小正方形的面积,聪明的你能发现什么?(2)当拼成的这个大正方形边长比中间小正方形边长多3cm时,大正方形的面积就比小正方形的面积多24cm2,求中间小正方形的边长.解析:(1)如图,中间小正方形的边长是:,所以面积为=大正方形的面积=,一个长方形的面积=。
所以,答:中间的小正方形的面积,发现的规律是:(或)(2) 大正方形的边长:,小正方形的边长:,即,又大正方形的面积比小正方形的面积多24 cm2所以有,化简得:将代入,得:cm答:中间小正方形的边长2.5 cm。
类型七.易错题7.判断下列说法是否正确(1)的算术平方根是-3;(2)的平方根是±15.(3)当x=0或2时,(4)是分数解析:(1)错在对算术平方根的理解有误,算术平方根是非负数.故(2)表示225的算术平方根,即=15.实际上,本题是求15的平方根,故的平方根是.(3)注意到,当x=0时,=,显然此式无意义,发生错误的原因是忽视了“负数没有平方根”,故x≠0,所以当x=2时,x=0.(4)错在对实数的概念理解不清. 形如分数,但不是分数,它是无理数.类型八.引申提高8.(1)已知的整数部分为a,小数部分为b,求a2-b2的值.(2)把下列无限循环小数化成分数:①②③(1)分析:确定算术平方根的整数部分与小数部分,首先判断这个算术平方根在哪两个整数之间,那么较小的整数即为算术平方根的整数部分,算术平方根减去整数部分的差即为小数部分.解:由得的整数部分a=5, 的小数部分,∴(2)解:(1) 设x=①则②②-①得9x=6∴.(2) 设①则②②-①,得99x=23∴.(3) 设①则②②-①,得999x=107,∴.学习成果测评:A组(基础)一、细心选一选1.下列各式中正确的是()A. B. C. D.2. 的平方根是( )A.4 B. C. 2 D.3. 下列说法中①无限小数都是无理数②无理数都是无限小数③-2是4的平方根④带根号的数都是无理数。