中考数学-特殊角三角函数的应用

合集下载

三角函数在实际生活中的应用备战2023年中考数学考点微专题

三角函数在实际生活中的应用备战2023年中考数学考点微专题

考向 5.9 三角函数在实际生活中的应用【知识要点】1、在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。

由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。

2、如图1,当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角 当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角3、 如图2,坡面与水平面的夹角叫做仰角 (或叫做坡比)。

用字母i 表示,即tan h i A l ==4、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。

5、指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方位角。

如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60°。

7.测量物体高度的方法:(1).利用全等三角形的知识 ;(2)利用相似三角形的对应边成比例 ;(3).利用三角函数的知识例1、如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D 点处时,无人机测得操控者A 的俯角为75︒,测得小区楼房BC 顶端点C 处的俯角为45︒.已知操控者A 和小区楼房BC 之间的距离为45米,小区楼房BC 的高度为153米. (1)求此时无人机的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB 的方向,并以5米/秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点A ,B ,C ,D 都在同一平面内.参考数据:tan 7523︒=+,tan1523︒=-.计算结果保留根号)图4 图3图2 hi=h:l A BC图1解:如图1,过D 点作DH ⊥AB ,垂足为点H ,过C 点作CE ⊥DH ,垂足为点E ,可知四边形EHBC 为矩形,∴EH =CB ,CE =HB ,∵无人机测得小区楼房BC 顶端点C 处的俯角为45︒,测得操控者A 的俯角为75︒,DM ∥AB , ∴∠ECD =45°,∠DAB =75°,∴∠CDE =∠ECD =45°,∴CE =DE ,设CE =DE =HB =x ,∴AH =45-x ,DH =DE +EH =x +153在Rt △DAH 中,DH =tan75°×AH =(()2345x -, 即(()1532345x x +=-,解得:x =30,∴DH = 15330∴此时无人机的高度为()15330米;(2)如图2所示,当无人机飞行到图中F 点处时,操控者开始看不见无人机,此时AF 刚好经过点C ,过A 点作AG ⊥DF ,垂足为点G ,此时,由(1)知,AG =15330(米),∴°30153===15tan 7523AG DG ++; ∵1533tan =453BC CAB AB ∠==, ∴°=30CAB ∠∵DF ∥AB ,∴∠DF A =∠CAB =30°,∴°30345tan 30GA GF ==+, ∴=30330DF GF DG -=+,因为无人机速度为5米/秒,所以所需时间为30330=6365++(秒); 所以经过()636+秒时,无人机刚好离开了操控者的视线.本题综合考查了解直角三角形的应用,涉及到了等腰直角三角形的性质、矩形的判定与性质、特殊角的三角函数值、解直角三角形等知识,解决本题的关键是读懂题意,能从题意与图形中找出隐含条件,能构造直角三角形求解等,本题蕴含了数形结合的思想方法等.一、单选题1.(2021·广东深圳·二模)“儿童放学归来早,忙趁东风放纸鸢”,小明周末在龙潭公园草坪上放风筝,已知风筝拉线长100米且拉线与地面夹角为65︒(如图所示,假设拉线是直的,小明身高忽略不计),则风筝离地面的高度可以表示为()A.100sin65︒B.100cos65︒C.100tan65︒D.100 sin65︒2.(2021·浙江温州·一模)如图,小慧的眼睛离地面的距离为1.6m,她用三角尺测量广场上的旗杆高度,仰角恰与三角板60︒角的边重合,量得小慧与旗杆之间的距离BC为5m,则旗杆AD的高度(单位:m)为()A.6.6 B.11.6 C.531.63+D.1.653+3.(2021·河北唐山·二模)如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为()A.4sinα米B.4sinα米C.4cosα米D.4cosα米4.(2021·广东云浮·一模)如图,是一水库大坝横断面的一部分,坝高60mh=,迎水斜坡100mAB=,斜坡的坡角为a,则tan a的值为()A.43B.34C.35D.455.(2021·重庆市永川区教育科学研究所一模)鹅岭公园是重庆最早的私家园林,前身为礼园,是国家级AAA旅游景区,园内有一瞰胜楼,登上高楼能欣赏到重庆的优美景色.周末,李明同学游览鹅岭公园,如图,在点A观察到瞰胜楼楼底点C的仰角为12°,楼顶点D的仰角为13°,测得斜坡BC的坡面距离BC=510米,斜坡BC的坡度8:15i=.则瞰胜楼的高度CD是()米.(参考数据:tan12°≈0.2,tan13°≈0.23)A.30 B.32 C.34 D.36 6.(2021·山东·济宁学院附属中学二模)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以60海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为()A.30海里B.203海里C.20海里D.302海里7.(2021·河北唐山·一模)如图,电线杆的高度为CD=m,两根拉线AC与BC互相垂直(A,D,B在同一条直线上),若∠CBA=α,则拉线AC的长度可以表示为()A .sin m αB .cos m αC .m cosαD .tan m α8.(2021·江苏无锡·一模)如图,胡同左右两侧是竖直的墙,一架32米长的梯子BC 斜靠在右侧墙壁上,测得梯子与地面的夹角为45°,此时梯子顶端B 恰巧与墙壁顶端重合.因梯子阻碍交通,故将梯子底端向右移动一段距离到达D 处,此时测得梯子AD 与地面的夹角为60°,则胡同左侧的通道拓宽了( )A .3米B .3米C .()32-米D .()33-米 9.(2021·重庆一中三模)如图,小欢同学为了测量建筑物AB 的高度,从建筑物底端点B 出发,经过一段坡度1:2.4i =的斜坡,到达C 点,测得坡面BC 的长度为15.6米,再沿水平方向行走30米到达点D (A ,B ,C ,D 均在同一平面内).在点D 处测得建筑物顶端A 的仰角为37︒,则建筑物AB 的高度约为(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)( )A .27.3米B .28.4米C .33.3米D .38.4米10.(2021·江苏南通·二模)如图,某大楼DE 楼顶挂着“众志成城,抗击疫情”的大型宣传牌,为了测量宣传牌的高度CD ,小江从楼底点E 向前行走30米到达点A ,在A 处测得宣传牌下端D 的仰角为60°.小江再沿斜坡AB 行走26米到达点B ,在点B 测得宣传牌的上端C 的仰角为43°,已知斜坡AB 的坡度i =1:2.4,点A 、B 、C 、D 、E 在同一平面内,CD ⊥AE ,宣传牌CD 的高度约为( )(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93,3)A .8.3米B .8.5米C .8.7米D .8.9米11.(2021·重庆八中二模)如图,一棵松树AB 挺立在斜坡CB 的顶端,斜坡CB 长为52米,坡度为i =12:5,小张从与点C 相距60米的点D 处向上爬12米到达观景台DE 的顶端点E ,在此测得松树顶端点A 的仰角为39°,则松树的高度AB 约为( )(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81)A .16.8米B .28.8米C .40.8米D .64.2米12.(2021·重庆·字水中学三模)白沙镇有一望夫塔,小明在与塔底中心的D 同一水平线的A 处,测得24AD =米,沿坡度0.75:1i =的斜坡AB 走到B 点,测得塔顶E 仰角为37°,再沿水平方向走22米到C 处,测得塔顶E 的仰角为22°,则塔高DE 为( )米.(结果精确到十分位)(sin370.60︒≈,cos370.80︒≈,tan370.75︒≈,sin 220.37︒≈,cos220.93︒≈,tan220.40︒≈,)A .18.3米B .19.7米C .20.7米D .22.3米二、填空题 13.(2021·广东·深圳市南山区太子湾学校二模)如图,一楼房AB 后有一假山,其斜面坡度为i =13E 处有一休息亭,测得假山坡脚C 与楼房水平距离BC =25米,与亭子距离CE =20米,小丽从楼房顶测得E 点的俯角为45°,则楼房AB 的高为_____米.14.(2021·广东·广州市第六十五中学一模)小颖家住在甲楼,她所居住的楼房前面有一座乙楼.冬天,阳光入射角是30°,两楼距离20米,小颖家的阳台距地面7米,乙楼高18米,那么影子的顶端距她家阳台还有_________米.(精确到0.1米)15.(2021·山东·郓城县教学研究室一模)如图,在一笔直的海岸线l上有相距2km的A、B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是__km.16.(2021·吉林长春·二模)如图,在A处看建筑物CD的顶端C的仰角为α,且tanα=0.8,向前行进3米到达B处,从B处看顶端C的仰角为45°(图中各点均在同一平面内,A、B、D三点在同一条直线上,CD⊥AD,则建筑物CD的高度为_____米.17.(2021·广东·佛山市华英学校一模)如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC,CD.测得BC=9m,CD=6m,斜坡CD的坡度i=1:3,在D处测得电线杆顶端A的仰角为30°,则电线杆AB的高度为_____.18.(2021·湖南·长沙市开福区青竹湖湘一外国语学校二模)如图,某同学在楼房的A处测得荷塘的一端B处的俯角为30°,荷塘另一端点D与点C,B在同一直线上,已知楼房AC =32米,CD=16米,则荷塘的宽BD为________米.19.(2021·山东·庆云县渤海中学一模)如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D 处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.则大楼AB的高度_____.(结果保留根号)20.(2021·湖北咸宁·模拟预测)如图,建筑物BC上有一高为8m的旗杆AB,从D处观测旗杆顶部A的仰角为53︒,观测旗杆底部B的仰角为45︒,则建筑物BC的高约为_____m(结果保留小数点后一位).(参考数据sin530.80︒≈)︒≈,cos530.60︒≈,tan53 1.33三、解答题21.(2021·贵州六盘水·模拟预测)位于我市的北盘江大桥是世界第一高桥,大桥采用低塔斜拉桥桥型(如图1),桥长1341.4米,桥面至江面垂直距离565.4米.图2是从图1中抽象出的平面图,测得拉索AB 与水平桥面的夹角是30°,拉索DE 与水平桥面的夹角是60°,两拉索顶端的距离BE 为55米,两拉索底端距离AD 为240米.(1)求DC EC的值;(结果保留根号) (2)求立柱BC 的长.(结果精确到0.1米,3≈1.732)22.(2021·贵州·仁怀市教育研究室一模)如图,两座建筑物AD 与BC ,其地面距离CD 为60m ,从AD 的顶点A 测得BC 顶部B 的仰角30α=︒,测得其底部C 的俯角45β=︒,求建筑物BC 的高(结果保留根号).23.(2021·河南商丘·三模)在一次实弹演习中,我国参演红军需轰炸蓝军的一个桥梁,如图,红军飞行员驾驶战机飞到A 处时发现桥梁BC 并测得B 、C 两点的俯角分别为45°、35°.已知飞机、桥梁BC 与地面在同一水平面上,其桥梁BC 长度为800m .请求出此时飞机离地面的高度.(结果保留整数.参考数据:sin35°≈712,c os35°≈56,tan35°≈710)一、单选题1.(2021·吉林长春·中考真题)如图是净月潭国家森林公园一段索道的示意图.已知A 、B两点间的距离为30米,A α∠=,则缆车从A 点到达B 点,上升的高度(BC 的长)为( )A .30sin α米B .30sin α米C .30cos α米D .30cos α米 2.(2021·福建·中考真题)如图,某研究性学习小组为测量学校A 与河对岸工厂B 之间的距离,在学校附近选一点C ,利用测量仪器测得60,90,2km A C AC ∠=︒∠=︒=.据此,可求得学校与工厂之间的距离AB 等于( )A .2kmB .3kmC .23kmD .4km3.(2021·湖南衡阳·中考真题)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB 的倾斜角为37︒,大厅两层之间的距离BC 为6米,则自动扶梯AB 的长约为(sin370.6,cos370.8,tan370.75︒≈︒≈︒≈)( ).A .7.5米B .8米C .9米D .10米4.(2021·山东济南·中考真题)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m 的A 处测得试验田右侧出界N 处俯角为43︒,无人机垂直下降40m 至B 处,又测得试验田左侧边界M 处俯角为35︒,则M ,N 之间的距离为(参考数据:tan 430.9︒≈,sin 430.7︒≈,cos350.8︒≈,tan350.7︒≈,结果保留整数)( )A .188mB .269mC .286mD .312m5.(2021·浙江金华·中考真题)如图是一架人字梯,已知2AB AC ==米,AC 与地面BC 的夹角为α,则两梯脚之间的距离BC 为( )A .4cos α米B .4sin α米C .4tan α米D .4cos α米 6.(2021·广东深圳·中考真题)如图,在点F 处,看建筑物顶端D 的仰角为32°,向前走了15米到达点E 即15EF =米,在点E 处看点D 的仰角为64°,则CD 的长用三角函数表示为( )A .15sin32︒B .15tan64︒C .15sin64︒D .15tan32︒ 7.(2021·山东日照·中考真题)如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点B 处前行30m 到达斜坡CE 的底部点C 处,然后沿斜坡CE 前行20m 到达最佳测量点D 处,在点D 处测得塔顶A 的仰角为30,已知斜坡的斜面坡度i 1:3=,且点A ,B ,C ,D ,E 在同一平面内,小明同学测得古塔AB 的高度是( )A .()320mB .()310mC .203mD .40m8.(2021·贵州毕节·中考真题)如图,拦水坝的横断面为梯形ABCD .其中//AD BC ,45ABC ∠=︒,30DCB ∠=︒,斜坡AB 长8m .则斜坡CD 的长为( )A .62mB .82mC .46mD .3m9.(2021·湖北十堰·中考真题)如图,小明利用一个锐角是30的三角板测量操场旗杆的高度,已知他与旗杆之间的水平距离BC 为15m ,AB 为1.5m (即小明的眼睛与地面的距离),那么旗杆的高度是( )A .3153m 2⎛⎫+ ⎪⎝⎭B .53mC .153mD .353m 2⎛⎫+ ⎪⎝⎭ 10.(2021·湖北随州·中考真题)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点A 处,底端落在水平地面的点B 处,现将梯子底端向墙面靠近,使梯子与地面所成角为β,已知3sin cos 5αβ==,则梯子顶端上升了( )A .1米B .1.5米C .2米D .2.5米11.(2021·重庆·中考真题)如图,在建筑物AB 左侧距楼底B 点水平距离150米的C 处有一山坡,斜坡CD 的坡度(或坡比)为1:2.4i =,坡顶D 到BC 的垂直距离50DE =米(点A ,B ,C ,D ,E 在同一平面内),在点D 处测得建筑物顶A 点的仰角为50°,则建筑物AB 的高度约为(参考数据:sin500.77︒≈;cos500.64︒≈;tan50 1.19︒≈)A.69.2米B.73.1米C.80.0米D.85.7米12.(2021·山东泰安·中考真题)如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D 处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=.根据小颖的测量数据,计算出建筑物BC的高度约为()(参考数据:1:2.4≈)3 1.732A.136.6米B.86.7米C.186.7米D.86.6米二、填空题13.(2021·广西百色·中考真题)数学活动小组为测量山顶电视塔的高度,在塔的椭圆平台遥控无人机.当无人机飞到点P处时,与平台中心O点的水平距离为15米,测得塔顶A点的仰角为30°,塔底B点的俯角为60°,则电视塔的高度为_________米.14.(2021·广西梧州·中考真题)某市跨江大桥即将竣工,某学生做了一个平面示意图(如图),点A到桥的距离是40米,测得∠A=83°,则大桥BC的长度是___米.(结果精确到1米)(参考数据:sin83°≈0.99,cos83°≈0.12,tan83°≈8.14)15.(2021·江苏无锡·中考真题)一条上山直道的坡度为1:7,沿这条直道上山,则前进100米所上升的高度为________米.16.(2021·四川乐山·中考真题)如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点C 处测得石碑顶A 点的仰角为30,她朝石碑前行5米到达点D 处,又测得石顶A 点的仰角为60︒,那么石碑的高度AB 的长=________米.(结果保留根号)17.(2021·贵州遵义·中考真题)小明用一块含有60°(∠DAE =60°)的直角三角尺测量校园内某棵树的高度,示意图如图所示,若小明的眼睛与地面之间的垂直高度AB 为1.62m ,小明与树之间的水平距离BC 为4m ,则这棵树的高度约为 ___m .(结果精确到0.1m ,参考数据:3≈1.73)18.(2021·内蒙古赤峰·中考真题)某滑雪场用无人机测量雪道长度.如图,通过无人机的镜头C 测一段水平雪道一端A 处的俯角为50°,另一端B 处的俯角为45°,若无人机镜头C 处的高度CD 为238米,点A ,D ,B 在同一直线上,则通道AB 的长度为_________米.(结果保留整数,参考数据sin500.77︒≈,cos500.64︒≈,tan50 1.19︒≈)19.(2021·广西来宾·中考真题)如图,从楼顶A 处看楼下荷塘C 处的俯角为45︒,看楼下荷塘D 处的俯角为60︒,已知楼高AB 为30米,则荷塘的宽CD 为__________米.(结果保留根号)20.(2021·湖北黄石·中考真题)如图,直立于地面上的电线杆AB ,在阳光下落在水平地面和坡面上的影子分别是BC 、CD ,测得5BC =米,4CD =米,150BCD ∠=︒,在D 处测得电线杆顶端A 的仰角为45︒,则电线杆AB 的高度约为______米.(参考数据:2 1.414≈,3 1.732≈,结果按四舍五入保留一位小数)21.(2021·湖北荆州·中考真题)如图1是一台手机支架,图2是其侧面示意图,AB ,BC 可分别绕点A ,B 转动,测量知8cm BC =,16cm AB =.当AB ,BC 转动到60=︒∠BAE ,50ABC ∠=︒时,点C 到AE 的距离为_____________cm .(结果保留小数点后一位,参考数据:sin700.94︒≈,3 1.73≈)22.(2021·湖北武汉·中考真题)如图,海中有一个小岛A ,一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60︒方向上;航行12n mile 到达C 点,这时测得小岛A 在北偏东30方向上.小岛A 到航线BC 的距离是__________n mile 3 1.73≈,结果用四舍五入法精确到0.1).三、解答题23.(2021·山东青岛·中考真题)某校数学社团开展“探索生活中的数学”研学活动,准备测量一栋大楼BC 的高度.如图所示,其中观景平台斜坡DE 的长是20米,坡角为37︒,斜坡DE 底部D 与大楼底端C 的距离CD 为74米,与地面CD 垂直的路灯AE 的高度是3米,从楼顶B 测得路灯AE 项端A 处的俯角是42.6︒.试求大楼BC 的高度. (参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈,17sin 42.625︒≈,34cos 42.645︒≈,9tan 42.610︒≈)24.(2021·广西河池·中考真题)如图,小明同学在民族广场A 处放风筝,风筝位于B 处,风筝线AB 长为100m ,从A 处看风筝的仰角为30,小明的父母从C 处看风筝的仰角为50︒.(1)风筝离地面多少m ?(2)AC 相距多少m ?(结果保留小数点后一位,参考数据:sin300.5︒=,cos300.8660︒=,tan300.5774︒=,sin500.7760︒=,cos500.6428︒=,tan50 1.1918︒=)25.(2021·四川巴中·中考真题)学校运动场的四角各有一盏探照灯,其中一盏探照灯B 的位置如图所示,已知坡长AC =12m ,坡角α为30°,灯光受灯罩的影响,最远端的光线与地面的夹角β为27°,最近端的光线恰好与地面交于坡面的底端C 处,且与地面的夹角为60°,A 、B 、C 、D 在同一平面上.(结果精确到0.1m.参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.50,3 1.73.)(1)求灯杆AB的高度;(2)求CD的长度.1.A【解析】【分析】过点A作AC⊥BC于C,根据正弦的定义解答即可.【详解】解:如图,过点A作AC⊥BC于C,在Rt △ABC 中,sin B =AC AB, 则AC =AB •sin B =100sin65°(米),故选:A .【点拨】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键.2.D【解析】【分析】根据题意可知 1.6BE CD ==米,60ABC ∠=︒.再利用特殊角的三角函数解直角三角形即可求出AC 长,从而求出AD 长.【详解】根据题意可知 1.6BE CD ==米,60ABC ∠=︒.∵60ABC ∠=︒,∴在Rt ABC 中,tan 6053AC BC =︒=米. ∴(53 1.6)AD AC CD =+=米.故选D .【点拨】本题考查解直角三角形的实际应用.掌握特殊角的三角函数值是解答本题的关键.3.B【解析】【分析】过点A′作A′C ⊥AB 于点C ,根据锐角三角函数的定义即可求出答案.【详解】解:如答图,过点A′作A′C ⊥AB 于点C .在Rt △OCA′,sinα=A C A O '',所以A′C =A′O·sinα.由题意得A′O =AO =4,所以A′C =4sinα,因此本题选B .【点拨】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.4.B【解析】【分析】直接利用勾股定理得出BC ,再利用锐角三角函数关系得出答案.【详解】解:过点A 作AC ⊥BD ,垂足为C ,∵坝高h =60m ,迎水斜坡AB =100m ,∴BC 222210060AB AC --=80(m ),则tanα=603804= . 故选:B .【点拨】此题主要考查了解直角三角形的应用,正确掌握边角关系是解题关键. 5.D【解析】【分析】由斜坡BC 的坡度8:15i =,设8CE x =、15BE x =,由勾股定理可知17BC x =,BC =510,求得30x =,据此可知AE 、DE 的长,再根据DC DE CE =-可得答案.【详解】由斜坡BC 的坡度8:15i =,设8CE x =、15BE x =,在Rt BCE 中,2222(8)(15)17BC BE CE x x x =+=+=,由17510BC x ==求得30x =,∴240CE =米、450BE =米,在Rt ACE △中,2401200tan tan12CE AE CAE ===∠︒(米), 在Rt ADE △中,tan 1200tan13276DE AE DAE =∠=⨯︒=(米),则27624036DC DE CE =-=-=(米).故选:D .【点拨】本题主要考查解直角三角形的应用能力,注意能借助仰角和俯角构造直角三角形并解直角三角形是解决本题的关键.6.D【解析】【分析】根据时间、速度、距离之间的关系求出AC ,根据等腰直角三角形的性质解答即可.【详解】解:如图:由题意得,AC =60×0.5=30海里,∵CD ∥BF ,∴∠CBF =∠DCB =60°,又∠ABF =15°,∴∠ABC =45°,∵AE ∥BF ,∴∠EAB =∠FBA =15°,又∠EAC =75°,∴∠CAB =90°,∴2sin 45AC BC ︒=, ∴BC 2=2故选:D .【点拨】本题考查的是解直角三角形的应用−方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.7.B【解析】【分析】根据同角的余角相等得∠ACD =∠CBD ,由cos ∠ACD =CD AC ,即可求出AC 的长度.【详解】解:∵∠ACD +∠BCD =90°,∠CBD +∠BCD =90°,∴∠ACD =∠CBD ,在Rt △ACD 中,∵cos ∠ACD =CD AC, ∴AC =cos cos CD m ACD α=∠. 故选:B .【点拨】本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.8.D【解析】【分析】根据等腰直角三角形的性质分别求出E C 、EB ,根据正切的定义求出DE ,结合图形计算得到答案.【详解】解:在Rt EBC 中,45BCE ∠=︒,3EC EB ∴=(米), 在Rt BDE △中,tan BE BDE DE ∠=,tan BE DE BDE ∴=∠),(3CD EC DE ∴=-=米,故选:D .【点拨】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念、熟记锐角三角函数的定义是解题的关键.9.A【解析】【分析】延长AB 与DC 相交与点E ,由题意和三角函数可求得EC 的长度,根据37°角的三角函数求得AE 的长度,进而可求出建筑物AB 的高度.【详解】如图,延长AB 与DC 相交于点E ,∵15.6BC =,斜坡BC 的坡度i =1:2.4=512, ∴12cos 13BCE =∠,5sin 13BCE =∠, ∴12cos 15.6=14.413EC BC BCE =•=⨯∠,5sin 15.6613BE BC BCE =•=⨯=∠, ∴==14.430=44.4ED EC CD ++,又∵D ∠=37°,∴=tan37=44.40.75=33.3AE ED •︒⨯,∴33.3627.3AB AE BE =-=-=,故选:A .【点拨】此题考查了三角函数应用题,仰角和坡度的概念,做出辅助线是解答本题的关键.10.A【解析】【分析】过B 分别作AE 、DE 的垂线,设垂足为F 、G .分别在Rt △ABF 和Rt △ADE 中,通过解直角三角形求出BF 、AF 、DE 的长,再求出EF 即BG 的长;在Rt △CBG 中求出CG 的长,根据CD =CG +GE -DE 即可求出宣传牌的高度.【详解】解:过B 作BF ⊥AE ,交EA 的延长线于F ,作BG ⊥DE 于G .Rt△ABF中,i=tan∠BAF=BFAF=12.4,AB=26米,∴BF=10(米),AF=24(米),∴BG=AF+AE=54(米),Rt△BGC中,∠CBG=43°,∴CG=BG•tan43°≈54×0.93=50.22(米),Rt△ADE中,∠DAE=60°,AE=30米,∴DE=3AE=303(米),∴CD=CG+GE-DE=50.22+10-303≈8.3(米).故选:A.【点拨】此题考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.11.B【解析】【分析】延长AB交DC的延长线于H,作EF⊥AH于F,根据矩形的性质得到FH=DE=12,EF=DH,根据坡度的概念分别求出CH、BH,根据正切的定义求出AF,结合图形计算即可.【详解】解:延长AB交DC的延长线于H,作EF⊥AH于F,则四边形EDHF为矩形,∴FH=DE=12米,EF=DH,∵斜坡CB的坡度为t=12:5,∴设BH=12x,CH=5x,由勾股定理得,(5x)2+(12x)2=522,解得,x=4,则BH=12x=48米,CH=5x=20米,则EF=DH=DC+CH=60+20=80(米),在Rt△AEF中,tan∠AEF=AF EF,则AF=EF•tan∠AEF≈80×0.81=64.8(米),∴AB=AF+HF﹣BH=64.8+12﹣48=28.8(米),【点拨】本题考查的是解直角三角形的应用-仰角俯角问题、坡度坡角问题,掌握仰角俯角、坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.12.B【解析】【分析】连接DE ,作BF ⊥DE 于F ,BG ⊥DA 于G ,设BG =3x m ,则AG =4x m ,BF =DG =24+4x (m ),CF =BF +BC =46+4x (m ),由三角函数定义得出EF =tan 37°(24+4x ),EF =tan 22°(46+4x ),得出0.75(24+4x )=0.40(46+4x ),解得27x =,求出DF 、EF ,即可得出答案.【详解】解:连接DE ,作BF ⊥DE 于F ,BG ⊥DA 于G ,如图:则DF =BG ,BF =DG =AD +AG ,∵AB =斜坡AB 的坡度0.75BG i AG==, ∴设BG =3x m ,则AG =4x m ,BF =DG =24+4x (m ),CF =BF +BC =24+4x +22=46+4x (m ), 由题意得:∠EBF =37°,∠ECF =22°,∵tan ∠BEF =244EF EF BF x =+,tan ∠ECF =464EF EF CF x=+, ∴EF =tan 37°(24+4x ),EF =tan 22°(46+4x ),∴0.75(24+4x )=0.40(46+4x ), 解得:27x =,∴DF =BG =3x =67(m ), EF =0.40(46+4x )=1327(m ), ∴DE =DF +EF =613213819.7777+=≈; 故选:B .【点拨】本题考查的是解直角三角形的应用-仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度坡角分概念、熟记锐角三角函数的定义是解题的关键.13.(3【分析】过点E作EF⊥BC的延长线于F,EH⊥AB于点H,解直角三角形即可求解.【详解】解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i=EFCF3=tan∠ECF,∴∠ECF=30°,∴EF=12CE=10米,CF=3∴BH=EF=10米,HE=BF=BC+CF=(3在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(3∴AB=AH+HB=(3答:楼房AB的高为(3)米,故答案为:(3【点拨】本题考查了解直角三角形的应用,涉及俯角及坡度的知识,构造直角三角形是解题的关键.14.0.6【解析】【分析】如图,解直角三角形ABC可以求得AB的长,求出乙楼的影子在甲楼上的高度CD,再求影子的顶端距她家阳台的距离.【详解】解:如图,△ABC中,∠ABC=90°,∠ACB=30°,BC=20米,所以AB=BC•tan∠ACB=20•tan30°=20×3(米),CD=18-11.55=6.45(米),∴影子的顶端距她家阳台还有7-6.45≈0.6(米).故答案为0.6.【点拨】本题考查特殊角的三角函数值,解直角三角形,根据BC求出AB的值是解题的关键.15.3【解析】【分析】根据题意可证得△ABC为等腰三角形,即可求出BC的长,然后再解直角三角形CBD即可求得.【详解】解:如图,过点C作CD⊥AB于点D,根据题意得:∠CAD=90°−60°=30°,∠CBD=90°−30°=60°,∴∠ACB=∠CBD−∠CAD=60°-30°=30°,∴∠CAB=∠ACB,∴BC=AB=2km,在Rt△CBD中,3sin6023CD BC=⋅︒==,3【点拨】本题考查了等腰三角形的判定与性质及解直角三角形的应用,解决本题的关键是证出△ABC是等腰三角形.16.12【解析】【分析】根据∠DBC =45°可得BD CD =,根据tan α=0.8,可得3810CD CD =+,进而即可求得CD 的长. 【详解】∵∠DBC =45°,∴BD =CD tan 45⨯︒=CD , tanα=,3AD AB BD CD =+=+,则3810CD CD =+,解得CD =12.经检验:符合题意 故答案为12.【点拨】本题考查了解直角三角形的应用,掌握正切的意义是解题的关键.17.()633m + 【解析】【分析】延长AD 交BC 的延长线于F ,作DG ⊥BF 于G ,根据直角三角形的性质和勾股定理求出DC 、CG 的长,根据正切的定义解答即可.【详解】解:如图,延长AD 交BC 的延长线于F ,作DG ⊥BF 于G ,∵∠ADE =30°,∴∠AFB =30°,∵CD =6m ,斜坡CD 的坡度i =13∴tan ∠DCG =DG CG 33 ∴∠DCG =30°,∴DG =3m ,CG =3,∴∠DFC =∠DCF =30°,∴DF =DC ,∵DG ⊥BF ,∴FG =CG =3,∴FC =3,∴FB =FC +BC =()m ,∴AB =BF ×tan ∠AFB =()m . 故答案为:(m .【点拨】本题主要考查了勾股定理,坡比和解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解.18.16【解析】【分析】根据已知条件转化为直角三角形ABC 中的有关量,由锐角三角函数的定义可求出BC ,根据BD =BC -CD 可得出答案.【详解】解:由题意知,∠ABC =30°,∠ACB =90°,AC =32米,tan tan 30,AC ABC BC ︒∠==tan 30AC BC ︒∴=== ∵CD =16米,∴BD =BC -CD=16米.故答案为:16.【点拨】本题考查了解直角三角形的应用,解题的关键是利用仰俯角的定义将题目中的相关量转化为直角三角形ABC 中的有关元素.19.(【解析】【分析】在直角三角形DCE 中,利用锐角三角函数定义求出DE 的长,过D 作DF 垂直于AB ,交AB 于点F ,可得出三角形BDF 为等腰直角三角形,设BF =DF =x (米),表示出BC ,BD ,DC ,由题意得到三角形BCD 为直角三角形,利用勾股定理列出关于x 的方程,求出方程的解得到x 的值,即可确定出AB 的长.【详解】解:在Rt △DCE 中,DC =4米,∠DCE =30°,∠DEC =90°,∴DE 12=DC =2(米), 过D 作DF ⊥AB ,交AB 于点F ,∵∠BFD =90°,∠BDF =45°,∴∠FBD =45°,即△BFD 为等腰直角三角形,设BF =DF =x 米,∵四边形DEAF 为矩形,∴AF =DE =2米,即AB =(x +2)米,在Rt △ABC 中,∠ABC =30°, ∴)324cos30333x B AB C +====︒(米), BD 2=2=米,DC =4米,∵∠DCE =30°,∠ACB =60°,∴∠DCB =90°,在Rt △BCD 中,根据勾股定理得:22(24)2163x x +=+ , 解得:x =3则AB =(3故答案为:(3【点拨】此题考查了解直角三角形的实际应用--仰角俯角问题,坡度坡角问题,熟练掌握解直角三角形的方法是解本题的关键.20.24.2【解析】【分析】先根据等腰直角三角形的判定与性质可得BC CD =,设m BC CD x ==,从而可得(8)m AC x =+,再在Rt ACD △中,利用正切三角函数解直角三角形即可得.【详解】解:由题意得:,8m,53,45AC CD AB ADC BDC ⊥=∠=︒∠=︒,Rt BCD ∴是等腰直角三角形,BC CD ∴=,设m BC CD x ==,则(8)m AC x =+,。

沪科版初中数学九年级上册 特殊角的三角函数值 经典课件

沪科版初中数学九年级上册 特殊角的三角函数值 经典课件

归纳总结
当然如果记不住这些规律及特殊角的三角函数
值,也可以根据这两个含特殊角的三角形的三
边之比和三角函数的定义进行推导。
A
A
30
3
2
45
1
2
沪科版初中数学九年级上册 特殊角的三角函数值 经典课件
C
B
1
C
1
B
沪科版初中数学九年级上册 特殊角的三角函数值 经典课件
随堂练习
例1 计算: (1)2sin60°+3tan30 °+tan45°;
(2)当 090 时, α的余弦值随着角度的增大而减小, 随着角度的减小而增大;
(3)当 090时,α的正切值随着角度的增大而增大, 随着角度的减小而减小;
沪科版初中数学九年级上册 特殊角的三角函数值 经典课件
沪科版初中数学九年级上册 特殊角的三角函数值 经典课件 沪科版初中数学九年级上册 特殊角的三角函数值 经典课件
归纳总结
从表中可发现下列规律:(1)当a= 30°、 45°、60°时, sin a的分子的被开方数依 次为1,2,3,逐渐增大, sin a的分母都是2。
(2)cos a的分子的被开方数依次为3,2,1,逐
渐减小, cos a的分母都是2。
(3) sin 30°= cos 60°= 1
sin 45°= cos 45°= 2 2
2
sin 60°= cos 30°=
3
2
沪科版初中数学九年级上册 特殊角的三角函数值 经典课件
沪科版初中数学九年级上册 特殊角的三角函数值 经典课件
(4)当a= 30°、45°、60°时, tan a的值从
31
3
3 逐渐增大。

中考数学三角函数公式汇总与解析

中考数学三角函数公式汇总与解析

中考数学三角函数公式汇总与解析1.锐角三角函数锐角三角函数定义:锐角角A的正弦(si n),余弦(c o s)和正切(t a n),余切(c o t)以及正割(se c),余割(c sc)都叫做角A的锐角三角函数。

正弦(si n):对边比斜边,即si n A=a/c余弦(c o s):邻边比斜边,即c o sA=b/c正切(t a n):对边比邻边,即t a n A=a/b余切(c o t):邻边比对边,即c o t A=b/a正割(se c):斜边比邻边,即se c A=c/b余割(c sc):斜边比对边,即c s c A=c/a2.3.互余角的关系s i n(π-α)=c o sα,c o s(π-α)=si nα,t a n(π-α)=c o tα,c o t(π-α)=t a nα.4.平方关系sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)5.积的关系s i nα=t a nα·c o sαc o sα=c o tα·si nαt a nα=si nα·se cαc o tα=c o sα·c s cαs e cα=t a nα·c scαc s cα=se cα·c o tα6.倒数关系t a nα·c o tα=1s i nα·c scα=1c o sα·se cα=17.诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:s i n(2kπ+α)=si nαk∈zc o s(2kπ+α)=c o sαk∈zt a n(2kπ+α)=t a nαk∈zc o t(2kπ+α)=c o tαk∈z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:s i n(π+α)=-si nαc o s(π+α)=-c o sαt a n(π+α)=t a nα8.两角和差公式(1)si n(A+B)=si n A c o sB+c o sA si n B(2)si n(A-B)=si n A c o s B-si n B c o sA(3)c o s(A+B)=c o sA c o sB-si n A si n B(4)c o s(A-B)=c o sA c o sB+si n A si n B(5)t a n(A+B)=(t a n A+t a n B)/(1-t a n A t a n B)(6)t a n(A-B)=(t a n A-t a n B)/(1+t a n A t a n B)(7)c o t(A+B)=(c o t A c o t B-1)/(c o t B+c o t A)(8)c o t(A-B)=(c o t A c o t B+1)/(c o t B-c o t A)除了以上常考的三角函数公式外,掌握下面半角公式,积化和差和万能公式有利于快速解决选择题,达到事半功倍的效果哦!1.半角公式注:正负由α/2所在的象限决定。

中考数学三角函数的基础应用

中考数学三角函数的基础应用

中考数学三角函数的基础应用数学是一门广泛应用于各个领域的学科,其中三角函数是数学中的重要内容之一。

在中考数学中,三角函数的基础应用也是考试内容的一部分。

本文将探讨三角函数的基础应用,包括角度的表示、正弦、余弦、正切函数的定义与性质,以及在几何图形中的应用等方面,旨在帮助读者更深入地理解和掌握三角函数的应用。

一、角度的表示角度是三角函数中的基本概念之一,它通常用度数来表示。

在三角函数中,常见的度数制表示方法包括度(°)、分(')和秒('')三个单位。

其中,1°可以分为60',1'可以再分为60''。

通过这种度数制的表示方法,我们可以更加准确地描述角度的大小。

二、正弦、余弦、正切函数的定义与性质1. 正弦函数在三角函数中,正弦函数是最常见的一种函数。

它是一个周期函数,周期为360°(或2π弧度)。

正弦函数的定义域是全体实数,值域是闭区间[-1, 1]。

我们可以通过观察其图像来了解正弦函数的性质,例如在第一象限和第二象限中,正弦函数的值大于0;而在第三象限和第四象限中,正弦函数的值小于0。

2. 余弦函数与正弦函数类似,余弦函数也是一个周期函数,周期也是360°(或2π弧度)。

余弦函数的定义域和值域与正弦函数相同,即定义域是全体实数,值域是闭区间[-1, 1]。

与正弦函数相比,余弦函数在第一象限中的值大于0,而在第二、三、四象限中的值小于0。

3. 正切函数正切函数是另一个常见的三角函数,它的定义域通常是除去所有与余弦函数为零的实数。

正切函数的值域是全体实数。

与正弦、余弦不同,正切函数的图像并没有周期性,我们可以通过观察其图像来了解正切函数的性质。

三、三角函数的应用三角函数的基本应用之一是在几何图形中的应用。

例如,在矩形、三角形等几何图形中,我们可以利用三角函数来求解边长、角度等问题。

在解题过程中,我们可以根据已知条件,利用正弦、余弦、正切等函数来建立方程,进而求解未知量。

九年级数学下册基础知识专项讲练(北师大版)专题 三角函数的应用

九年级数学下册基础知识专项讲练(北师大版)专题 三角函数的应用

专题1.8 三角函数的应用(知识讲解)【学习目标】会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、锐角三角函数之间的关系如图所示,在Rt△ABC 中,△C =90°.(1)互余关系:sin cos A B =,0c sin(9)s n os i A A B ︒=-∠=;(2)平方关系:22sin cos 1A A +=;(3)倒数关系:tan(90)1tan A A ︒⋅-∠=或1t n an a t A B=;(4)商数关系:i t n an s cos A A A=. 要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、利用同角三角函数关系求值1.计算:(1)2tan452sin30cos 30-+; (2)22tan1tan89sin 1sin 89⋅++.举一反三:【变式1】2.已知△A 为锐角且sinA=12,则4sin 2A -4sinAcosA +cos 2A 的值是多少。

【变式2】3.如图,在ABCD 中,E ,F 是对角线BD 上的两点(点E 在点F 左侧),且90AEB CFD ∠=∠=︒.(1)求证:四边形AECF 是平行四边形.(2)当5AB =,3tan 4ABE ∠=,CBE EAF ∠=∠时,求BD 的长.【变式3】4.求值:(1)260453456cos sin tan tan +-⋅; ()2已知2tanA =,求245sinA cosA sinA cosA-+的值. 类型二、求证同角三角函数关系式5.已知:1sin15cos15sin302⋅=,1sin20cos20sin402⋅=,1sin30cos30sin602⋅=,请你根据上式写出你发现的规律________.举一反三:【变式1】6.已知:实常数a b c d 、、、同时满足下列两个等式:△sin cos 0a b c θθ+-=;△cos sin 0a b d θθ-+=(其中θ为任意锐角),则a b c d 、、、之间的关系式是:___________【变式2】7.△sin 2A+cos 2A=________,△tanA•cotA=________.类型三、互余两角的三角函数的关系8.在Rt△ABC 中,已知△C =90°,sin A =35,求cos A 、tan A 以及△B 的三个三角函数值. 举一反三:【变式1】9.在Rt △ABC 中,△C =90°,sin B =35,求cos A 的值.10.在Rt△ABC中,△C=90°,sinA=34,求cosA,sinB,cosB,tanA,tanB的值.【变式3】11.在Rt△ABC中,△C=90°,cosB=35,求tanA的值.类型四、三角函数综合12.如图,在△ABC中,△ACB=90°,sin A=45,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos △ABE的值.举一反三:【变式1】13.如图,海中一渔船在A处且与小岛C相距70nmile,若该渔船由西向东航行30nmile 到达B处,此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.14.如图,已知四边形ABCD 中,△ABC=90°,△ADC=90°,AB=6,CD=4,BC 的延长线与AD 的延长线交于点E .(1)若△A=60°,求BC 的长;(2)若sinA=45,求AD 的长. (注意:本题中的计算过程和结果均保留根号)【变式3】15.如图,在Rt ABC 中,90,30,B A AC ∠=︒∠=︒=(1)利用尺规作线段AC 的垂直平分线DE ,垂足为E ,交AB 于点D ;(保留作图痕迹,不写作法)(2)若ADE 的周长为a ,先化简()()211T a a a =+--,再求T 的值.参考答案:1.(1)34;(2)2. 【分析】(1)根据特殊角的三角函数值计算即可;(2)根据直角三角形中tanA=1tanB,sin 2A+cos 2A=1,sinA=cosB 计算.【详解】()1原式21331211244=-⨯+=-+=; ()2原式()221tan1sin 1cos 1tan1=⨯++ 11=+2=.故答案为(1)34;(2)2. 【点睛】本题考查了三角函数值的计算.2.74【分析】先求出A ∠的度数,再求出cos A 的值,最后代入计算即可.【详解】A ∠为锐角,且1sin 2A = 30A ∴∠=︒cos cos30A ∴=︒=22224117 44()4224sin A sinAcos A A cos ∴-+⨯-⨯== 【点睛】本题考查了锐角三角函数值,熟记特殊角的三角函数值是解题关键.3.(1)见解析;(2)【分析】(1)由平行四边形的性质得到AB =CD ,ABE CDF ∠=∠,和已知条件一起,用于证明三角形全等,再根据一组对边平行且相等的四边形是平行四边形判定定理得出结论; (2)根据平行四边形的性质得到一组对角相等,通过等量代换,得到CBE ECF ∠=∠,则相等的角正切值也相等,根据比值算出结果.【详解】(1)证明=90AEB CFD , △//AE CF ,在ABCD 中,//AB CD ,=AB CD ,△ABE CDF ∠=∠,△ABE ≌CDF ()AAS ,△AE CF =,△四边形AECF 是平行四边形.(2)解:△ABE ≌CDF ,△BE =DF ,△四边形AECF 是平行四边形,△EAF FCE ,在Rt ABE 中5AB =,3tan 4ABE ∠=,△AE =3,BE =4.△BE =DF ,AE =CF ,△BE =DF =4,AE =CF =3,EAF FCE ,CBE EAF ∠=∠,△CBE ECF ∠=∠,△tan△CBF =34CF BE EF EF =++,tan△ECF =3EF EF CF =,△343EF EF =+,得到EF 2,或EF =2(舍去),△BD 2=6,即BD =6.【点睛】本题考查了平行四边形的性质与判定以及相等的角的正切值也相等.解决本题的关键在于等量代换出角相等,应用相等的角的正切值也相等来解题.4.(1)0;(2)313. 【分析】(1)根据特殊角的三角函数值及互余两角三角函数值相互间的关系计算.(2)根据同角三角函数值相互间的关系计算.【详解】(1)原式12=+)2﹣11122=+-1=0; (2)△tan A =2,△sin cos A A =2,△sin A =2cos A ,△原式=22cos 42cos 5A cosA A cosA ⨯-⨯+=3cos 13cos A A =313. 【点睛】本题考查了特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.5.1sin cos sin22ααα⋅= 【分析】从角度的倍数关系方面考虑并总结写出结论.【详解】根据题意发现:同一个角正弦与余弦的积等于这个角的2倍的正弦的一半, 规律为:1sin cos sin22ααα⋅=. 故答案为1sin cos sin22ααα⋅=. 【点睛】本题考点:同角三角函数的关系.6.a 2+b 2=c 2+d 2【分析】把两个式子移项后,两边平方,再相加,利用sin 2θ+cos 2θ=1,即可找到这四个数的关系.【详解】由△得asinθ+bcosθ=c ,两边平方,a 2sin 2θ+b 2cos 2θ+2absinθcosθ=c 2△,由△得acosθ-bsinθ=-d ,两边平方,a 2cos 2θ+b 2sin 2θ-2absinθcosθ=d 2△,△+△得a 2(sin 2θ+cos 2θ)+b 2(sin 2θ+cos 2θ)=c 2+d 2,△a 2+b 2=c 2+d 2.【点睛】本题主要考查了同角三角函数基本关系式的应用,sin 2θ+bcos 2θ=1的应用是解题的关键,属于基础题.7. 1 1【详解】如图,设Rt△ABC 中,△C=90°,△A 、△B 、△C 所对的边分别为a b c 、、,则sinA=a c,cosA=b c ,tanA=a b ,cotA=b a ,222+=a b c , △(1)sin 2A+cos 2A=2222222()()1a b a b c c c c c++===; (2)tanA•cotA=1a b b a ⋅=.点睛:解答本题的要点是:画出符合要求的图形,结合锐角三角形函数的定义和勾股定理进行推理计算即可得到答案.8.见解析.【分析】根据已知角A 的正弦设()30BC k k =>,得出5AB k =,由勾股定理求出4AC k =,根据锐角三角函数的定义求出即可.【详解】△sin A =35=BC AB , △设()30BC k k =>,5AB k =,由勾股定理得:4AC k =,则cos A =4554AC k AB k ==, tan A =3344BC k AC k ==, sin B =45AC AB =, cos B =35BC AB =, tan B =43AC BC =.【点睛】本题考查了锐角三角函数的定义的应用,熟练掌握定义是关键.9.cos A =35. 【分析】先根据三角形内角和定理得出△A+△B=90°,再根据互余两角的三角函数的关系求解.【详解】解:在△ABC 中,△△C =90°,△△A +△B =90°,△cos A =sin B =35. 故答案为:35. 【点睛】本题考查直角三角形中互为余角的两角的三角函数的关系及三角形内角和定理.解题关键是一个角的正弦值等于它的余角的余弦值,一个角的余弦值等于它的余角的正弦值;三角形内角和是180°.1034【分析】已知直角三角形中一个锐角的某个三角函数值,求这个锐角的其他三角函数值和它的余角的各三角函数值,可以先画出直角三角形,结合图形和已知条件,利用设“k”法,将直角三角形的各边长用含“k”的代数式表示出来,其中k >0,然后根据锐角三角函数的定义,求得锐角的各三角函数值.【详解】解:如图因为Rt △ABC 中,△C=90°,3sin 4A =, 所以34BC AB =, 设BC =3k(k >0),则AB =4k .在Rt△ABC 中,由勾股定理得AC .所以cos AC A AB ===,sin AC B AB== 33cos 44BC k B AB k ===,tanBC A AC ==,tan AC B BC === 11.34【分析】在Rt △ABC 中,△C =90°,根据,cosB =BC AB =35,设BC =3x ,AB =5x ,再根据勾股定理,可得AC 的长 再根据正切等于对边比邻边,可得答案.【详解】解 由在Rt △ABC 中,△C =90°,cosB =35,得 cosB =BC AB =35, 设BC =3x ,AB =5x ,勾股定理得AC 4x ,由正切等于对边比邻边,得tanA =BC AB =3x 4x =34. 【点睛】本题考查了余弦函数的定义,勾股定理,正切函数的定义.熟练掌握相关知识是解题的关键.12.(1)5;(2)2425. 【详解】试题分析:(1)利用正弦定义很容易求得AB =10,然后由已知D 为斜边AB 上的中点,直角三角形斜边上的中线等于斜边的一半求解.(2)cos△ABE =BE BD,则求余弦值即求BE ,BD 的长,易求得BD =5.再利用等面积法求BE 的长.试题解析:(1)在△ABC 中,△△ACB =90°,sin A =45BC AB =,而BC =8,△AB =10.△D 是AB 的中点,△CD =12AB =5.(2)在Rt△ABC 中,△AB =10,BC =8,△AC =6.△D 是AB 中点,△BD =5,S △BDC =S △ADC ,△S △BDC =12S △ABC ,即12CD ·BE =12·12AC ·BC ,△BE =6824255⨯=⨯. 在Rt△BDE 中,cos△DBE =BE BD = 2455=2425,即cos△ABE 的值为2425. 点睛:在直角三角形中求长度,一般可通过勾股定理或全等三角形来求;若已知角度则可用锐角三角函数来求;若这些方法均不可行,又是求高或已知高的长度则可利用等面积法来求.13.渔船此时与C 岛之间的距离为50海里.【分析】过点C 作CD△AB 于点D ,由题意得:△BCD=30°,设BC=x ,解直角三角形即可得到结论.【详解】过点C 作CD△AB 于点D ,由题意得:△BCD=30°,设BC=x ,则:在Rt △BCD 中,BD=BC•sin30°=12x ,;△AD=30+12 x,△AD2+CD2=AC2,即:(30+12x)2+)2=702,解得:x=50(负值舍去),【点睛】注意能借助于方向角构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.14.(1)8;(2)143.【分析】(1)根据锐角三角函数求得BE和CE的长,根据BC=BE﹣CE即可求得BC的长;(2)根据题意求得AE和DE的长,由AD=AE﹣DE即可求得AD的长.【详解】(1)△△A=60°,△ABE=90°,AB=6,tanA=,△△E=30°,BE=tan60°•6=6,又△△CDE=90°,CD=4,sinE=,△E=30°,△CE==8,△BC=BE﹣8;(2))△△ABE=90°,AB=6,sinA==,△设BE=4x,则AE=5x,得AB=3x,△3x=6,得x=2,△BE=8,AE=10,△tanE====,解得,DE=,△AD=AE﹣DE=10﹣=,即AD的长是.考点:解直角三角形.15.(1)作图见解析;(2)10.【分析】(1)尺规作图——作线段的垂直平分线;(2)化简求值,利用三角函数求其余两边的长度.【详解】解:(1)如图所示:(2)2(1)(1)31T a a a a =+--=+,△1122AE AC ==⨯△2cos cos30AE AE AD A ====︒, △1sin sin 30=212DE AD A AD ==︒⨯=,△123a =+=3110T a ∴=+=.。

鲁教版(五四制)初中数学九年级上册_《三角函数的应用》复习课件2

鲁教版(五四制)初中数学九年级上册_《三角函数的应用》复习课件2

的值为(
)
4 A. 3
3 B. 5
3 C. 4
4 D. 5
【解析】由折叠知 CF=CB=5,则 DF=
52-42=3,
∴AF=5-3=2.设 AE=x,则 BE=EF=4-x,∴x2+22=(4 3 3 AE 2 3 -x)2,∴x= ,∴tan∠AFE=AF= = . 2 2 4 【答案】C
8.(2010中考变式题)如图,在高为h的建筑物顶部看一个旗杆顶(旗 杆高出建筑物顶),仰角为30°,看旗杆与地面的接触点,俯角为60°,
【答案】B
x
4.(2011·潍坊)身高相等的四名同学甲、乙、丙、丁参加风筝比赛 ,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),
则四名同学所放的风筝中最高的是(
同学 放出风筝线长 线与地面夹角 甲 140 m 30°
)
乙 100 m 45° 丙 95 m 45° 丁 90 m 60°
直角三角形的边角关系的应用
日常生活中的很多问题可以转化为直角三角形的问题,因此,直角
三角形的边角关系在解决实际问题中有较大的作用,在应用时要注意以下
几个环节: (1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角 形的问题); (2)根据条件的特点,适当选用锐角三角函数等去解直角三角形; (3)得到数学问题的答案; (4)得到实际问题的答案.
BD BD ∠BAD=∠BDA=45°,得 AB=BD.在 Rt△BDC 中,由 tan∠BCD= ,得 BC= BC tan30° = 3 BD. 设 BD=xm 则 AB=xm,BC= 3 xm,∵BC-AB=20,∴ 3 x-x=20,x= ≈27.3. 答:该古塔的高度约为 27.3 m. 20 3-1

初三下数学课件(人教版)-特殊角的三角函数值

初三下数学课件(人教版)-特殊角的三角函数值
能进行三角函数值的计算. 【例 1】求下列各式的值: (1)2-2sin30°cos30°; (2)cos60°-sin45°+34tan230°+cos230°-sin30°; (3)1+sinsi3n06°0°+tan130°.
【思路分析】将特殊角的三角函数值代入计算.
【规范解答】(1)2-2sin30°cos30°=2-2×12× 23=2- 23;
14.已知 α 是锐角,且 2cos(α-15°)= 3,求-4sin2α+tan45°的值.
解:∵2cos(α-15°)= 3,∴cos(α-15°)= 23,∴α-15°=30°,∴α=45°, 故原式=-4×( 22)2+1=-1.
15.已知等腰三角形的底边长为 20cm,面积为1003 3cm2,求它的各个内角.
.④
(1)如图,在锐角三角形 ABC 中,利用三角函数的定义及勾股定理证明你的
猜想;
(2)已知:∠A 为锐角(cosA>0)且 sinA=35,求 cosA.
解:空格中依次填:1 1 1 1;(1)过点 B 作 BD⊥AC 于 D,则∠ADB=
90°.∵sinA=BADB,cosA=AADB,∴sin2A+cos2A=(BADB)2+(AADB)2=BDA2+B2AD2,
12.如图,△ABC 的三个顶点分别在边长为 1 的正方形网格的格点上,则 tan(α+β) > tanα+tanβ(填“>”“<”或“=”).
13.计算: (1)cos60°-tan45°+sin30°; 解:原式=21-1+12=0; (2)|- 3|+ 2sin45°+tan60°-(-13)-1- 12+(π-3)0. 解:原式= 3+ 2× 22+ 3-(-3)-2 3+1= 3+1+ 3+3-2 3+1= 5.

【中考数学专题】特殊角的妙用——“12345模型”

【中考数学专题】特殊角的妙用——“12345模型”

【中考数学专题】特殊角的妙用——“12345模型”几何图形中经常会出现一些特殊角,熟悉的有30°、45°、60°等等,特殊角往往伴随着固有属性运用于题目中,也是解题思路来源之一。

比如看到30°角我们会想到,45°角总是跟等腰直角三角形说不清道不明,60°甚至能牵出一只等边三角形。

关于特殊角,除了用角度表示,诸如15°角的倍数,还可以用三角函数表示,只要最终的结果是:(1)好看;(2)好用,就可以将其归为特殊角。

比如tanA=1/2,诚然我并不知道∠A的度数到底是多少,而且∠A也一定不是一个整数度数,但这并不妨碍∠A的特殊性,∠A所对的直角边是邻边的两倍,这与30°角的并无本质区别。

打开三角函数的大门,打开新世界。

今天,故事的主角也是一个特殊角,哦不,是一组特殊角。

01从一道北京中考题说起【2019北京中考第12题】如图所示的网格是正方形网格,则∠PAB+∠PBA=___°.(点A、B、P是网格线交点)解法有很多,这里就根据现有的方格纸来构造一下:∠PAB+∠PBA=∠BPQ=45°这里的∠PAB和∠PBA便是今天要说的特殊角,除了它们的和为45°之外,用三角函数的观点来看:tan∠PAB=1/2,tan∠PBA=1/3这个正切值可以说很好看了。

02“12345模型”12345模型对于这里的数据,为了便于记忆,于新华老师总结为“12345”模型。

上文所举的北京中考题已经足够说明这个结论,考虑到使用这个结论的多样性,以下用3种方法给出证明:法一:方格纸中的构造小学的时候我们可能就遇到过这样一个题目:求∠1+∠2.考虑∠1和∠2的正切值,这不正是刚刚所说的α和β吗?构造等角,将α和β组合到一起:根据这里的等腰直角△ABC,可得∠1+∠2=45°此外,模型还可变式为:法二:勾三股四弦五如图,AC=4,BC=3,AB=5,这个三角形我们再熟悉不过了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学特殊角三角函数的应用1师生共同完成课本第82页例3:求下列各式的值. (1)COS260°sin260 °COS45 o(2)-tan45 ° .sin 45教师以提问方式一步一步解上面两题•学生回答,教师板书.1 ?3解:(1} COS260°sin260° =(2)2+(乙)2=1⑵ CO^-ta n45 ° =上 + 2-1=0 sin 45 2 22•师生共同完成课本第82页例4:教师解答题意:(1)如课本图28• 1-9 ( 1),在Rt△ ABC 中,/ C=90, AB= J6 , BC= J3,求/ A的度数.(2)如课本图28. 1-9 (2),已知圆锥的高AO等于圆锥的底面半径OB的J3倍,求a.教师分析解题方法:要求一个直角三角形中一个锐角的度数,可以先求它的某一个三角函数的值,如果这个值是一个特殊解,那么我们就可以求出这个角的度数.解:(1)在课本图28. 1-9 (1)中,BC 73 血-sinA= —=AB V6 2(2)在课本图28 . 1-9 (2)中,AO y/30B庁■/ tana= =、、3 ,OB OB••• a=60°.教师提醒学生:当A、B为锐角时,若A丰B,则si nA 丰 si nB , cosA 丰 cosB, tanA 丰 ta nB.随堂练习学生做课本第83页练习第1、2题.课时总结学生要牢记下表:对于sina与tana,.教后反思第3课时作业设计课本练习做课本第85页习题28. 1复习巩固第3题. 双基与中考(本练习除了作为本课时的课外作业之外,余下的部分作为下一课时(习题课)学生的课堂作业•学生可以自己根据具体情况划分课内、课外作业的份量) 、选择题.1 .已知: Rt △ ABC 中,/ 3 C=90 , cosA=—, 5AB=15 , 则AC 的长是()A . 3B . 6C . 9D . 122.下列各式中不正确的是().A .si n 260 °+COS 260° =1B . si n30° +cos30° =1C . sin35 ° =cos55 °D . tan 45°>sin45 °3 .计算 2sin30 ° -2cos60° +ta n45 °的结果是().A . 2B . 3C . 、、2D . 11cosA w ,那么( )2B . 60°<Z A<90 °的值为().343A . —B . —C .—4 3 57.当锐角a>60°时,cosa 的值().4. 已知/ A 为锐角,且C . 0° </ A < 30°D . 30°<Z A<90 °5. 在厶ABC 中,/ A 、 /B 都是锐角,且1 sinA=—,2cosB^3,则△ ABC 的形状是()2A •直角三角形B .钝角三角形C .锐角三角形D .不能确定6.如图 Rt △ ABC 中,/ ACB=90 ,CD 丄 AB 于 D , BC=3 , AC=4,设/ BCD=a ,贝U tana?12二、填空题.12.设 a 、B 均为锐角,且 sin a -cos 3 =0,则a + 3 = _______ cos60 tan 45214.已知,等腰△ ABC?的腰长为4运,?底为30? °, ?则底边上的高为 _______________ , ?周长为16. 正方形ABCD 边长为1,如果将线段BD 绕点B 旋转后,点D 落在BC 的延长线上的 点 D '处,那么 tan / BAD ' = _________A .小于 1B .大于-2c .大于弓D .大于18.在△ ABC 中,三边之比为 a : b : c=1: .3 : 2,则sinA+tanA 等于().9.已知梯形 ?则/ CAB A . 30°2.3 6ABCD 等于( B.- .32D .AJ2中,腰 BC 长为 2,梯形对角线BD 垂直平分AC ,若梯形的高是^.3 , B . 60°45°D .以上都不对10. sin 272 °sin 218° 的值是).D ..311 .若(3 tanA-3 ) 2+ | 2cosB- . 3 | =0,则厶 ABC ().A .是直角三角形B .是等边三角形C .是含有60°的任意三角形D .是顶角为钝角的等腰三角形13.cos45 sin 30 的值是15.在 Rt △ ABC 中,/ C=90已知tanB=-5 2,贝U cosA= _____AB AC17. 在Rt△ ABC 中,/ C=90 °, CAB=60 ° , AD 平分/ CAB,得————的值为CD CD三、解答题.18. 求下列各式的值.(1)sin30°・cos45°+cos60°;(2) 2sin60 ° -2cos30 °• si n45°2cos 60sin 45 cos30(3)(4) -sin60 °( 1-s in2sin 30 2 3 2cos 60(5) tan45°・sin60 °-4si n30°• cos45° + 6 •tan30°sin 45(6) +cos45°・cos30°tan 30 tan 6019. 在△ ABC 中,AD 是BC 边上的高,/ B=30。

,/ C=45 ° , BD=10,求AC .20. 如图,/ POQ=90 °,边长为2cm的正方形ABCD的顶点B在OP上,C为CQ?上,?且/ OBC=30。

,分别求点 A , D到OP的距离.21. 已知sinA , sinB是方程4x2-2mx+m-仁0的两个实根,且/ A,/ B是直角三角形的两个锐角,求:(1) m的值;(2)Z A与/ B的度数.22.如图,自卸车车厢的一个侧面是矩形 ABCD , AB=3米,BC=0.5米,?车厢底部距离地面1.2米,卸货时,车厢倾斜的角度 =60。

,问此时车厢的最高点 A 距离地面是多少米? (精确到0.1m )A 、B 、C 之间铺设地下输水管道•有人设计了三种铺设方案:如图( 1 )、(2)、( 3),图中实线表示管道铺设线路,在图( 2)中,AD 丄BC 于D ;在图(3)中,OA=OB=OC •为 减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短.已知△ ABC?恰好是一个边长是a 的等边三角形,请你通过计算,判断哪个铺设方案最好.•••△ ABD 和厶ACD 都是直角三角形.23.如图,由于水资源缺乏, B 、C 两地不得不从黄河上的扬水站一、1. C 2. B 3. .D 4. B 5. B 6二、12. 90°13.2114.2 .3,2- 、2込⑵2718. (1) ; 42f IcwD CB(1)⑵⑶.A 7. A 8. A9. B 10. A 11. A12+8 73 亦15. 一 16. 42 17 .肓3⑶ 1;42⑷—; (5)(6) 042A 处引水,?这就需要在第3课时作业设计(答案)19.T AD 是BC 边上的高,7AD=tan30°, BD=10 , BD20. 过点A 、D 分别作 AE 丄OP , DF 丄OP , DG 丄OQ ,垂足分别为 E 、F 、G .•••/ OBC=30 ° ,•/ ABE=60•••四边形DFOG 是矩形,• DF=GO . •••/ OBC=30 ° ,•/ BCO=60 ° ,•/ DCG=3021. m=2 .2 + 1 A=45 ° B=4522. A 距地面4.8m23. (1 )所示方案的线路总长为 AB+BC=2a .(2) 在 Rt A ABD 中,AD=ABsin6010 .,3 . 3=sinC ,AD叫33sin C 2•••AD=.AD …AC• AC= 10.63 在正方形ABCD 中,/ ABC= / BCD=90在 Rt △ AEB 中,AE=AB -sin60=2 X 乜=、、32(cm ).在 Rt △ DCG 中, CG=CD • cos30 (cm ).在 Rt △ BOC 中, 1OC= BC=1 .2a ,(2)所示方案的线路总长为AD+BC=a(3)延长 AO 交 BC 于 E ,T AB=AC , OB=OCOE 丄 BC , BE=EC= — •2(3)所示方案的线路总长为 OA+OB+OC=3OB= ,3 a .比较可知,a<2a, •••图(3) ?所示方案最好.D\在 Rt △ OBE 中,/ OBE=?30OB=旦口a .cos30 3。

相关文档
最新文档